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Abstract 

The nucleolus is considered to be a stress sensor and rDNA-based regulation of cellular 

senescence and longevity has been proposed. However, the role of rDNA in the maintenance 

of genome integrity has not been investigated in detail. Using genomically diverse industrial 

yeasts as a model and array-based comparative genomic hybridization (aCGH), we show that 

chromosome level may be balanced during passages and as a response to alcohol stress that 

may be associated with changes in rDNA pools. Generation- and ethanol-mediated changes in 

genes responsible for protein and DNA/RNA metabolism were revealed using next-generation 

sequencing. Links between redox homeostasis, DNA stability, and telomere and nucleolus 

states were also established. These results suggest that yeast genome is dynamic and 

chromosome homeostasis may be controlled by rDNA. 
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1. Introduction 

It is widely accepted that genomes of bacteria, yeast and human cancer cells are plastic 

and responsive to changing environment [1]. Stress-induced mutagenesis and other changes in 

the genome may promote evolution of microbial pathogenesis and antibiotic-resistance, 

industrial yeast strain resistance to fermentation conditions, and tumor progression and 

chemotherapy resistance [1]. 

Among 700 known yeast species, the most useful and widely exploited species are those 

from the Saccharomyces genus, especially S. cerevisiae and its relatives used in numerous 

fermentation processes such as baking, brewing, distilling, winemaking and cider production. 

Under fermentation conditions, industrial strains are subjected to both abiotic and biotic 

stresses, e.g. high sugar, high alcohol, high osmotic and hydrostatic pressure, temperature 

fluctuations, low pH, variable nutrient availability, anaerobiosis and microbial competition 

that is associated with transcriptional and translational responses [2-5]. Industrial strains are 

more genomically and genetically unstable than laboratory strains [6]. Natural wine yeasts are 

usually aneuploid strains with disomies, trisomies and tetrasomies [7,8], whereas bottom-

fermenting lager yeasts are allotetraploid strains with hybrid genome with varying numbers of 

S. cerevisiae and non-S. cerevisiae chromosomes [9]. Aneuploidy and polyploidy may be 

adaptive and advantageous by increasing the number of copies of beneficial genes or by 

protecting the yeasts against recessive lethal or deleterious mutations [7,10], e.g. lager yeasts 

are able to grow at low temperatures (7–13
o
C) and to tolerate high osmotic pressure, high 

hydrostatic pressure, and high ethanol and CO2 concentrations. 

Stress-induced changes in repetitive sequences, e.g. at the telomeres and at the rDNA 

gene locus on chromosome XII, of laboratory and industrial yeast strains have been already 

documented [11,12] and repetitive loci have been implicated in adaptive evolution mediated 

by transposable elements [13]. More recently, it has been proposed that rDNA instability may 
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maintain genome integrity through checkpoint control induction [14]. The stability and/or 

copy number of rDNA may regulate cellular functions such as senescence and damage 

resistance being both a sensor for DNA damage and a shock absorber that protects the 

genome from damage [14]. Indeed, we have previously shown that rDNA instability is 

associated with chronological aging in yeast and the rDNA content of chronologically aged 

cells may be a factor determining the subsequent replicative lifespan [15]. 

As very little information is available about rDNA stability, the maintenance of genome 

integrity and adaptive responses in industrially relevant yeast strains, we have 

comprehensively studied generation- and ethanol-mediated effects on the genome, especially 

we have focused on rDNA locus. We have found that chromosome level may be balanced 

during selection that may be promoted by changes in rDNA pools. 
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2. Materials and Methods 

2.1 Reagents 

All reagents, if not otherwise mentioned, were purchased from Sigma (Poland) and were 

of analytical grade. 

2.2 Yeast strains and growth conditions 

All industrial yeast strains used in this study are listed in Table 1. 

Insert Table 1 about here 

Yeast from one single colony was grown either on liquid YPD medium (1% w/v Difco 

Yeast Extract, 2% w/v Difco Yeast Bacto-Peptone, 2% w/v dextrose) or on solid YPD 

medium containing 2% w/v Difco Bacto-agar, at 28 °C. Yeast cells were cultured for 100 

generations in the presence or absence of 5% ethanol, namely cells were grown for 6.(6) 

generations before being diluted (1:100) into fresh YPD medium. Cell morphology was 

inspected under a light microscope and cell growth was monitored using kinetic growth assay 

as described elsewhere [15]. Cell viability was estimated with a LIVE/DEAD
® 

Yeast Viability 

Kit (Molecular Probes, Netherlands) using the standard protocol according to the 

manufacturer’s instructions. 

2.3 Pulsed-field gel electrophoresis (PFGE) 

Preparation of agarose-embedded yeast DNA and PFGE separation of yeast DNA were 

conducted as described elsewhere [16]. 

2.4 FACS-based cell cycle and ploidy analysis 

The DNA content was measured via flow cytometry as previously described [17]. 

2.5 Oxidative stress parameters 

Generation-dependent intracellular reactive oxygen species (ROS) production was 

measured using 2’,7’-dichlorodihydrofluorescein diacetate (H2DCF-DA) as described 
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elsewhere [15]. Oxidative DNA damage as a level of 8-hydroxy-2’-deoxyguanosine (8-

OHdG, 8-oxo-dG) was measured using Epigentek EpiQuik 8-OHdG DNA Damage 

Quantification Direct Kit (Gentaur, Poland) using the standard protocol according to the 

manufacturer’s instructions. 

2.6 Comet assay and chromosome comet assay 

Yeast spheroplasts were obtained [16] and DNA double-strand breaks (DSBs) were 

assessed by neutral single-cell microgel electrophoresis (comet assays) as described elsewhere 

[18]. The percentage of tail DNA was used as a parameter of DNA damage. Chromosome XII 

comet assay was conducted according to [16]. 

2.7 Detection and length of telomeric Y’ sequences 

Y' element telomeric probe was obtained according to [11] with minor modifications. 

After standard PFGE separation, Y’ sequences within particular yeast chromosomes were 

detected using digoxigenin labeling, anti-digoxigenin antibody and phosphate alkaline-based 

chemiluminescence [15]. Y’ sequence length was estimated after DNA digestion with PstI. 

2.8 Next-generation sequencing (NGS) 

After 100 generations in the presence and absence of 5% ethanol, a 100 ng of the 

purified dsDNA from strain 4 was sheared to the average fragment sizes of 350bp with 

Covaris M220 ultrasonicator. The sequencing libraries were prepared with TruSeq Nano 

DNA Sample Prep kit (Illumina, San Diego, CA). Briefly, the protocol involved DNA ends 

repair, magnetic beads-based size selection, 3’ end adenylation, ligation of indexed adapters 

and library enrichment by PCR. Purified libraries were quantified with the use of Qubit 

Fluorometer (Life Technologies) and quality was then controlled by the Agilent’s 2200 

TapeStation electrophoresis. The libraries were sequenced on v3 Illumina flowcell on 

HiScanSQ system in a single 50-bp run using TruSeq SBS HS-v3 kit (Illumina). After de-

multiplexing, raw reads were controlled with FastQC software [19] and mapped against 
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Saccharomyces cerevisiae reference genome (SacCer3) with Burrows-Wheeler Aligner 

(BWA) [20]. The mapped reads were filtered to remove reads with mapping quality lower 

than 20 using SAMTools [21]. The mapping statistics were generated using Picard-tools. To 

identify potential chromosome ploidy, genome coverage plots were generated with BEDTools 

[22]. Before variant calling, PCR-duplicated reads were removed from the dataset with 

Picard-tools. Single nucleotide variants (SNVs) and small indels were identified using 

FreeBayes software, which is a Bayesian genetic variant detector designed to detect small 

polymorphisms [23]. The software was set to diploid calling with disabled options for 

detection of multi-nucleotide polymorphisms (MNPs) and complex events (composites of 

other classes). Minimum mapping quality was set to 20 and minimum base quality was set to 

30. The variants were further filtered to remove those with corrected coverage (read depth, 

DP) lower than six. The filtered variants were annotated with snpEff [24] and Variant Effect 

Predictor [25] software against R64-1-1 Ensembl annotation dataset. Known variants were 

specified according to the Ensembl VCF file, which included only SNVs. Then, the variants 

were compared between different conditions (after 100 generations in the presence and 

absence of 5% ethanol) using VCFlib toolkit and ‘annotate genotypes’ option. The locations 

of potential de novo mutations and variants, which propagated in treated samples compared to 

control sample were checked for read depth in control strain to account for differences in 

coverage between samples. Only sites, which were covered by at least seven reads in de-

duplicated BAM file (raw coverage) and had no detectable variation in control strain (more 

than 95% of reads supported reference allele) were considered. The screening of sites with no 

variants detected in the reference strain was conducted by the inspection of SAMTools-

generated mpileup file with custom R script. Considering that different strains can have 

substitution in respect to the reference S288C genome, we have also searched for sites with 

differences in assigned variant genotypes between studied conditions, e.g. with fixed or well 
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propagated variation in a control strain, which was a subject of both reduction or fixation after 

100 generations. To keep the number of false-positives possibly low, allele frequency 

differences were only considered at sites with read depth >30 in both compared conditions 

and high genotype quality. To further validate discrepant genotype calls, the ratio of reads 

supporting each allele was calculated for each sample and the difference in allelic ratios 

between samples was calculated according to the formula: F = (ROM/AOM) – (ROR/AOR), 

where: F – allelic ratio difference, ROM – count of reads supporting reference allele (reference 

observed) in modified strains, AOM – count of reads supporting alternate allele (alternate 

observed) in modified strains, ROR - count of reads supporting reference allele (reference 

observed) in reference strain, AOR - count of reads supporting alternate allele (alternate 

observed) in reference strains. For further analysis, only variants with a difference higher than 

0.5 in allelic ratios (F) between samples were retained. Molecular functions and biological 

processes conditioned by genes affected by potential de novo mutations in different conditions 

were analyzed using Panther Classification System [26] based on gene list obtained from 

Ensembl Variant Effect Predictor. Eight randomly selected variants (and one additional 

neighboring variant) showing differences in allelic frequencies between control and treated 

samples were validated using Sanger sequencing. Briefly, 250-280 bp DNA fragments 

spinning validated variants were amplified using primer presented in Online Supplementary 

File 9. Amplification was performed with Fast Cycling PCR Kit (Qiagen) in accordance with 

manufacturer specifications. PCR products were purified using ExoSAP-IT (USB 

Corporation) and sequenced using BigDye
®
 Terminator v3.1 Cycle Sequencing Kit (Life 

Technologies) and 3130xl capillary electrophoresis system (Life Technologies). Sequencing 

results were compared with genotypes obtained from whole genome sequencing. 

2.9 Array-based comparative genomic hybridization (aCGH) analysis 
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Genomic DNA (0.5 μg) was labeled with SureTag DNA Labeling Kit and either Cy3- 

or Cy5-dUTP. Equal amounts of labeled DNA of tested and of the reference strain (BY4741) 

were combined and hybridized to Yeast (V2) Gene Expression Microarray, 8x15K using 

Oligo aCGH Hybridization Kit. All components were supplied by Agilent Technologies Inc. 

(Santa Clara, CA, USA) and all steps of the experiment were performed according to 

manufacturer’s protocols. Following hybridization and washing, the slides were scanned 

using Axon GenePix 4000B. Feature extraction was conducted using GenePix Pro 6.1 and 

normalization using Acuity 4.0 (all from Molecular Devices, Sunnyvale, CA, USA). Further 

processing was conducted using Microsoft Excel. The original CGH profiles obtained after 

the comparison of analyzed strains to BY4741 yielded consistently high noise most probably 

due to genomic DNA sequence differences between BY4741 and the industrial strains, which 

influenced the hybridization strength of individual probes. Therefore to obtain final CGH 

profiles, the data for each strain were compared to the average of all industrial strains used in 

the experiment. The analysis of over-representation of functional categories was performed 

using Cytoscape v. 2.8.2 with BiNGO v. 2.44 plug-in. Hypergeometric test with Benjamini 

and Hochberg False Discovery Rate (FDR) correction and significance level of 0.05. 

2.10 rDNA analyses 

rDNA was detected using both Southern blotting using rDNA specific probe [15], and 

fluorescence in situ hybridization (FISH) using whole chromosome XII painting probe [27]. 

For Southern blotting, rDNA specific signals were detected using digoxigenin labeling, anti-

digoxigenin antibody and phosphate alkaline-based chemiluminescence. For analysis of 

rDNA length, DNA was digested with BamHI. For FISH, biotin-labelled chromosome XII-

specific DNA was detected using Star
*
FISH

©
 Biotin Painting Kit — FITC Label (Cambio, 

UK). To analyze the nucleolar rDNA content, ImageJ software http://rsbweb.nih.gov/ij/ was 

used as described elsewhere [16]. 
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2.11 Western blotting 

For WB analysis, whole cell extracts were prepared according to [15]. The following 

primary antibodies were used: anti-Fob1p (1:200), anti-Nop1p (1:200) and anti-Act1p 

(1:1000) (Santa Cruz, Abcam). The respective proteins were detected after incubation with 

one of the horseradish peroxidase-conjugated secondary antibodies (1:80000 or 1:125000) 

(Sigma). The chemiluminescence signals were detected with an ECL Plus Western Blotting 

Detection System (GE Healthcare) and a G:BOX imaging system (Syngene, Cambridge, UK). 

2.12 Nucleolus morphology 

To visualize the nucleolus, silver staining of nucleolar organiser regions (AgNOR) was 

performed. Silver staining of nucleolar argyrophilic proteins was conducted according to [15]. 

A total of 100 cells were analyzed and their nucleolus morphological type was determined 

(unaffected or fragmented nucleolus) [%]. 

2.13 Statistical analysis 

The results represent the mean ± SD from at least three independent experiments. 

Statistical significance was assessed by 1-way ANOVA using GraphPad Prism 5, and with the 

Dunnett's multiple comparison test. 
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3. Results 

3.1 Genomic diversity of industrial yeast during passages 

Eighteen industrial yeast strains (baker’s, brewer’s and wine strains) were studied in 

order to establish generation- and ethanol-mediated changes in their karyotypes (Fig. 1). 

Ethanol concentration of 5% was selected to not cause acute cytotoxic effects (spot assay; 

data not shown). 

Insert Figure 1 about here 

Three strains were selected for further analysis on the basis of observed changes in their 

karyotypes (Fig. 1). Some of chromosomes of strains 4 and 7, namely chromosome I, VI, X, 

XI, XVI, XV/VII and XII, were affected after 100 generations in the presence and absence of 

5% ethanol (Fig. 1). Moreover, some additional bands occurred that may be due to 

generation- and ethanol-stimulated translocations. The changes in DNA level were also 

observed that may a consequence of selection-associated changes in the ploidy. Strain 16 

served as an example of low level of chromosome variability (Fig. 1). Firstly, the ploidy of 

selected strains was characterized (Fig. 2A). 

Insert Figure 2 about here 

FACS-based analysis revealed that strain 4 is diploid with a fraction of chromosomes in 

trisomic state, strain 7 is tetraploid, whereas strain 16 is diploid (Fig. 2A). However, some 

cellular heterogeneity was also observed (Fig. 2A). After 100 generations and alcohol 

exposure, no significant changes in cell morphology and viability were noticed (Fig. 2B). 

However, growth rate was affected (Fig. 2B). Proliferative potential of strains 4 and 16 was 

decreased, while kinetics of growth of strain 7 was accelerated (Fig. 2B) that can be 

explained, at least in part, by changes in the phases of the cell cycle (Fig. 2C). 

3.2 Oxidative stress and DNA damage 
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Generation- and ethanol-induced imbalance in intracellular redox equilibrium was 

observed that was independent of strains used (Fig. 3A). However, yeast cells were not 

suffered from oxidative stress as judged by the level of oxidative modifications (8-oxo-dG) of 

their DNA and the level of double strand breaks (Fig. 3B and C). 

Insert Figure 3 about here 

Perhaps, increased production of reactive oxygen species may play a role in the regulation of 

redox-sensitive signaling pathways rather than cause biomolecule damage. 

As telomere homeostasis may be affected by different stress stimuli [11], we monitored 

the presence and the length of Y’ telomeric sequences during passages and after ethanol 

treatment (Fig. 3D and E). We found that most of Y’ telomeric sequence-specific signals 

associated with particular chromosomes were lost and others (minor fraction) were elevated 

or unchanged (Fig. 3D). The length of Y’ telomeric sequences was also increased (strain 4) or 

decreased (strain 7) or unchanged (strain 16) (Fig. 3E). Thus, the response was strain-

dependent. 

3.3 Generation- and ethanol-mediated changes in the genome 

Strain 4 with variable chromosome signals was then selected for the observation of 

generation- and ethanol-mediated changes in the genome using next-generation sequencing. 

For each sample, we generated from 25.4 to 34.7 millions of single-end 50-bp reads that 

produced about 4.68 gigabases of the sequence. The phred-scaled quality score plots for all 

analyzed reads are presented in Online Supplementary File 1. After mapping against the 

S288C reference genome and quality filtration the dataset comprised from 21.4 to 29.9 

millions of mapped reads for individual samples that resulted in an average genome coverage 

from 88 to 123 x. The mapping statistics are presented in Online Supplementary File 2. The 

mapped reads covered at least once about 93% of the reference genome for all samples. 

Histograms of genome coverage (excluding unmapped bases) are presented in Online 
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Supplementary File 3. After removing potential PCR duplicates, the average genome 

coverage remained high and ranged from 53 to 64 fold for individual samples. 

In total, in strain 4 compared to S288C reference genome, we detected 47575 high 

quality variants (together with multi-allelic variants) that included 44813 (94%) single 

nucleotide variants (SNVs) and 2762 indels (1235 insertions and 1235 deletions). Transition 

to transversion ratio for SNVs was estimated at 2.83. More than 86.4% of detected variants 

was classified as known, however this value may be underestimated, since annotation dataset 

did not include indels. Variants density across the genome was estimated at one variant per 

every 253 bases. Most of the variants were well propagated with heterozygous to homozygous 

calls ratio estimated at 0.115, which was comparable for separate chromosomes. The detailed 

variants statistics for all studied lines are presented in Table 2 and Online Supplementary File 

4. All variants detected in strain 4 are specified in the Online Supplementary File 5. 

Insert Table 2 about here 

When compared to control conditions, after 100 generations, after screening of sites to 

account for differences in coverage and relative allelic ratios, 416 variants differing in allele 

frequency were retained for further analysis. The analyzed variants included 396 single 

nucleotide substitutions and 20 indels. Most of the indels involved single nucleotide 

deletion/insertion in poly-T or poly-A tracts. About 60% of detected SNVs were previously 

reported (deposited in Ensembl database). Most of this variants manifested as heterozygotes 

and het/hom ratio was 3.83. The highest number of potentially selected variations was 

detected on chromosome XI (67) and the lowest on chromosome I (one variant). The variant 

distribution in the genome is presented in Table 3 and Fig. 4.  

Insert Table 3 and Figure 4 about here 

The clear variant clusters were observed on chromosomes: V, X, XI, XIII and XIV. As 

many as 246 (59.1%) of these variants were located in exons. In addition, 131 (31.5%) 
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variants were non-synonymous substitutions, including three that introduced a premature stop 

codons and two frameshift mutations associated with insertion of a single adenine nucleotide 

on chromosome XIII in RSF1 gene. The coding variants affected 162 different genes. The 

highest number of variants within coding sequences was detected in MLP1 and FMS1 genes 

(six variants) and UBP2 and RSF1 genes (five variants). Remaining genes had from one to 

four variants (Online Supplementary File 6). Premature stop codons were observed in RTC2, 

ARG5,6 and ABZ1 genes. Functional analysis of the affected genes showed that of the 139 

gene entries recognized by Panther System, 61 (43.8%) were involved in catalytic activity 

(especially hydrolase and transferase activity) and 37 (26.6%) in binding (especially, nucleic 

acid binding – 27 genes). The genes were mainly involved in metabolic processes (82 genes, 

58.9%), especially in primary processes such as protein metabolism and DNA/RNA metabolic 

processes or other nucleotide metabolism, especially interesting were genes associated with 

DNA repair: RAD26, RAD51 and RAD57. 

When compared to control conditions, in ethanol-treated samples, after filtration, 435 

variants were retained with differences in allelic frequencies. These variants included 410 

SNVs and 25 indels. About 57% of SNVs were previously reported. As many as 401 (92%) of 

variants were common for both 100 generations in the presence and absence of ethanol. 

Distribution of variants unique for passages with and without ethanol was mostly random in 

ethanol-treated samples, however most of the variants propagating only after 100 generations 

were grouped on chromosome IV. The heterozygous to homozygous call ratio for the ethanol-

treated sample variants was calculated and amounted to 3.68. The highest number of variants 

was detected on chromosome X, XI and XIII (64-65 variants). In addition, 245 (56%) of the 

detected variants were located in exons and 129 (29.6%) of them were non-synonymous. 

Variants were located in 166 different genes of which 108 had non-synonymous substitutions, 

including three frameshift mutations (RSF1 gene and YDR544C ORF), one in-frame deletion 
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(MHP1 gene) and two that introduced premature stop codons (ARG5,6 and ABZ1 genes). The 

variants differing in allelic frequencies in ethanol-treated samples compared to control 

conditions are presented in Online Supplementary File 7.  

After screening of initial variant calls, 32 variants that were partially or fully propagated 

in one of the passage conditions (with or without alcohol) and were not detectable or differing 

in allelic shear in strain 4 (control conditions) were analyzed separately. Of this unique 

variants, 24 were single nucleotide substitutions and five encompassed single nucleotide 

insertions/deletions. About 69% of these variants were not annotated in databases (unknown 

variants). All detected unique variants were partially propagated and manifested as 

heterozygotes. Eight (27.6%) SNVs and one indel were located within gene sequences and 

encompassed six missense variants, one synonymous variant, single in-frame deletion and one 

substitution introducing a premature stop codon. These events affected nine different genes. 

Exon-located variants are presented in Table 4. 

Insert Table 4 about here 

All of these variants, along with their annotations, are presented in Online Supplementary File 

8. All nine validated SNVs showed perfect concordance of manifested genotypes between 

next-generation sequencing and Sanger reference method. All compared SNVs, along with 

their flanking sequences and corresponding sequencing chromatograms are specified in 

Online Supplementary File 9. The high concordance of the results suggests that large part of 

variants differing in allelic frequencies between samples are considered to be true and false 

positive rate of our experiment is relatively low. In summary, strain 4 has a large number of 

fixed variants compared to the reference S288C genome. Analysis of coverage histograms 

showed relatively lower coverage of chromosomes I, III and VI when compared to remaining 

chromosomes and a higher coverage of chromosome IV, which suggests a potential 

occurrence of ploidies in all of the analyzed samples. The variants that undergo selection 
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during passages in most cases were not fully propagated (manifesting as heterozygotes) and 

a large part of them was non-synonymous substitutions (~30%). Most of the variants with 

changes in allelic frequency compared to control conditions were common for samples after 

100 generations and ethanol-treated samples. Most of the variants propagating only in 

samples after 100 generations were grouped on chromosome IV. Many of variants that 

undergo selection is concentrated in specific chromosomal locations (variant clusters) on 

chromosomes V, X, XI, XIII and XIV, representing potential mutational hotspots, genomic 

regions bearing functionally important genes or regions with low sequence complexity 

inducing mapping and genotyping errors. In most cases, these sites exhibited variation in 

control conditions when compared to the reference genome and underwent propagation during 

the passages. The selected genes, potentially beneficial variants, were mainly involved in 

metabolic processes, especially in primary processes such as protein metabolism and 

DNA/RNA metabolism. 

To characterize the chromosome status, array-based CGH analysis was then conducted 

(Fig. 5).  

Insert Figure 5 about here 

No gross variations in the number of chromosomes of strains 4, 7 and 16, neither in the cells 

of the original cultures nor in the cells grown for 100 generations in the standard YPD 

medium or under exposure to ethanol stress were revealed (Fig. 5). However, noticeable 

differences in the relative content of chromosomes I, III, VI and IX were observed (Fig. 5). 

For strain 4, the initial excess of these chromosomes disappeared after 100 generations both 

with and without 5% ethanol, whereas for strain 16 the initial excess of these chromosomes 

disappeared only after 100 generations in the presence of ethanol. For strain 7, some gains of 

chromosomes I, III and VI were observed after 100 generations with and without of ethanol. 

On the other hand, there was a consistent deficit of chromosome IX in strains 7 and 16 (Fig. 
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5). Changes in subtelomeric sequences were also revealed that may be consisted with 

Southern blot data (Figs. 3 and 5). Furthermore, some interesting genetic differences in strain 

4 were revealed when compared control conditions and after 100 generations with and 

without ethanol, namely the tendency to loss of some over-representation of functional 

categories such as ORFs: YAL029C (MYO4 gene), YGR163W (GTR2 gene), YCL066W 

(HMLALPHA1 gene), YPR068C (HOS1 gene), YGL254W (FZF1 gene), YCR040W 

(MATALPHA1 gene), YAL040C (CLN3 gene), YHR011W (DIA4 gene) and YPR167C 

(MET16 gene). It is worthwhile to note that three ORFs YAL029C, YCL066W, YCR040W 

are involved in mating-type-specific functions. 

3.4 The nucleolus state is affected during passages 

The nucleolus state was also analyzed (Fig. 6). 

Insert Figure 6 about here 

We found that disappearance of initial excess of chromosomes in strains 4 and 7 with variable 

chromosome signals was accompanied by shifts in rDNA levels and rDNA length after 100 

generations in the presence and absence of ethanol (Fig. 6A, B and C), whereas in strain 16 

with low level of chromosome variability, the level of rDNA was unaffected that may suggest 

the role of rDNA in the maintenance of chromosome homeostasis. Moreover, the nucleolus 

morphology was changed after 100 generations in the presence and absence of ethanol that 

was independent of strains used (Fig. 6D). Ethanol-treated cells had fragmented nucleoli 

when compared to control cells (Fig. 6D). The level of nucleolar protein Fob1 was elevated 

after 100 generations in the presence and absence of ethanol in all strains examined, whereas 

Nop1p was only slightly increased (Fig. 6E). The susceptibility of chromosome XII that 

contains the rDNA locus to damage and replication-mediated aberrations was also evaluated 

(Fig. 6F). In control conditions, chromosome XII was more unstable in strains 4 and 7 than in 

strain 16. The changes involved DNA breaks and replication aberrations (Fig. 6F). After 100 
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generations in the presence and absence of ethanol, chromosome XII was less affected (Fig. 

6F). 
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4. Discussion 

The nucleolus is thought to be something more than a ribosome factory [28,29]. The 

nucleolus is speculated to be a guardian of cellular homeostasis and genome integrity acting 

as a central hub in coordinating the cellular stress response [29]. In mammalian cells, the 

nucleolus can sense and transmit stress signals to RNA polymerase I (Pol I) transcription 

machinery switching off the rRNA synthesis that may save the energy required to maintain 

cellular homeostasis during stress [30]. Under stress conditions, nucleolar proteins (e.g. ARF, 

L5, L11, L23 or B23/nucleophosmin) and transcription factors (e.g. TIF-IA) are relocated 

from nucleolus to nucleoplasm/cytoplasm that may affect MDM2 activity and cause p53 

stabilization and cell cycle arrest [28,31,32]. Interestingly, the role of the yeast nucleolus in 

the response to oxidative stress signals has been also documented by us [33]. During oxidant-

induced nucleolar stress in yeast, Rrn3p, a homolog of the mammalian TIF-IA, is also 

translocated from the nucleolus into the cytoplasm [33] that suggests a common nucleolus-

centered stress response in eukaryotic cells. 

As rDNA stability has been also proposed to be a regulator of stress responses, e.g. 

DNA damage response, and cellular longevity [14], we were interested in determining 

whether nucleolus state (rDNA pools) may be also affected during cell selection (during 

passages) both in the presence and absence of stress stimuli. We used industrial yeast cells as 

a model of high genomic diversity and genomic instability and cultured cells for 100 

generations with and without 5% ethanol. We found that cells adapted to treatment by 

changes in their chromosome levels, namely relative chromosome content was balanced after 

selection compared to control conditions as estimated using aCGH. Cells with initial excess of 

chromosomes, mainly chromosomes I, III and VI, were eliminated. Moreover, cells with 

DNA double strand breaks and affected chromosome XII (DNA breaks, replication 

aberrations) were also negatively selected. Thus, DNA stability was promoted during 
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passages. These changes were accompanied by shifts in rDNA pools. However, the response 

was cell-dependent. The rDNA levels of cells with less chromosome variability (strain 16) 

were unaffected, whereas in cells with variable karyotype profiles (strains 4 and 7), the rDNA 

content was changed. It seems that cells may adjust their own optimal rDNA copy number to 

promote cellular homeostasis, here chromosome homeostasis, and viability. The rDNA, the 

most unstable region in the yeast genome, is highly repetitive and prone to losing copies by 

homologous recombination among the repeats [34]. Two proteins are key players in the 

maintenance of rDNA copy number and rDNA stability, namely Fob1 and Sir2 [34]. Lost 

rDNA copies are recovered by Fob1-mediated inhibition of replication fork progression at the 

replication fork barrier (RFB) resulting in double strand breaks and recombination-based 

amplification [34]. When rDNA copy number reaches wild type levels, Sir2 silences a non-

coding bidirectional promoter E-pro [34]. As these two proteins are also determinants of yeast 

replicative lifespan [35,36], rDNA theory of aging has been proposed [14]. The rDNA as the 

most unstable part of the yeast genome is also the most prone to damage that may trigger cell 

cycle arrest through checkpoint control and allow for damage repair or if the levels of damage 

are too high to be repaired, cellular senescence is induced [14]. Perhaps, in our experimental 

conditions, changes in rDNA levels promoted more balanced chromosome state. Thus, cells 

eliminated the excess of chromosomes and aberrant chromosome XII during selection. Cell 

adaptation also involved Fob1p upregulation that may modulate rDNA stability and promote 

cell survival. On the other hand, nucleolar morphology was affected during passages. More 

cells expressed fragmented nucleoli that was accompanied by moderate increase in the levels 

of Nop1p. Overexpression of other nucleolar protein Nop2 resulted in nucleolus 

fragmentation [37]. Moreover, Nop2-mediated nucleolus fragmentation was also observed in 

chronologically aged yeast cells [15]. All together, nucleolus state was affected during 

passages. 
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As telomeres (telomere length, gene amplification at the telomeres) can be manipulated 

as a response to environmental stresses during fermentation [12] and passages [11] in 

industrial and laboratory yeast, respectively, we asked then whether cell selection may also 

promote telomere homeostasis in industrial yeasts. In general, Y’ telomeric sequences were 

lost during passages, whereas changes in telomere length were strain-dependent, especially 

after 5% ethanol treatment. Thus, no clear-cut response was observed. In contrast, ethanol (3-

7%) was previously found to elongate telomeres in laboratory wild-type strain BY4741 that 

was mediated by the Rap1/Rif1 pathway [11]. 

Strain 4, diploid wine strain with aneuploidy events, with increased rDNA level and 

telomere length after ethanol treatment, was selected for next-generation sequencing. 

Surprisingly, after 100 generations in the presence and absence of 5% ethanol, variants 

(mainly single nucleotide variants and indels) were observed at similar chromosomal 

locations on chromosomes V, X, XI, XIII and XIV that may represent potential mutational 

hotspots. The highest frequency of variants were found in MLP1, FMS1, and UBP2 genes. 

Mlp1 and Mlp2, myosin-like proteins 1 and 2, are coiled-coil proteins of the nuclear envelope 

that restrict telomere length by influencing the Rif–Tel1 pathway of telomerase regulation 

[38]. As the cells of Δmlp1Δmlp2 double mutant have extended telomeres [38], generation- 

and ethanol-mediated changes in MLP1 gene (this study) may also modulate telomere length 

in strain 4. Fms1p is a polyamine oxidase required for conversion of spermine to spermidine 

and the hypusine modification of translation factor eIF-5A [39], thus, any changes in FMS1 

gene may affect cell proliferation. Indeed, the cell cycle of strain 4 was affected during 

passages, namely the G0/G1 cell cycle arrest and decreased growth rate were observed. 

Moreover, the deubiquitinating enzyme Ubp2 may be inhibited by oxidative stress leading to 

accumulation of (Lys63) K63 conjugates assembled by the Rad6 ubiquitin conjugase and the 

Bre1 ubiquitin ligase and oxidant-based impairment of K63 ubiquitination may modulate 
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polysome stability and protein expression [40]. The K63-polyubiquitinated targets are 

numerous ribosomal proteins [40] that may also affect nucleolus state. Perhaps, changes in 

nucleolar morphology and the levels of nucleolar proteins, e.g. Nop1p, may reflect 

generation- and ethanol-induced changes in the UBP2 gene in strain 4. Moreover, aCGH-

based analysis revealed that some genes involved in the regulation of mating-type (YAL029C, 

YCL066W and YCR040W) were lost during passages that may be in agreement with 

a mechanism of evolution of natural wine yeasts called genome renewal [41]. Heterozygous 

diploid yeast may change into homozygous diploids by sporulation and homothallic switching 

of individual haploid spores that removes recessive deleterious genes and fixes recessive 

beneficial alleles, thereby enabling yeasts to adapt efficiently to changing environmental 

conditions [41]. 

In conclusion, we have shown that cells with unbalanced chromosome level are 

eliminated during passages in the presence and absence of mild stress stimuli (5% ethanol) 

that is accompanied by changes in the rDNA pools (Fig. 7). 

Insert Figure 7 about here 

Cells with damaged DNA, especially with aberrant chromosome XII that contains rDNA 

locus are also negatively selected. The fittest and the best adapted cells dominated after 100 

generations (Fig. 7). Moreover, cell selection was associated with changes in the genome at 

the nucleotide level as judged using next-generation sequencing that confirms dynamic nature 

of eukaryotic genome as a response to changing environment. 
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Figure legends 

Figure 1. 

Karyotype analysis using PFGE separation according to the manufacturer’s instructions 

(BIORAD). Upper panel: yeasts from 1 to 9 are shown, lower panel: yeasts from 10 to 18 are 

shown. The chromosome marker (BIORAD) is also shown (lane M). Lanes 0: control 

conditions, lanes 100: 100 generations, lanes 100EtOH: 100 generations in the presence of 5% 

EtOH. 

Figure 2. 

Generation- and ethanol-mediated viability, vitality and changes in the cell cycle. A) 

Fluorescence-activated cell sorting (FACS)-based analysis of the ploidy of selected strains (4, 

7 and 16). Haploid, diploid, triploid and tetraploid reference strains were also used. B) 

Morphology, live/dead analysis and kinetic growth assay. Left panel: strain 4, middle panel: 

strain 7, right panel: strain 16. C) Cell cycle analysis using FACS. 

Figure 3. 

Generation- and ethanol-mediated changes in redox homeostasis (A), genetic stability (C) and 

telomere status (D, E). A) Reactive oxygen species (ROS) production was measured using 

H2DCF-DA fluorogenic probe. B) ELISA-based oxidative DNA damage analysis in control 

conditions. C) DNA damage using comet assay. The bars indicate SD, n = 3 ∗∗∗p < 0.001, 

compared to the standard growth conditions (ANOVA and Dunnett's a posteriori test). The 

presence (D) and (E) length of telomeric Y’ sequences. The chromosome marker (BIORAD) 

is also shown (lane M). Lanes 0: control conditions, lanes 100: 100 generations, lanes 

100EtOH: 100 generations in the presence of 5% EtOH. PFGE: PFGE separation, gDNA: 

genomic DNA. 

Figure 4. 
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Localization of generation- and ethanol-mediated changes in the genome. Genomic 

distribution of modifications was revealed using strain 4 and next-generation sequencing (see 

Materials and methods for details). Generation-induced changes are shown in red, whereas 

ethanol-induced changes are shown in green. 

Figure 5. 

Generation- and ethanol-mediated changes in chromosome level using array-based 

comparative genome hybridization (aCGH) (see Materials and methods for details). Log2 

ratios are shown. 0: control conditions, 100: 100 generations, 100EtOH: 100 generations in 

the presence of 5% EtOH, 4: strain 4, 7: strain7, 16: strain 16. 

Figure 6. 

Generation- and ethanol-mediated changes in nucleolus state. A, B) Southern blot analysis of 

rDNA level and length. Lanes 0: control conditions, lanes 100: 100 generations, lanes 

100EtOH: 100 generations in the presence of 5% EtOH. PFGE: PFGE separation, gDNA: 

genomic DNA. C) WCPP-based analysis of rDNA content (green). Results are presented as 

relative fluorescence units (RFUs). The bars indicate SD, n = 3 ∗∗∗p < 0.001, compared to the 

standard growth conditions (ANOVA and Dunnett's a posteriori test). Typical micrographs 

are also shown. DNA was visualized using DAPI staining (blue). D) Silver staining of 

nucleolar organizer region-based analysis of nucleolus fragmentation. Fragmented nucleoli 

were scored [%]. E) WB analysis of Fob1p and Nop1p contents. Anti-Act1p antibody served 

as a loading control. Lanes 0: control conditions, lanes 100: 100 generations, lanes 100EtOH: 

100 generations in the presence of 5% EtOH. F) Single chromosome comet assay of 

chromosome XII that contains rDNA locus. Typical micrographs are shown. DNA was 

visualized using YOYO-1 staining (green). White arrowheads indicate DNA breaks, whereas 

red arrowheads indicate aberrations in DNA replication. 

Figure 7. 
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rDNA-mediated chromosome homeostasis during passages. Cells with initial excess of 

chromosome levels are eliminated and cells with more balanced chromosome state are 

promoted that is accompanied by shifts in rDNA pools (see text for details).  
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Figure 6.   
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Figure 7. 

 

 



36 

 

Table 1. 

Strains used in this study. 
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Table 2. Statistics on variants detected in all studied samples across the genome. 

Sample 
Number of 

variants 
SNVs Insertions Deletions 

Transition/ 

Transversion 

ratio 

Number of 

known 

variants 

Number of 

multi-allelic 

variants 

Variant 

density 

(genome) 

0 

 
47575 44813 1235 1235 2.83 41116 250 253 

100 generations 48004 45196 1250 1558 2.82 41310 275 251 

100 generations + 

5% EtOH 
48036 45226 1252 1558 2.82 41358 268 251 
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Table 3. The number of detected potentially selection-sensitive variants per chromosome for 

100 generations and 100 generations + 5% EtOH samples. 

 

Chr 

100 generations 100 generations + 5% EtOH 

Number of 

variants 
Het/hom ratio 

Number of 

variants 
Het/hom ratio 

I 1 het* 1 het 

II 2 het 2 1.00 

III 10 9.00 9 8.00 

IV 25 het 26 25.00 

V 45 0.05 48 0.07 

VI 11 het 14 het 

VII 22 het 24 23.00 

VIII 2 het 0 het 

IX 3 het 4 het 

X 59 8.83 65 8.29 

XI 67 1.39 64 1.21 

XII 4 het 5 het 

XIII 64 31.00 64 20.33 

XIV 50 49.00 52 51.00 

XV 38 11.67 42 13.00 

XVI 13 5.50 15 6.50 

All 416 3.84 435 3.68 
 

*het – all variants are heterozygous 
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Table 4.  

Exonic variants specific for passages and not found in control samples. 

Location Allele ORF Consequence Amino acids ID (Ensembl) 
Gene 

symbol 

II:537353 A YBR147W stop gained S/* - RTC2 

IV:16673 A YDL244W missense variant G/D s04-16673 THI13 

IV:1307841 C YDR420W synonymous variant P - HKR1 

VIII:5686 A YHL048C-A missense variant R/C s08-5685 - 

VIII:7345 C YHL048W missense variant M/I - COS8 

X:362433-362449 
AACAACAACAA

CA 
YJL042W in-frame deletion 

NNNNNS/NNN

NS 
- MHP1 

XI:577460 G YKR072C missense variant G/R s11-577102 SIS2 

XIV:6669 A YNL338W missense variant P/T s14-6669 - 

XV:344813 C YOR009W missense variant V/A s15-344813 TIR4 

 

  

 


