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Translational control by lysine-encoding
A-rich sequences

Laura L. Arthur,1* Slavica Pavlovic-Djuranovic,1* Kristin S. Koutmou,2 Rachel Green,2,3

Pawel Szczesny,4† Sergej Djuranovic1†
Regulation of gene expression involves awide array of cellularmechanisms that control the abundance of the RNA or
protein products of that gene. We describe a gene regulatory mechanism that is based on polyadenylate [poly(A)]
tracks that stall the translation apparatus. We show that creating longer or shorter runs of adenosine nucleotides,
without changes in the amino acid sequence, alters the protein output and the stability of mRNA. Sometimes, these
changes result in the production of an alternative “frameshifted” protein product. These observations are corrobo-
rated using reporter constructs and in the context of recombinant gene sequences. About 2% of genes in the human
genomemay be subject to this uncharacterized yet fundamental form of gene regulation. The potential pool of regu-
lated genes encodes many proteins involved in nucleic acid binding. We hypothesize that the genes we identify are
part of a large networkwhose expression is fine-tuned by poly(A) tracks, andwe provide amechanism throughwhich
synonymous mutations may influence gene expression in pathological states.
Gene expression in cells is a multistep process that involves transcrip-
tion of genetic material from DNA to RNA and ultimately translation
of mRNA into protein. These processes are subject to stringent control
at all levels. Translational regulation generally controls the amount of
protein generated from a given mRNA. Although most translational
regulation mechanisms target the recruitment of ribosomes to the ini-
tiation codon, the protein synthesis machinery can also modulate
translation elongation and termination (1, 2).

Pausing during the translational cycle—so-called ribosome stalling—
is one mechanism by which the level of translation elongation can be
regulated. Ribosome stalling is recognized by components of mRNA
surveillance pathways, no-go decay (NGD), and nonstop decay (NSD),
resulting in endonucleolytic cleavage of the stalled mRNA, ribosome
rescue, and proteolytic degradation of incomplete protein products
(3). NGD and NSD act on aberrant mRNAs that trigger translational
arrest, as observed with damaged bases, stable stem-loop structures (4),
rare codons (5), or mRNAs lacking stop codons (nonstop mRNAs) (6).
However, these mechanisms also act on more specific types of trans-
lational pauses, such as runs of codons that encode consecutive basic
amino acids (7, 8). It is thought that polybasic runs, as well as trans-
lation of the polyadenylate [poly(A)] tail in the case of nonstop mRNAs,
cause ribosome stalling through interaction of the positively charged
peptide with the negatively charged ribosome exit channel (9). Pre-
sumably, the strength of the stall is dependent on the length and
composition of the polybasic stretch, and thus, the impact on overall
protein expression might vary (3). Given this logic, it seems plausible
that such an amino acid motif may act as a gene regulatory element
that would define the amount of protein translated and the stability of
the mRNA. For example, structural and biophysical differences be-
tween lysine and arginine residues, as well as potential mRNA se-
quence involvement, could act to further modulate this process.

Most studies investigating the effects of polybasic sequences during
translation have used reporter sequences in Escherichia coli (10), yeast
(8, 11), or in vitro rabbit reticulocyte lysate (9). However, detailed
mechanistic information about the nature of the stall in endogenous
targets through genome-wide analyses has not yet been conducted.
Here, we report on translational regulation induced by poly(A) coding
sequences in human cells, demonstrating that these sequences unex-
pectedly induce ribosome pausing directly, without a role for the en-
coded basic peptide.

Bioinformatic analysis can be used as an initial approach to deter-
mine whether there are evolutionary constraints that limit the abun-
dance of polybasic amino acid residues. Runs of polybasic residues in
coding sequences of genes from many eukaryotic organisms are un-
derrepresented when compared to runs of other amino acids (12). Poly-
arginine runs have a similar abundance to polylysine runs at each
segment length acrossmultiple organisms (fig. S1).We developed a series
of mCherry reporters to evaluate the effects of polybasic sequences on
translation efficiency (output). The reporter construct consists of a dou-
ble hemagglutinin (HA) tag, a run of control or polybasic sequences,
followed by the mCherry reporter sequence (HA-mCherry, Fig. 1A).
As a control forDNAtransfectionand invivo fluorescencemeasurements,
we also created a construct with green fluorescent protein (GFP). We
used our reporters to determine whether the polybasic sequences influ-
ence the translation of reporter sequences in neonatal human dermal
fibroblasts (HDFs) as well as inDrosophila S2 cells andChinese hamster
ovary (CHO) cells (Fig. 1, B and C, and figs. S2 and S3).We followed the
expressionof themCherry reporter using fluorescence at 610nm in vivo or
Western blot analyses of samples collected 48 hours after transfection
(Fig. 1, B andC). The stability of reporter mRNAs was determined using
standard quantitative reverse transcription polymerase chain reaction
(qRT-PCR) (13) assay (Fig. 1D). By careful primer design, this method
allows us to estimate the level of endonucleolytic cleavage on mRNAs
with stalled ribosome complexes.

The results of DNA transfections indicate that strings of lysine co-
dons specifically inhibit translation and decrease the stability of the
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Fig. 1. Effects of different lysine codons on mCherry reporter expression and mRNA stability. (A) Cartoon of reporter constructs used in electro-
poration experiments. (B) Western blot analyses of HA-X-mCherry constructs 48 hours after electroporation (HA and b-actin antibodies). (C) Normalized protein

expression using LI-CORWestern blot analyses or in vivo mCherry fluorescence measurement. b-Actin or fluorescence of coexpressed GFP construct was used for
normalization of the data. Each bar represents the percentage of wild-type mCherry (WT) expression/fluorescence. (D) Normalized RNA levels of HA-X-mCherry
constructs. Neomycin resistance gene was used for normalization of qRT-PCR data. Each bar represents the percentage of wild-type mCherry (WT) mRNA levels.
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mCherry reporter mRNA, whereas up to 12 arginine codons (AGG
and CGA) have much less, if any, effect on either translation or mRNA
stability (Fig. 1, B to D, and figs. S2 and S3). The potency of transla-
tional repression by lysine codons is clearly seen with as few as six
AAA-coded lysines (AAA6) and increases with the length of the
homopolymeric amino acid run. We also note that the levels of ex-
pressed mCherry reporters (Fig. 1, B and C) correlate with the stability
of their mRNAs (Fig. 1D), consistent with earlier published observa-
tions (4, 6, 11). To control for possible transcriptional artifacts due to
the effects of homopolymeric sequence on transcription by RNA poly-
merase, we electroporated mRNAs synthesized in vitro by T7 RNA
polymerase directly into HDF cells. Previous studies established that
T7 RNA polymerase can transcribe such homopolymeric sequences
with high fidelity (10, 14). Results of our mRNA electroporation work
reproduced DNA transfection experiments, consistent with models of
translational repression triggered by lysine codons (fig. S4). To assess
whether the stability of polylysine reporter mRNAs is dependent on
translation, we introduced the translation initiation inhibitor harring-
tonine (15) into HDF cells before mRNA electroporation. In this case,
we did not observe any significant change in mRNA stability between
wild-type and polylysine-encoding mCherry constructs (fig. S5); these
data indicate that accelerated decay of polylysine mCherry mRNAs is
dependent on translation. Consistent with this observation, the inser-
tion of 36 A’s (sequence equivalent to 12 lysine AAA codons) after the
stop codon, in the 3′ untranslated region, did not affect the protein ex-
pression level or mRNA stability of the assayed construct (fig. S6).
Insertion of polylysine codons at different positions along the coding
sequence drastically reduced reporter expression and mRNA levels
independent of the relative position in the construct. Hence, it follows
that the observed changes in mRNA stability (Fig. 1D) result from a
translation-dependent process.

The most striking observation from these data is that the produc-
tion of polylysine constructs is codon-dependent; runs of polylysine
residues coded by AAA codons have a much larger effect on the pro-
tein output from reporter constructs than an equivalent run of lysine
AAG codons (Fig. 1, B to D, and figs. S2 to S7). This effect is unlikely
to be driven by the intronless nature of our reporter because con-
structs containing human hemoglobin gene (delta chain; HBD) with
two introns showed the same effect on protein output and RNA sta-
bility (fig. S7). We also note that this effect is unlikely to be simply due
to tRNALys abundance, because the relative protein expression and
mRNA stability are comparable in cells from various species that do
not share similar transfer RNA (tRNA) abundance profiles (http://
gtrnadb.ucsc.edu/; Fig. 1 and figs. S2 to S7). Furthermore, the human
genome encodes a comparable number of tRNA genes for AAA and
AAG codons (http://gtrnadb.ucsc.edu/Hsapi19/), and general codon
usage is similar (0.44 versus 0.56, AAA versus AAG). The generality
of codon-dependent polylysine protein production was recently docu-
mented in E. coli cells, where a single tRNALys(UUU) decodes both
AAA and AAG codons (10).

In light of these experimental observations, we systematically ex-
plored codon usage and the distribution of lysine codons in polylysine
tracks in various species (fig. S8). Remarkably, we find a strong under-
representation of poly(A) nucleotide runs in regions coding for iterated
lysines (even with as few as three lysines) in human genes (fig. S8).
When there are four iterated lysine residues, the difference between
expected (from data for all lysine residues) and observed codon usage
for four AAA codons in a row is more than one order of magnitude
Arthur et al. Sci. Adv. 2015;1:e1500154 24 July 2015
(fig. S9). Notably, similar patterns of codon usage in lysine poly(A)
tracks are observed in other vertebrates (fig. S10).

Ribosome profiling data have the potential to reveal features of
pausing on polybasic stretches throughout the genome (16). A cumu-
lative analysis of three ribosome profiling data sets from human cells
for regions encoding four lysines in a row revealed that the occupancy
pattern on four lysines encoded by three AAA and one AAG codon is
different from the pattern for two, three, and four AAG codons in four
lysine tracks (Fig. 2A). The latter three resemble the occupancy pat-
tern for tracks of arginines (fig. S11), which is similar to the ribosome
stalling on runs of basic amino acids observed by other researchers
(17). This suggests that the observed effect on protein output and mRNA
stability is dependent on nucleotides not simply on the amino acid se-
quence. The first example (with three AAA and one AAG codon) has a
region of increased ribosome occupancy found additionally after the
analyzed region (Fig. 2A). Together, these data suggest that attenua-
tion of translation on poly(A) nucleotide tracks occurs via a different
mechanism than just the interaction of positively charged residues
with the negatively charged ribosomal exit tunnel.

To probe the potential impact of the observed disparities in codon
distribution for runs of three and four consecutive lysine codons, we
inserted runs of three lysine residues with various numbers of consec-
utive A’s (A9 to A13) into ourmCherry reporter construct (Fig. 2B). As
in the previous experiments (Fig. 1, B and C), we followed the expres-
sion of themCherry reporter and the stability of themRNA (Fig. 2, C
to E). We find that the insertion of sequences with 12 or more consec-
utive A’s reduces mCherry reporter expression by more than 50%
with comparable effects onmRNA stability. In each construct, nomore
than three lysines are encoded, so the increasing effect on protein output
must result from consecutive A’s, not K’s.

Next, we determined whether polylysine sequences from naturally
occurring genes have the same general effect on expression of reporter
protein. To take an unbiased approach, we selected different lengths of
homopolymeric lysine runs and various distributions of AAA and
AAG codons (Fig. 3A). Reporter constructs with lysine runs were elec-
troporated into HDF cells, and relative amounts of reporter expression
and mRNA stability were evaluated (Fig. 3, B and C). As with the de-
signed sequences in Fig. 2B, the observed decreases in reporter protein
expression and mRNA stability correlated with the number of consec-
utive A nucleotides and not with the total number of lysine codons in
the chosen sequences. Our reporter experiments together (Figs. 1, B to
D, 2, B to E, and 3, A to C, and figs. S2 to S7) argue that the repressive
effects of polylysine sequence are caused by iterated poly(A) tracks
rather than by runs of encoded lysine residues. Similar effects were
recently documented in in vivo and in vitro experiments with E. coli
cells or a purified translational system, respectively (10). The differences
that we observe in expression of reporter sequences with poly(A) nu-
cleotide tracks from human genes favor the possibility that such regions
in natural genes play a “translational attenuator” role that can modu-
late overall protein expression.

On the basis of our results with insertion of 12 consecutive A nu-
cleotides (Fig. 2C) and endogenous A-rich sequences (Fig. 3B), we
propose that a run of 11 A’s in a stretch of 12 nucleotides (12A-1 pat-
tern) will typically yield a measurable effect on protein expression. Be-
cause we did not require the A string to begin in any particular codon
frame, the sequence may not necessarily encode four consecutive ly-
sines. Hence, we have used the 12A-1 pattern to search the comple-
mentary DNA (cDNA) sequence database for multiple organisms
3 of 11
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Fig. 2. The effect of codon usage in polylysine tracks on translation and protein levels. (A) Occupancy of ribosomal footprints for regions around different
codon combinations for four lysine tracks. All combinations of one, two, three, and four AAG codons per group are shown. Data for four AAA codons are not shown

becauseonlya singlegenehas sucha sequence. Theupper and lower “hinges” correspond to the first and thirdquartiles (the25thand75thpercentiles). Theupper and
lowerwhiskersextendfromhingesupordownatamaximumof1.5*IQR (interquartile range)of the respectivehinge. (B) SequencesofHA-(A9–A13)-mCherryconstructs
used in electroporation experiments. (C) Western blot analyses of HA-(A9–A13)-mCherry constructs 48 hours after electroporation (HA and b-actin antibodies). (D)
NormalizedproteinexpressionusingLI-CORWesternblot analysesor invivomCherry fluorescencemeasurement.b-Actinor fluorescenceof coexpressedGFPconstruct
was used for normalization of the data. Each bar represents the percentage of wild-type mCherry (WT) expression/fluorescence. (E) Normalized RNA levels of HA-X-
mCherryconstructs.Neomycin resistancegenewasusedfornormalizationofqRT-PCRdata. Eachbar represents thepercentageofwild-typemCherry (WT)mRNAlevels.
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Fig. 3. Native poly(A) tracks control reporter mRNA and protein levels. (A) Sequences of polylysine runs fromhumangenes incorporated intoHA-X-mCherry
constructs. Continuous runs of lysine residues are labeled. The number of lysine residues and the ratio of AAG and AAA codons for each construct are indicated. (B)
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[National Center for Biotechnology Information (NCBI) RefSeq re-
source (18)]. This query revealed more than 1800 mRNA sequences
from more than 450 human genes; the proportion was similar in other
vertebrates (table S1). Gene ontology analyses revealed an overrep-
resentation of nucleic acid binding proteins, especially RNA binding
and poly(A) RNA binding proteins (table S2). The positions of poly(A)
tracks are distributed uniformly along these identified sequences with
no significant enrichment toward either end of the coding region (Fig.
3D). The proteins encoded by these mRNAs are often conserved
among eukaryotes; of the 7636 protein isoforms coded bymRNAwith
poly(A) tracks from human, mouse, rat, cow, frog, zebrafish, and fruit
fly, 3877 are classified as orthologous between at least two organisms.
These orthologous proteins share very similar codon usage in the
polylysine track, as seen in the example of the RASAL2 tumor suppres-
sor protein (19) (fig. S12). These observations are consistent with the
idea that poly(A) tracks may regulate specific sets of genes in these dif-
ferent organisms. Additional analyses of the ribosome profiling data for
mRNAs from selected pools of genes (12A-1 pattern genes) showed an
increased number of ribosome footprints in sequences following the
poly(A) tracks (fig. S11). The observed pattern was similar to, albeit
more pronounced than, the pattern observed for four lysine tracks en-
coded by three AAA codons and one AAG (Fig. 2A), despite the fact
that in many cases, the selected pattern did not encode four lysines.

Given the strong sequence conservation and possible role in mod-
ulation of protein expression, we further explored the effects of muta-
tions in poly(A) tracks. We used our reporter constructs containing
poly(A) nucleotide tracks from endogenous genes (ZCRB1, MTDH,
and RASAL2) to evaluate the effects of synonymous lysine mutations
in these poly(A) tracks on protein expression (Fig. 4, A to C, and figs.
S13 and S14). In each construct, we made mutations that changed
selected AAG codons to AAA, increasing the length of consecutive
A’s. Alternatively, we introduced AAA to AAG changes to create in-
terruptions in poly(A) tracks. Reporter constructs with single AAG-
to-AAA changes demonstrate consistent decreases in protein expression
and mRNA stability. Conversely, AAA-to-AAG changes result in in-
creases in protein expression and mRNA stability (Fig. 4, B and C, and
figs. S13 and S14).

We next determined whether the same synonymous mutations
have similar effects when cloned in the full-length coding sequence
of the ZCRB1 gene (Fig. 4, D to F, and fig. S15). Indeed, the effects
on protein and mRNA levels that we observed with the mCherry re-
porter sequences are reproduced within the context of the complete
coding sequence of the ZCRB1 gene (and mutated variant). Mutation
of single AAG-to-AAA codons in the poly(A) track of the ZCRB1
gene (K137K; 411G>A) resulted in a significant decrease in both pro-
tein expression and mRNA stability (Fig. 4, E and F, and fig. S15);
substitution of two AAA codons with synonymous AAG codons
(K136K:408A>G; K139K:417A>G) resulted in increases in both re-
combinant ZCRB1 protein output and mRNA stability. Generally,
mutations resulting in longer poly(A) tracks reduced protein expres-
sion and mRNA stability, whereas synonymous substitutions that result
in shorter poly(A) nucleotide tracks increased both protein expression
and mRNA stability. From these observations, we suggest that synony-
mous mutations in poly(A) tracks could modulate protein production
from these genes.

Poly(A) tracks resemble ribosome “slippery” sequences that have
been associated with translational frameshifts (20, 21). Recent studies
suggest that poly(A) tracks can induce “sliding” of E. coli ribosomes
Arthur et al. Sci. Adv. 2015;1:e1500154 24 July 2015
resulting in frameshifting (10, 22). Therefore, we looked for potential
frameshifted products of overexpressed ZCRB1 variants by immuno-
precipitation using an engineered N-terminally located HA tag. We
observed the presence of a protein product of the expected size that
results from possible frameshifting in our construct with increased
length A tracts [ZCRB K137K (411G>A) mutant] (Fig. 5A). The pres-
ence of potential frameshifted protein products was not observed in
wild-type or control double synonymous mutations K136K(408A>G):
K139K(417A>G). We note that the K137K synonymous change repre-
sents a recurrent cancer mutation found in the COSMIC (Catalogue
of Somatic Mutations in Cancer) database (http://cancer.sanger.ac.uk)
(23) for the ZCRB1 gene (http://cancer.sanger.ac.uk/cosmic/mutation/
overview?id=109189). Similar results were obtained when we compared
immunoprecipitations of overexpressed andHA-taggedwild-typeMTDH
gene and a K451K (1353G>A) variant, yet another cancer-associated mu-
tation (http://cancer.sanger.ac.uk/cosmic/mutation/overview?id=150510;
fig. S16).

To further document the extent and direction of frameshifting in
the ZCRB1 transcript, we introduced poly(A) tracks from wild-type
ZCRB1 and a K137K ZCRB1 mutant into a Renilla luciferase reporter
gene. We introduced single or double nucleotide(s) downstream in the
reporter sequence following the A track, thus creating +1 and −1
frameshift (FS) constructs, respectively (Fig. 5B). When compared
to wild-type ZCRB1 poly(A) track, the G>A mutant shows decreases
in full-length luciferase protein expression (about 40% reduction in
zero frame); additionally, the G>A mutant exhibits an increase in ex-
pression of −1FS frame construct [which is not observed in the wild-
type ZCRB1 poly(A) track −1FS construct] (Fig. 5C). The total amount
of luciferase protein activity from the −1FS ZCRB1 G>A mutant
construct is about 10% of that expressed from the zero frame mutant
construct (Fig. 5C and fig. S17). No significant change in luciferase
expression was detected in samples electroporated with +1FS constructs,
where expression from these constructs resulted in background levels
of luciferase activity (fig. S17).

Frameshifting and recognition of out-of-frame premature stop co-
dons can lead to nonsense-mediated mRNA decay (NMD) that results
in targeted mRNA decay (24, 25). Our recent data suggest that NMD
may play a role in determining the stability of poly(A) track–containing
mRNAs. Deletion of NMD factor Upf1p in yeast cells partially rescues
mRNA levels from constructs with simple poly(A) tracks (10). We have
analyzed the complete set of human poly(A) track–containing genes
to see whether they would be likely targets for NMD as a result of frame-
shifting on the poly(A) track [based on the usual rules for NMD
(26–29)]. On the basis of the position of the poly(A) tracks, and their
position relative to possible premature termination codons (PTCs) in
the −1 and +1 frame, and the location of downstream exon-intron
boundaries, we find that a part of our genes of interest would likely
be targeted by NMD as a result of frameshifting during poly(A)-
mediated stalling (these transcripts and position of PTCs are listed
in table S3). The considerable number of human poly(A) track genes
may not elicit NMD response because PTCs in both −1 and +1 frame
following poly(A) tracks are less than 50 nucleotides away from estab-
lished exon-intron boundaries. Although most frameshift events seem
to lead to proteins that would be truncated immediately after poly(A)
tracks, in a few cases, a novel peptide chain of substantial length may
be produced (table S4). Hence, the outcome of poly(A) track stalling
and slipping may include a scenario in which a frameshifted protein
product is synthesized in addition to the full-length gene product
6 of 11
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Fig. 4. The effect of synonymous mutations in poly(A) tracks of human genes. (A) Scheme of constructs with ZCRB1 gene poly(A) tracks used for analyses
of synonymous mutations. (B) Western blot analyses and normalized protein expression of ZCRB1 reporter constructs with synonymous mutations (HA and b-

actin antibodies). Each bar represents the percentage of wild-type ZCRB1-mCherry (WT) expression. (C) Normalized RNA levels of ZCRB1 reporter constructs with
synonymous mutations. Neomycin resistance gene was used for normalization of qRT-PCR data. Each bar represents the percentage of wild-type ZCRB1-mCherry
construct (WT) mRNA levels. (D) Scheme of full-length HA-tagged ZCRB gene constructs. Position and mutations in poly(A) tracks are indicated. (E) Western blot
analysis and normalized protein expression of ZCRB1 gene constructs with synonymous mutations. Each bar represents the percentage of wild-type HA-
ZCRB1 (WT) expression. (F) Normalized RNA levels of ZCRB1 gene constructs. Neomycin resistance gene was used for normalization of qRT-PCR data.
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Fig.5. Putativemechanismsthroughwhichpoly(A) tracksexert their function. (A) ImmunoprecipitationofHA-ZCRBgeneconstructsusinganti-HAmagneticbeads.
ZCRB1WT, synonymous (single411G>Aordouble408A>G;417A>G), nonsense [385G>T, insertionof stopcodonbeforepoly(A) track], deletion (423DA, equivalent to+1

frameshift), and insertion (423A>AA, equivalent to −1 frameshift) mutant constructs are labeled. (B) Scheme of luciferase constructs used to estimate frameshifting po-
tential forZCRB1WTand411G>Amutantpoly(A) tracks. (C) Luciferase levels (activity) from−1, “zero,”and+1frameconstructsofwild-typeandG>AmutantZCRB1poly(A)
tracks are compared. Bars represent thenormalized ratioof ZCRB1G>AandZCRB1WTpoly(A) tracks, elucidating changes in the levels of luciferaseexpression inall three
frames. (D)Model for functionof poly(A) tracks inhumangenes. Poly(A) tracks lead to threepossible scenarios: frameshifting consolidatedwithNMD,which results in
reducedoutput ofwild-type protein; frameshiftingwith synthesis of both out-of-frame andwild-type protein; andnonresolved stalling consolidatedby endonucleo-
lyticcleavageofmRNAandreduction inwild-typeprotein levels, as in theNGDpathway.Schemefor translationofmRNAswithoutpoly(A) tracks is shownforcomparison.
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(scheme shown in Fig. 5D). The possible role and presence of such
fragments from poly(A) track genes and their variants is still to be
elucidated.

In conclusion, we present evidence that lysine coding poly(A) nu-
cleotide tracks in human genes may act as translational attenuators.
We show that the effect is dependent on nucleotide, not amino acid,
sequence, and the attenuation occurs in a distinct manner from pre-
viously described polybasic amino acid runs. These “poly(A) transla-
tional attenuators” are highly conserved across vertebrates, implying
that they might play an important role in balancing gene dosage.
The presence of such a regulatory function is further supported by neg-
ative selection against single-nucleotide variants in human poly(A) seg-
ments in both dbSNP and COSMIC databases (Supplementary data
D1, table S5, and fig. S18). However, it is not yet clear what the effects
stemming from synonymous mutation in poly(A) tracks are. Our
results point to either alterations in protein levels (altered gene dosage)
or the production of frameshifted products in the cell. Hence, these
translational attenuation mechanisms may supplement the already
large number of mechanisms through which synonymous mutations
can exert biological effects [reviewed in (30)].
MATERIALS AND METHODS

Experimental protocols
Cell culture. HDF cells were cultured in Dulbecco’s modified

Eagle’s medium (DMEM) (Gibco) and supplemented with 10% fetal
bovine serum, 5% minimum essential medium nonessential amino
acids (100×, Gibco), 5% penicillin and streptomycin (Gibco), and
L-glutamine (Gibco). T-Rex-CHO cells were grown in Ham’s F12K
medium (American Type Culture Collection) with the same supple-
ments. Drosophila S2 cells were cultured in Express Five SFMMedium
(Invitrogen) supplemented with penicillin (100 U/ml), streptomycin
(100 U/ml) (Gibco), and 45 ml of 200 mM L-glutamine (Gibco) per
500 ml of medium.

Plasmids and mRNA were introduced to the cells by the Neon
Transfection System (Invitrogen) with 100-ml tips according to cell-
specific protocols (www.lifetechnologies.com/us/en/home/life-science/
cell-culture/transfection/transfection—selection-misc/neon-transfection-
system/neon-protocols-cell-line-data.html). Cells electroporated with
DNA plasmids were harvested after 48 hours if not indicated differently.
Cells electroporated with mRNA were harvested after 4 hours, if not
indicated differently. All transfections in S2 cells were performed using
Effectene reagent (Qiagen).
DNA constructs. mCherry reporter constructs were generated by
PCR amplification of an mCherry template with forward primers
containing the test sequence at the 5′ end and homology to mCherry
at the 3′ end. The test sequence for each construct is listed in the
following table. The PCR product was purified by NucleoSpin Gel
and PCR Clean-up kit (Macherey-Nagel) and integrated into the pcDNA-
DEST40, pcDNA-DEST53, or pMT-DEST49 expression vector by the
Gateway cloning system (Invitrogen). Luciferase constructs were gen-
erated by the same method.

Whole gene constructs were generated by PCR amplification from
gene library database constructs from Thermo (MTDH clone ID:
5298467) or Life Technologies GeneArt Strings DNA Fragments
(ZCRB1) and cloned in pcDNA-DEST40 vector for expression. Synon-
ymous mutations in the natural gene homopolymeric lysine runs were
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made by site-directed mutagenesis. Human b-globin gene (delta chain;
HBD) was amplified from genomic DNA isolated from HDF cells. In-
sertions of poly(A) track, AAG codons, or premature stop codon in
HBD constructs were made by site-directed mutagenesis. The se-
quences of inserts are given in table S6.
In vitro mRNA synthesis. Capped and polyadenylated mRNA
was synthesized in vitro using a mMESSAGE mMACHINE T7 Trans-
cription Kit (Life Technologies) following the manufacturer’s procedures.
The quality of mRNA was checked by electrophoresis and sequencing
of RT-PCR products.
RNA extraction and qRT-PCR. Total RNA was extracted from
cells using the RiboZol RNA extraction reagent (Amresco) according
to the manufacturer’s instructions. RiboZol reagent (400 ml) was used
in each well of 6- or 12-well plates for RNA extraction. Precipitated
nucleic acids were treated with Turbo deoxyribonuclease (Ambion),
and total RNA was dissolved in ribonuclease-free water and stored at
−20°C. RNA concentration was measured by NanoDrop (OD260/280).
iScript Reverse Transcription Supermix (Bio-Rad) was used with 1 mg of
total RNA following themanufacturer’s protocol. iQ SYBRGreen Super-
mix (Bio-Rad) protocol was used for qRT-PCR on the CFX96 Real-
Time system with Bio-Rad CFXManager 3.0 software. Cycle threshold
(Ct) values were normalized to the neomycin resistance gene expressed
from the same plasmid.
Western blot analysis. Total cell lysates were prepared with pas-
sive lysis buffer (Promega). Blots were blocked with 5% milk in 1×
tris-buffered saline–0.1% Tween 20 (TBST) for 1 hour. Horseradish
peroxidase–conjugated or primary antibodies were diluted according
to the manufacturer’s recommendations and incubated overnight with
membranes. Themembraneswerewashed four times for 5min inTBST
and prepared for imaging, or secondary antibody was added for ad-
ditional 1 hour of incubation. Images were generated by Bio-Rad Mo-
lecular Imager ChemiDoc XRS System with Image Lab software by
chemiluminescence detection or by the LI-COR Odyssey Infrared Im-
aging System. Blots imaged by the LI-COR system were first incubated
for 1 hour with Pierce DyLight secondary antibodies.
Immunoprecipitation. Total cell lysates were prepared with
passive lysis buffer (Promega) and incubated with Pierce anti-HA mag-
netic beads overnight at 4°C. Proteins were eluted by boiling the beads
with 1× SDS sample buffer for 7 min. Loading of protein samples was
normalized to total protein amounts.
Cell imaging. HDF cells were electroporated with the same amount
of DNA plasmids and plated in six-well plates with optically clear
bottom. Before imaging, cells were washed with fresh DMEM without
phenol red and incubated for 20 min with DMEM containing 0.025%
Hoechst 33342 dye for DNA staining. Cells were washed with DMEM
and imaged in phenol red–free medium with an EVOS FL microscope
using a 40× objective. Images were analyzed using EVOS FL software.

Bioinformatics analysis
Sequence data and variation databases. Sequence data were

derived from a NCBI RefSeq resource (18) on February 2014. Two
variations of databases were used: dbSNP (31), build 139 and COSMIC,
build v70 (23).
mRNA mapping. Because we observed some inconsistencies be-
tween transcripts and proteins in some of the sequence databases,
before starting the analyses, we mapped protein sequences to mRNA
sequences using the exonerate tool (32), using protein2genome model
and requiring a single best match. In case of multiple best matches
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(when several transcripts had given identical results), the first one was
chosen because the choice of corresponding isoform (this was the most
common reason for multiple matches) did not influence downstream
analyses.
Ribosome profiling data. Three independent studies of ribosome
profiling data from human cells were analyzed: (i) GSE51424 prepared
by Gonzalez and co-workers (33), from which samples SRR1562539,
SRR1562540, and SRR1562541 were used; (ii) GSE48933 prepared
by Rooijers and co-workers (34), from which samples SRR935448,
SRR935449, SRR935452, SRR935453, SRR935454, and SRR935455
were used; and (iii) GSE42509 prepared by Loayza-Puch and co-workers
(35), from which samples SRR627620 to SRR627627 were used. The
data were analyzed similarly to the original protocol created by Ingolia
and co-workers (36), with modifications reflecting the fact that reads
were mapped to RNA data instead of genome.

Raw data were downloaded and adapters specific for each ex-
periments were trimmed. Then, the reads weremapped to human non-
coding RNAs with bowtie 1.0.1 (37) (bowtie -p 12 -t –un), and unaligned
readsweremapped tohumanRNAs(bowtie -p12-v0 -a -m25–best–strata
–suppress 1,6,7,8). The analysis of occupancy was originally done in a
similarway toCharneski andHurst (17); however, given that geneswith
poly(A) were not highly expressed and the data were sparse (several
positions with no occupancy), instead of mean of 30 codons before
poly(A) position, we decided to normalize only against occupancy of
codon at the position 0 multiplied by the average occupancy along
the gene. Occupancy data were visualized with R and ggplot2 library
using geom_boxplot aesthetics. On all occupancy graphs, the upper
and lower hinges correspond to the first and third quartiles (the 25th
and 75th percentiles). The upper and lower whiskers extend from hinges
at 1.5*IQR of the respective hinge.
Variation analysis. To assess the differences in single-nucleotide
polymorphisms (SNPs) in poly(A) regions versus random regions of
the same length in other genes, we needed to use the same distribution
of lengths in both cases. The distribution of lengths for poly(A) re-
gions identified as mentioned above (12 A’s allowing for one mismatch)
up to length 19 (longer are rare) is presented in fig. S19. Using the
same distribution of lengths, we selected one random region of length
drawn from the distribution randomly placed along each gene from all
human protein coding RNAs. The distributions of the number of
SNPs per segment for all poly(A) segments and for one random seg-
ment for each mRNA were compared using Welch’s two-sample t test,
Wilcoxon rank sum test with continuity correction, and two-sample
permutation test with 100,000 permutations.
Abundance of polytracks in protein sequences. Abundance
was expressed by the following equation:

Abundance ¼ 1

−log10
NP
NR

where NP is the number of proteins with K+ polytrack (at least 2, at
least 3, etc.) and NR is the total number of occurrences of a particular
amino acid. This is to normalize against variable amino acid presence in
different organisms. All isoforms of proteins were taken into account.
Other analyses. The list of human essential genes was obtained
from the work of Georgi and co-workers (38). Gene Ontology analyses
were done using TermEnrichment Service at http://amigo.geneontology.
org/rte. Most of the graphs were prepared using R and ggplot2 library.
For Fig. 3A, the values of the y axis were computed by one-dimensional
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Gaussian kernel density estimates implemented in the R software. Cus-
tom Perl scripts were used to analyze and merge the data.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/1/6/e1500154/DC1
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Fig. S3. Expression of HA-X-mCherry reporters in Drosophila S2 cells.
Fig. S4. Expression of HA-X-mCherry reporters from T7-RNA polymerase in vitro transcribed
mCherry mRNAs in HDFs.
Fig. S5. Differential stability of electroporated mRNAs from HA-X-mCherry reporters is
translation-dependent.
Fig. S6. Insertion of polylysine mCherry constructs in the coding sequence results in the same
protein reduction and decreased mRNA stability.
Fig. S7. Expression of HA-tagged hemoglobin (delta chain; HBD) constructs with natural
introns in HDF cells.
Fig. S8. Comparison of usage of AAA in single, double, and triple lysine runs across several
organisms.
Fig. S9. Observed codon usage in all isoforms of human proteins versus expected (based on
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poly(A) tracks; (B) region around four arginine tracks, all codon combinations together.
Fig. S12. Sequence conservation of RAS activating-like protein 2 gene (RASAL2) at DNA and
protein sequences.
Fig. S13. Synonymous mutations in mCherry reporter with metadherin [MTDH, Lyric(Lyr)] poly(A)
track.
Fig. S14. Synonymous mutations in mCherry reporter with RASAL2 poly(A) track.
Fig. S15. Expression analysis of N-terminally HA-tagged and C-terminally GFP-tagged ZCRB1
gene and its synonymous mutants in HDF cells using EVOS FL microscope.
Fig. S16. Introduction of COSMIC database reported synonymous mutation K447K (1341G>A)
in full-length recombinant MTDH gene.
Fig. S17. Frameshifting efficiency of poly(A) tracks from ZCRB1 wild type (A) and ZCRB G>A
mutant (B) measured by luciferase activity.
Fig. S18. Proportion of mutation types in poly(A) segments versus all mutation types.
Fig. S19. The normalized distribution of lengths for poly(A) regions identified as 12 A’s allowing
for one mismatch up to length 19 in human transcripts.
Table S1. Statistics of occurrences of transcripts containing poly(A) tracks in different
organisms.
Table S2. Overrepresentation of Gene Ontology terms for 456 genes containing poly(A) tracks
in their coding regions up to P value of 0.05.
Table S3. Table of mRNAs that have intron-exon boundary closer than 50 nucleotides
downstream from a stop codon arising from frameshifting over poly(A) tracks.
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