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ABSTRACT 

Different factors influencing a chip array-based electrical detection of DNA for analysis of 

pathogenic bacteria were examined. Both, rehydration of capture probe layer of 

functionalized chip arrays, and also efficient hybridization of targets irrespectively of their 

length, resulted in signal enhancement when high ionic phosphate-buffered saline (i.e. 600 

mM sodium chloride and 40 mM disodium hydrogen phosphate) was used. Similarly, 

placement of two adjacent capture and detection probes binding sites at a terminal part of the 

target strand resulted in significant signal increase. Moreover, 10 min ultrasonic 

fragmentation of targets amplified the signals up to two-fold for longer DNA strands (i.e. 

above 300 bp). No obvious effects on signals were visible for shorter than 400 bp PCR 

amplicons subjected to ultrasonication. For DNA strands of all sizes, over 10 min 

ultrasonication diminished the specific electrical responses. Our results demonstrate also that 

target analytes are detected with discrimination against mismatches, even for single 

nucleotide sequence alteration. The mismatch detection appeared in order of easiness of 

recognition as follows: triple random > quintuple middle > triple middle > single middle 

mismatch. Among the three variants of one-base mismatches, a sequence variation was most 

remarkable for adenine. On the other hand, no benefits in assay sensitivity were recognized 

by the use of longer capture probe linkers as the 6-C linker. 

 

Keywords: Electrical chip arrays, Nucleic acid-based analysis, Toxin-encoding genes, 

Bacterial pathogenicity, Bacillus cereus 
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INTRODUCTION 

Routine tests used for the identification of pathogenic microorganisms are based on 

traditional classification with the use of microbiological and/or serological methods. 

However, in many cases only certain strains of a species are pathogenic and many toxins are 

produced by several species [1]. Therefore only genetic tests might provide unambiguous 

results when assessing the presence of pathogens in the tested material. 

 Consequently, nucleic acid-based sensing systems have become important tools for 

the detection of pathogenic microorganisms [2-8]. Various types of such platforms have been 

developed depending on signal transducer configuration [9,10]. However, some of the 

general properties of all these systems, such as sensitivity, specificity, reliability etc., 

represent crucial criteria in determining their sensing performance. Any improvement of 

these properties may increase the efficiency and broaden the scope of DNA chip-based 

analyses. This could, for example, reduce the cost and time required for nucleic acid 

examination, and thus assessing genetic predispositions to bacterial pathogenicity. 

 One of the sensing systems recently developed by our group is an electrochemical 

DNA chip array for confirmative analysis of presence of toxin-encoding genes in bacteria 

from primary enrichment cultures [11]. It is an automated detection system able to evaluate 

the presence of specific sequences coding for toxins in the applied sample by measuring 

changes of the electrochemical signal generated by redox recycling [11,12]. The platform is 

built on a silicon 16-position electrical chip array for simultaneous analysis of sequences of 

interest. In order to develop further this methodology and explore its potential, different 

parameters were analyzed and are reported in this work. Efforts made on optimization of 

various factors influencing the performance of the chip array-based DNA detection for 

determination of bacterial pathogenic capacity are summarized. Enteropathogenic B. cereus 

was used as a model, and its toxin-encoding genes were selected as targets for this study. 
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First, a rehydration of surface-immobilized capture probe layer is investigated, followed by 

studies made on hybridization efficiency, all in respect to obtained signal. Additionally, 

employment of ultrasound with the purpose of fragmenting genomic DNAs for assay 

sensitivities, as well as different capture/detection probe-binding locations along DNA 

strands and their effects on signal generation is studied. At last, mismatch discrimination is 

explored. 

 

MATERIALS AND METHODS 

Reagents 

Bovine serum albumin 30% solution (BSA, protease-free), ethidium bromide solution (10 

mg/ml), polyoxyethylensorbitan monolaurate (Tween 20), deoxynucleotide mix (each dNTP 

10 mM), Taq DNA polymerase (5 units/µl) and PCR buffers were obtained from Sigma-

Aldrich (Steinheim, Germany). 4-Aminophenyl β-D-galactopyranoside (pAPG) was also 

obtained from Sigma-Aldrich (Schnelldorf, Germany). Streptavidin-β-Galactosidase 

conjugate (Str-β-Gal) was obtained from Roche Diagnostics Corporation (Bromma, Sweden). 

All salts prepared for buffers were obtained from Merck KGaA (Darmstadt, Germany). Water 

used in all experiments was ultra-pure Milli-Q water (Millipore purification system). 

Phosphate-buffered saline (PBS) was prepared by dissolving 150 mM NaCl and 10 mM 

Na2HPO4 in water and adjusting to pH 7.4. TPBS buffer (pH 7.4) was prepared by adding 

0.01% (v/v) Tween 20 to PBS. Chip rehydration buffer was prepared by mixing PBS solution 

with 0.01% (v/v) Tween 20 and 1% (v/v) BSA. DNA hybridization buffer was prepared by 

adding 4 mM EDTA to PBS solutions. Working buffer was prepared by dissolving 120 mM 

NaCl, 30 mM K2HPO4 and 1 mM MgCl2 in water and adjusting to pH 7.2. Flushing buffer 

was prepared by adding 0.01% (v/v) Tween 20 to working buffer. Enzyme-conjugate dilution 
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buffer was prepared by mixing 1% (v/v) BSA to flushing buffer. All buffers were sterilized 

by autoclaving before use. 

 

B. cereus ATCC14579 and F4810/72 cultures 

Bacillus cereus strain ATCC14579 was obtained from the American Type Culture Collection, 

Manassas, USA. B. cereus F4810/72 was provided by Svensk Mjölk (Swedish Dairy 

Association), Lund, Sweden. Bacteria were grown aerobically in 10 ml nutrient broth (LB 

medium, Merck KGaA, Darmstadt, Germany), supplemented with 1% (w/v) glucose, with 

shaking (180 rpm) at 30 °C. 3.5 ml of the overnight culture was used to start a second culture 

that was grown to exponential phase (absorbance at 600 nm of 3). Cells were collected by 

centrifugation (5000 g, at 4 °C, 10 min). Pellets were washed once with PBS (pH 7.4) and 

then re-collected by the same centrifugation. Afterwards, cell pellets were resuspended in 

water to the concentration 3×109/ml for later ultrasound treatment. 

 

Design of PCR primers, probes, oligo- and polynucleotides  

Each upper/lower primer pair and capture/detection probe pair (Table 1) were designed by 

OLIGO Primer Analysis Software, Version 6.88 (MedProbe, Oslo, Norway), according to the 

sequences from eight toxin-related genes, hblA, hblC, hblD, nheA, nheB, nheC, cytK-2 and 

the toxin cereulide synthetase-encoding gene cesA. The corresponding sequence accession 

numbers are AE017008 (hblA, hblC, hblD), AE017003 (nheA, nheB, nheC), AE017001 

(cytK-2), and BD402606 (cesA). 

  The upper and lower primers were single-stranded (ss) oligonucleotides with 25 

nucleotides complementary to the selected sequences within each toxin-related genes. 

Capture and detection probes were designed with the same principle as primers and chosen to 

bind to target sequences adjacently. An additional four nucleotides-spacer (non-
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complementary to selected targeting sequences) was added to both the 5’ end of capture 

probes (HBLA_Cp, HBLC_Cp, HBLD_Cp, NHEA_Cp, NHEB_Cp, NHEC_Cp, CYTK-

2_Cp and CESA_Cp) and the 3’ end of detection probes (HBLA_Dp, HBLC_Dp, 

HBLD_Dp, NHEA_Dp, NHEB_Dp, NHEC_Dp, CYTK-2_Dp and CESA_Dp). The spacer 

was labeled with a thiol group via a 6-carbon linker in capture probes and with a biotin in 

detection probes. NCBI BLAST function was applied to evaluate the sequence specificity of 

all selected capture and detection probes by aligning sequence similarities with all bacterial 

genes available from NCBI, EMBL, DDBJ and PDB databases. There were no significant 

sequence similarities obtained with any other kinds of genes for all capture and detection 

probes designed here. 

 Moreover, one negative control probe, which was non-biotinylated and non-relevant 

to any of the selected eight toxin representative sequences, and one positive control probe 

with the same sequence as negative control probe, but being mixed with 1% biotinylated 

probes in non-biotinylated ones, were designed. The accession number of these two control 

sequences is Z99108. 

  Different mismatched (MM) cytK-2 capture probes (Table 1), i.e. three types of single 

middle-mismatched (M1MM) probes: M1aMM_Cp, M1cMM_Cp, M1gMM_Cp; 

M3MM_Cp and M5MM_Cp, were designed by replacing one, three and five contiguous 

matched nucleotides with mismatched nucleotides in the middle region of cytK-2 capture 

probe, respectively. The random 3MM probe (R3MM_Cp) was designed by allocating three 

mismatched nucleotides distributed along the cytK-2 capture probe strand. Single-stranded 

(ss) 51-mer HBLC polynucleotide was designed to complement with both HBLC_Cp and 

HBLC_Dp, respectively. Ss 25-mer CYTK-2 oligonucleotide was designed to complement to 

CYTK-2_Cp and labeled with biotin via four nucleotides-spacer at the 5’-end. CYTK-2_Cp9, 
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CYTK-2_Cp12 and CYTK-2_Cp18 were designed by linking 9, 12 and 18 carbons between 

CYTK-2_Cp nucleotides and the thiol-group label, respectively. 

 All PCR primers, probes, oligo- and polynucleotides were obtained from Thermo 

Electron GmbH (Ulm, Germany). These sequences are listed in Table 1. 

 

PCR and amplicon preparation 

Genomic DNAs from B. cereus strains, i.e. ATCC14579 and F4810/72, were used as 

templates for amplification of selected sequences of hblA, hblC, hblD, nheA, nheB, nheC, 

cytK-2 and cesA genes, respectively. One bacterial colony was treated by ultrasonication for 5 

min. After a heat treatment (95 °C, 10 min) and removal of solid particles by centrifugation 

(5000 g, 4 °C, 10 min), cell lysates were ready for use as genomic DNA templates in PCR. 

All PCRs were performed in a DNA Thermal Cycler (PTC-200, MJ Research, USA). 

Reaction components in 50 µl volumes contained bacterial genomic DNA (107 cells), 0.5 µM 

primers, 200 µM each of four kinds of dNTPs, 2.5 units of Taq polymerase in reaction buffer 

(10 mM Tris-HCl, 50 mM KCl, 1.5 mM MgCl2, pH 8.3). The PCR was performed according 

to the designed program: step 1, pre–denaturation (95 °C, 4 min); step 2, denaturation (95 °C, 

45 s); step 3, primers annealing (56 °C, 1 min); step 4, elongation (72 °C, 2 min); step 5, 

repeat from step 2 to step 4 for 34 cycles; step 6, final extension (72 °C, 10 min). After the 

completion of reactions, resultant PCR products were analyzed by agarose gel 

electrophoresis. 

 PCR amplicons were purified from PCR mixtures with the use of PCR centrifugal 

filter devices (Millipore, USA) according to the manufacture’s instruction, for later use. The 

purified PCR amplicons were quantified by UV absorbance at 260 nm using a 

spectrophotometer. 
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Ultrasound treatment for PCR amplicon fragmentation  

Ultrasound treatment of bacterial cells or PCR amplicons was carried out by an ultrasound 

disruptor UP100H (Dr. Hielscher GmbH, Stuttgard, Germany) equipped with a microtip 1 

mm in diameter. The operating frequency was 30 kHz and effective output power was 100 

W. During treatment, samples were cooled in ice-water bath. 

 Ultrasound was applied to the 100 µl of PCR amplicons, i.e. 874-bp hblA, 187-bp 

hblC, 989-bp hblD, 274-bp cesA, 310-bp nheA and 413-bp nheC, 1 nM each. After 

ultrasonication, 0.2 nM of each fragmented PCR amplicon was applied for chip assays. 

  

Chip array elements and analyzer system 

Chip arrays and the corresponding instrument ‘eMicroLISA’ were obtained from Fraunhofer 

Institute for Silicon Technology and AJ eBiochip GmbH (Itzehoe, Germany), respectively. 16 

circular interdigitated array electrode positions, contact pads and their connections were 

embedded at chip surfaces. All these electrode positions can be functionalized by DNA 

probes via thiol-gold interaction. After that, chip arrays were placed into a reaction chamber. 

Details of the chip array elements and instrument were described previously [13]. 

 

Chip array functionalization 

Prior to immobilization, thiol-labeled capture probes with a concentration of 100 µM were 

dissolved in Na2HPO4 solution (25 mM, pH 7.0). These probes were spotted onto 16 circular 

interdigitated array electrode positions by using a piezo electric nanodispenser NP 2.0 

(GeSiM, Groβerkmannsdorf, Germany). After incubation in a humid chamber at RT for 

about 2 h, the functionalized chips were streamed by water to remove unbound probes and 

dried for later analyses. For detailed information see [13]. 
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 Each chosen capture probe was spotted on random triplicate electrode positions of the 

chip array. Furthermore, one negative control probe position (i.e. non- biotinylated and non-

relevant to any of selected eight toxin representative sequences) and one positive control 

probe position (i.e. the same sequence as negative control probe, but being mixed with 1% 

biotinylated probes in non-biotinylated ones) were placed at the front and back site of the 

chip array, respectively, in order to validate detection specificity and assay performance. 

 

Target DNA analyte preparation and assay program 

Target DNA analytes were mixed with detection probes (1 µM working conc. for each) in 

hybridization buffer. The mixture (200 µl total volume) was incubated at 95 °C for 5 min, 

then immediately cooled on ice for 1 min. After that, it was directly transferred in the chip 

reaction chamber for hybridization. The assay program was designed with steps in a sequence 

(Table 2). An internal iridium oxide reference electrode (+100 mV anode / -400 mV cathode) 

was used for all measurements. 

 

Chip array storage and probe layer rehydration 

After functionalization, chip arrays were stored in the dry condition under the protection of 

nitrogen gas at RT. Before assay, single chip array was applied to the reaction chamber and 

flushed with 4×PBS at 50 °C for 5 min. 

 

Strategy of chip array-based electrochemical DNA detection system 

Figure 1 shows a scheme of the target DNA binding to capture probe layers and the following 

signaling process. Firstly, a mixture of target DNA analyte and detection probes was applied 

to the chip surface, which was previously functionalized with specific capture probes spotted 

on the different electrode positions, to form and bind the sandwich hybrid. After introducing 

Magdalena  Gabig-Cimi…, 4/8/08 4:11 PM
Deleted: A



 

 10 

the Streptavidin-β-Galactosidase conjugate (Str-β-Gal), it interacts specifically to the bound 

biotin labeled to the detection probe. Following the flushing of pAPG, the attached enzyme 

conjugate catalyzes the pAPG to 4-Aminophenol (pAP). Hydrolysis of pAP and its oxidative 

form quinoneimine (QI) between interdigital electrode fingers results in an increasing 

electron redox-recycling and finally generate amperometric curves from all 16 electrode 

positions simultaneously after the stop flow of pAPG. After completion of the reaction the 

electric read out (nA/min) was made in an 8-s period in “stop flow mode” with a time offset 

of 2 sec. 

 Positive controls generated signals similarly as described above, but only from 

enzyme conjugate Str-β-Gal binding, following substrate pAPG hydrolysis, and the resulting 

pAP redox recycling at the chip electrodes, and with excluded hybridization step. 
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RESULTS 

Rehydration of surface immobilized probe layer 

The chip arrays are usually stored under nitrogen gas after their functionalization with 

capture probes [13]. Therefore, effects of chip array surface rehydration conditions on signal 

level were studied. Before applying sample, PBS solutions with different ionic strengths (see 

MATERIALS AND METHODS, in Reagents) were flushed onto a surface of a 

functionalized chip array to rehydrate the immobilized capture probe layer for 15 min. 

Different temperatures of incubation were also tested. The rehydration of the capture probe 

layer was examined by measuring the signals obtained from chip positive control (PC) 

positions, on which the biotinylated capture probes can react to and capture the Str-β-Gal 

conjugates without previous hybridization, followed by the electrical detection. Rehydration 

performed with buffers of ionic strength only 150 and 300 mM NaCl, in 10 and 20 mM 

Na2HPO4, respectively (i.e. 1× or 2×PBS consequently), and at RT or 40 °C gave a similar 

signal level of around 60 nA/min (data not shown). In contrast, rehydration by the 4×PBS 

resulted in a much higher signal (176 nA/min), which was three times of that from 

rehydration buffers of lower ionic strengths. While rehydration completed with the use of 

5×PBS decreased the PC signal level to about 110 nA/min. Additionally, when the 

rehydration time was reduced from 15 to only 5 min, no remarkable changes in the signal 

patterns were observed (data not shown). Different temperatures, 40, 50 or 60 °C, did not 

affect the PC signal levels visibly. 

 As a consequence of these observations, all chip arrays were rehydrated by treatment 

with 4×PBS at 50 °C for 5 min prior to their utilization in subsequent analyses. 
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Effect of the hybridization buffer ionic strength on signal generation 

To examine the effect of buffer ionic strength on hybridization carried out at the chip arrays 

and to acquire the optimal buffered condition for the improved signal level, hybridization 

solutions of different concentrations of PBS (i.e. 1×, 2×, 4× and 5×) were studied. 

Measurements with PCR amplicons, 274-bp of cesA, 310-bp of nheA, 317-bp of nheB, 413-

bp of nheC, 811-bp of cytK-2 and 989-bp of hblD, correspondingly, were carried out. For all 

PCR products the signals amplified with increasing buffer ionic strengths until the 4×PBS, 

while 5×PBS decreased the signal level obviously (Figure 2). It was concluded that the 

4×PBS used for hybridization provided the highest signal level, no matter what sequences 

and sizes of target DNA was provided as an analyte. 

 

Influence of linker length of capture probe on signal generation 

Probes with different linker lengths were designed in order to study the influence of steric 

hindrance of capture probes on the target hybridization and resulting signal level. Carbon-

linkers (C-linkers) tether the capture probes to the sensing Au electrodes via the reaction of 

its end-labeled thiol group to the gold. Commonly used linker backbone consists of six 

carbons. In this study, identical in sequence capture probes of the cytK-2 gene, but varying in 

linker length, i.e. CYTK-2_Cp: 6-C-linker, CYTK-2_Cp9: 9-C-linker, CYTK-2_Cp12: 12-C-

linker, and CYTK-2_Cp18: 18-C-linker, were used for functionalization of the chip arrays, 

respectively. Two different cytK-2 target formats, i.e. 25-mer CYTK-2 oligonucleotides and 

811-bp cytK-2 PCR amplicons, were applied in order to validate the possible effect of linker 

length. Figure 3 revealed that similar signals were generated from the 6-, 9- and 12-C linked 

capture probe positions, when both targets analytes were utilized. In case of use of capture 

probe with 6-C-linker signals of 51.6 nA/min for 0.05 nM 25-mer CYTK-2 oligonucleotides, 

and 0.2 nM 51 nA/min for 811-bp cytK-2 PCR amplicons were obtained. However, a 1.6-fold 
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increase in signal level was obtained from the 18-C linked probe position. To test the 

detection specificity, a non-target DNA analyte (i.e. F4810/72 genomic DNA) was exposed 

to the array surface. The lowest background signal (2 nA/min) was generated from the 6-C 

linked probe positions. 9- and 12-C linked probe positions produced a bit higher background 

signal with the average of 3.5 nA/min. 18-C linked positions caused the highest background 

signal, around 9 nA/min (data not shown). In conclusion, since no profit in assay sensitivity 

from the use of longer capture probe linkers was visible, the 6-C linker of capture probe was 

utilized in the following work. 

 

Ultrasound-assisted analyte material preparation for signal amplification 

In order to study the signal level as a function of target analyte fragmentation ultrasound was 

applied for 1, 2.5, 5, 10 and 14 min, respectively, to several PCR amplicons being products of 

different gene sequences and representing different lengths, i.e. 187-bp of hblC, 274-bp of 

cesA, 310-bp of nheA, 413-bp of nheC, 874-bp of hblA, and 989-bp of hblD. Fragmentation 

via ultrasonication of short DNA strands (i.e. 187-bp of hblC, 274-bp of cesA and 310-bp of 

nheA) did not enhance signals when compared to the non-sonicated analytes (Figure 4). 

Additionally, electrical response obtained from the 187-bp PCR amplicon of hblC was 

dramatically reduced after 10 min treatment. However, clear improvement in signal levels 

was observed once longer DNA strands (413-bp of nheC, 874-bp of hblA and 989-bp of 

hblD) after 10 min ultrasonication were subjected for the assays, correspondingly, while 

further extended sonication caused decrease in the electrical signals. 

 

Placement of capture and detection probes along the target sequence 

It was previously shown that the placement of the capture and detection probes in close 
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positioning of enzyme conjugates (Str-β-Gal) in close vicinity of chip array electrodes 

resulted in improved signals [15]. In the present work, different capture/detection probe-

binding locations along DNA strands and their effects on signal generation were studied 

(Figure 5A). Two additional PCR amplicons of nheB, i.e. 332- and 321-bp, contained the 

same probe-binding sequences and similar strand sizes as the one used in earlier studies 

(described above as 317-bp of nheB), but different probe-binding locations along the target 

sequence. Probe-binding sites were located at the 5’-end, 3’-end or in the middle region of 

the targeted nheB strands, respectively. The same principle was applied to three cytK-2 PCR 

amplicons, i.e. 815-, 811- and 847-bp. It was evident that the highest signals for both, nheB 

and cytK-2 PCR amplicons, were obtained when a placement of the two adjacent capture and 

detection probes was located at 5’-end of the target strand (Figure 5A(2), 5B(2)). A large 

drop in signals appeared when probe-binding area at 3’-end of the DNA strand for both nheB 

and cytK-2 PCR amplicons was occupied for hybridization (Figure 5A(1), 5B(1)). At last, the 

lowest signals were achieved for the use of probe-binding location in the middle region of the 

target strand, again for both nheB and cytK-2 PCR amplicons (Figure 5A(3), 5B(3)). Worthy 

of note is the fact that a shift of probe-binding sites from 5’-end to middle region at the target 

strand drastically reduced the signal about 10-fold for the longer PCR amplicon of cytK-2, 

while for the shorter PCR strand of nheB the signal was reduced only from 96 to 50 nA/min 

by the same shift of probe-binding sites. 

 

Mismatch recognition 

In this experiment, cytK-2 capture probes with different mismatch sequences were designed 

and spotted on chip arrays. An 811-bp PCR amplicon of cytK-2 was chosen to test the assay 

specificity by comparing signal levels from array positions functionalized with perfect 

matched CYTK-2_Cp and different mismatched (MM) capture probes (Figure 6A). Four 
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mismatched capture probes, M1aMM_Cp, M3MM_Cp, M5MM_Cp and R3MM_Cp (i.e. 

CYTK-2_M1aMM_Cp, CYTK-2_M3MM_Cp, CYTK-2_M5MM_Cp and CYTK-

2_R3MM_Cp, correspondingly), carrying respectively single middle, triple middle, quintuple 

middle and triple random mutations, were investigated. Assay conditions, i.e. hybridization 

temperature, hybridization buffer ionic strength and stringent washing after hybridization, 

affecting mismatch recognition were studied. Neither altering hybridization temperature nor 

buffer ionic strength allowed sensible discriminating electrical signals. Only implementation 

of a stringent washing, that is at 55 °C, after hybridization gave improvement and good signal 

differentiations between perfect matched and different MM capture probes. It was visible that 

the mismatch recognition was most remarkable for triple random variant, while less for 

quintuple middle, triple middle and single middle mismatch. Under this washing operation, 

additional decrease of buffer ionic strength (from the 4× to 2×PBS) did not further progress 

the specificity of the assays. 

 To investigate further the assay specificity, and especially specificity for one-base 

mismatch, when electric chip arrays are employed for detection, supplementary two types of 

single middle mutations in capture probe (M1gMM_Cp and M1cMM_Cp) were designed and 

validated. In addition, in order to obtain more representative data, three kinds of PCR 

amplicons, i.e. 811-bp and 847-bp of cytK-2, and 317-bp of nheB were used. Hybridization 

was performed at 55 °C in the 4×PBS, and followed by 55 °C stringent washing with flushing 

buffer. The extent of mismatch discrimination was evaluated as above by comparing the 

electrical signal levels of the array positions functionalized with probes carrying a perfect 

match sequence and various single middle, triple middle, quintuple middle and triple random 

mismatched probes (Figure 6B). In fact, for all three types of targeted PCR amplicons, the 

results indicate that the recognition effect of single base mismatches is prominent with 

adenine, i.e. for M1aMM_Cp (i.e. CYTK-2_ M1aMM_Cp or NHEB_ M1aMM_Cp). The 
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presence of the other two kinds of examined one-base mismatches in M1gMM_Cp (i.e. in 

CYTK-2_ M1gMM_Cp or NHEB_ M1gMM_Cp) and M1cMM_Cp (i.e. CYTK-2_ 

M1cMM_Cp or NHEB_ M1cMM_Cp) resulted in comparable signal as obtained for perfect 

matched CYTK-2_Cp. Besides, triple middle M3MM_Cp (i.e. CYTK-2_ M3MM_Cp or 

NHEB_ M3MM_Cp), quintuple middle M5MM_Cp (i.e. CYTK-2_ M5MM_Cp or NHEB_ 

M5MM_Cp), and triple random mismatched R3MM_Cp (i.e. CYTK-2_ R3MM_Cp or 

NHEB_ R3MM_Cp) exhibited exactly the same trend on discrimination level when 

compared to perfect matched probe as it was observed before (at Figure 6A). 
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DISCUSSION 

Limitations of most current electrical detecting technologies include complex procedures 

which may result in poor reliability and sensitivity of the recognition. Only continued 

progress in nucleic acid detection technologies will make the electro-bio-testing a reality. In 

this respect, efforts were made to advance the technique and the results are being reported in 

this paper. The study was performed with the use of electrical chip arrays conjugated to 

automated analysis system ‘eMicroLISA’. 

 This work seeks to give fundamental insight into issues that impact the structure and 

behavior of surface-immobilized capture probe layer influencing the detection sensitivity. 

The present investigation compares signal levels obtained from assays performed with 

rehydrated capture probe layer of chip arrays with that of responses from analyses with non-

rehydrated surfaces. PBS solutions of varying ionic strength were individually employed for 

rehydration of the functionalized chip arrays. The results indicate that the amplified buffer 

ionic strength up to 4×PBS enhances the signal by nearly 300%. Further increase of buffer 

ionic strength, i.e. with the use of 5×PBS, led to a decrease in signal. The same tendency was 

observed when assays (i.e. with hybridization) were made for detection of target cesA PCR 

amplicon at the chip arrays (data not shown). It is assumed that the 5×PBS may stimulate the 

formation of secondary structures intra- or inter-probe strands, which results in steric 

hindrance causing a decrease of the probe layer accessibility. From previous studies it is 

known that the single stranded capture probes attached to the gold surface through a sulfur-

gold linkage, typically form a compact layer with their multiple contacts to the surface and 

with potential cross-talk between neighboring strands [16-18]. Rehydration with high ionic 

phosphate-buffered saline causes most probably a repulsion of the immobilized probes from 

solid surface making them swelled and extended further into the solution. The conversion of 

the probes from the coiled conformation towards and extended, more upright conformation 
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provides layer of better sterical accessibility to the reactive compounds applied for assays 

performed at chip arrays. 

 It is well known from a previous systematic work that ionic strength has a major 

influence on hybrid duplex formation and stability [19]. Thus, the influence of hybridization 

buffer ionic strength on the electric DNA chip signal as a matter of hybridization efficiency 

was studied by testing different ionic strengths of the hybridization solution (Figure 2). In 

course of these investigations, the 4×PBS was realized as being the optimal buffer for 

hybridization at the electrical DNA chip arrays irrespectively of the length of target analyte 

applied. The increase in ionic strength, resulting in neutralizing counterions such as metal 

mono- and multivalent ions (e.g. Na+, Mg2+) in the hybridization environment, reduces the 

electrostatic repulsion among the negatively charged DNA strands, which promotes capture 

probes to hybridize to complementary targets, and also strongly stabilizes the duplexes once 

they are formed. This effect was visible for this work when using buffer up to the 4×PBS. 

Further increases of buffer ionic strength diminished the generated signal, which may be due 

to a change in structure of capture probes. 

 An influence of steric hindrance on DNA hybridization by solid surface-anchored 

capture probes has been investigated by other researchers [20-23]. This interference is 

derived from the proximity of capture probes to an anchoring support. A close distance 

provides to the probes limited freedom of movement for target to contact and hybridize alike 

in the solution-phase. Thus, it is believed that the longer linker lengths enhance DNA 

hybridization and consequently improve the chip array performance with respect to the 

detection sensitivity, also to signal-to-noise ratio [21]. In order to evaluate this observation, 

four different C-linker lengths of capture probe were employed for the use of electrical chip 

arrays presented in this work (Figure 3). The results illustrated that capture probe C-linker 

lengths ranging from 6 to 12 carbons did not influence neither specific responses, nor the 
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unspecific background signals, no matter what target type (i.e. varied in sizes, being single- 

or double-strands) was applied. While the utilization of capture probe C-linker length of 18 

carbons yielded a specific signal amplification, the higher unspecific background responses 

were observed as well. Overall, as no benefits in assay sensitivity from the use of longer 

capture probe linkers were demonstrated, the 6-C linker of capture probe was used in further 

work. 

 Employment of ultrasound first to lyse bacterial cells, and secondly with the purpose 

of fragmenting genomic DNAs for assay sensitivities was studied previously [11,12,24]. 

However, further studies were needed for better understanding the relationship between 

fragmentation of target analytes and hybridization efficiency, being directly associated with 

method sensitivity. Thus, in this investigation PCR amplicons of different sequences and 

sizes were introduced. Results showed that ultrasonic fragmentation enhances specific signals 

up to two-fold for longer DNA strands (i.e. above 300 bp) by 10 min treatment (Figure 4). No 

obvious effects on generated signals were visible for shorter than 400 bp PCR amplicons 

subjected to ultrasonic treatment. For DNA strands of all sizes, over 10 min ultrasonication 

diminished the specific signals, presumably due to the loss of hybridization sites on the 

targets caused by extensive DNA fragmentation. The current observations and also other 

group’s work confirm that the efficiency of hybridization process on solid surfaces is strongly 

correlated with the DNA fragment size [12,24,25]. 

 Earlier studies revealed that the placement of the capture and detection probes in close 

proximity to each other along the target strand resulted in signal intensification [14]. 

Furthermore, it was also reported that the placement of enzyme conjugates (Str-β-Gal) nearby 

the chip array electrodes resulted in increased signals [15]. In this work, different 

capture/detection probe-binding locations along DNA strands and their effects on signal 

generation were studied. The results proved how important these factors are in respect to 
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hybridization efficiency and enzyme-catalyzed redox signal generation (Figure 5A, 5B). 

Various contributions to the observed effects have been identified. First of all, 

straightforward access of target strands to surface bound capture probes as well as enzyme 

conjugates to resulting hybrids is seen when the probe binding site is a terminal part of the 

target strand. Furthermore, a placement of a detection probe complementary to region 

adjacent to the binding site of the surface-immobilized capture probe results in a most 

favorable distance between the enzyme that is bound on the top of a hybrid and the electrode 

surface, in respect to effective contact of redox active molecules with the transducer [15]. At 

the same time, the use of adjacently positioned capture and detection probes along the 

targeted sequence is believed to be attributed at least partly to a helper effect for efficient 

nucleation process as has been seen as mentioned above in our previous investigations [14]. 

 Invention of biosensing systems is often related to the detection of mismatches, and in 

particular to the discrimination of perfectly matched hybrid from mismatched one. In this 

work, various conditions (i.e. temperature and buffer ionic strength upon hybridization and 

following washing) favoring the formation of perfectly matches over mismatched duplexes 

were studied. cytK-2 capture probes with different mismatches were used for capturing of 

cytK-2 PCR amplicon. Figure 6A shows well visible mismatch discrimination, even for 

single nucleotide sequence alteration. To obtain more comprehensive information for the 

properties of mismatch recognition, examination of three kinds of PCR amplicons, for 

different variants of mismatched capture probes was performed (Figure 6B). Supplementary 

two types of single middle mutations in capture probe (M1gMM_Cp and M1cMM_Cp) were 

validated here. The results indicate that the mismatches are ordered by easiness of recognition 

as follows: triple random > quintuple middle > triple middle > single middle mismatch. 

Among the three variants of one-base mismatches, a sequence alteration was most 

remarkable for adenine. In general, the results exhibit a general trend in mutation recognition 
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by the electrical chip arrays, and indicate that the target analyte could be detected with good 

discrimination against mismatches. 

 This paper covers a number of issues related to the challenges facing electrical chip 

arrays-based detection of DNA. It identifies and evaluates various critical factors that must be 

considered and overcome for reliable and sensitive biosensing. The knowledge obtained from 

this work is undoubtedly useful for many other detection systems. 
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Figure 1: 

Scheme of the assay performance on the chip array. The application of target and detection 

probe mix to the chip reaction chamber results in the formation of a sandwich hybrid-

complex: capture probe/target DNA/detection probe. After the following enzyme conjugate 

binding and the substrate pAPG hydrolysis, an electrical signal is generated. 

 

Figure 2: 

Influence of the hybridization buffer ionic strength on signal. 0.1 nM of each PCR amplicon, 

i.e. 274-bp of cesA, 310-bp of nheA, 317-bp of nheB, 413-bp of nheC, 811-bp of cytK-2 and 

989-bp of hblD, respectively, was applied for hybridization performed at PBS representing a 

range of ionic strength (i.e. 1×, 2×, 4× and 5×). Normalized signals were calculated by 

referring to the highest signals for each individual amplicon. Error bars represent the standard 

deviations on at least three independent determinations per column. 

 

Figure 3: 

Effect of linker length of capture probe on signal. The electrode positions were functionalized 

with CYTK-2_Cp, which contained C-linkers with different lengths (6, 9, 12 and 18 carbons, 

respectively). 0.1 nM of biotinylated 25-mer CYTK-2 oligonucleotide (light grey columns) 

and 0.2 nM of 811-bp cytK-2 PCR amplicon (black columns) were applied for assays, 

individually. Normalized signals were calculated by referring to the signal from the 6-C 

linked probe positions. Each column is an average of three independent determinations and 

the error bars represent the standard deviations. 

 

Figure 4: 

Magdalena  Gabig-Ci…, 5/15/08 1:44 PM

Magdalena  Gabig-Cimi…, 4/8/08 4:10 PM

Magdalena  Gabig-Cimi…, 4/8/08 4:10 PM

Deleted: 

Deleted: A. 

Deleted: B. Illustration of the real-time 
current curves from all 16 circular 
interdigitated array electrode positions during a 
stop flow. The electric read out (nA/min) is 
made in an 8-s period in “stop flow mode” 
with a time offset of 2 sec.
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Signal level as a function of target analyte fragmentation. Ultrasound was applied for 1, 2.5, 

5, 10 and 14 min, respectively, to PCR amplicons representing different lengths, i.e. 187-bp 

of hblC, 274-bp of cesA, 310-bp of nheA, 413-bp of nheC, 874-bp of hblA, and 989-bp of 

hblD; afterwards 0.2 nM of each analyte was individually applied for chip assay. Normalized 

signals were calculated by referring to the signal correspondingly obtained from assays with 

non-sonicated target. Error bars represent the standard deviations of the mean of three 

repeated determinations per column. 

 

Figure 5: 

A. Different probe-binding locations along nheB and cytK-2 PCR amplicon strand. Probe-

binding sites were located at the 3’-end (1), 5’-end (2) or in the middle region (3) of the 

targeted strands, respectively. Grey bars attached to gold surface represent capture probes, 

dark bars labeled with B represent biotinylated detection probes, and long single-strands 

represent the hybridized strands from PCR amplicon targets. 

B. Influence of different probe-binding locations along nheB and cytK-2 PCR amplicon 

strand on signal. Three nheB PCR amplicons (317-, 332- and 321-bp) and three cytK-2 PCR 

amplicons (815-, 811- and 847-bp) comprised the same probe-binding sequences and similar 

strand sizes, however were captured at the 3’-end (1), 5’-end (2) or in the middle region (3). 

0.1 nM of each type of nheB and cytK-2 PCR amplicons was applied for chip assays, 

correspondingly. 

 The averages of data obtained from at least three independent determinations are 

plotted. Error bars were generated from the standard deviations of the replicates. 

 

Figure 6: 
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A. Mismatch recognition in respect to different assay conditions. Chip arrays were 

functionalized with the CYTK-2_Cp, CYTK-2_M1aMM_Cp, CYTK-2_M3MM_Cp, CYTK-

2_M5MM_Cp, and CYTK-2_R3MM_Cp (described on graph as _Cp, M1aMM_Cp, 

M3MM_Cp, M5MM_Cp and R3MM_Cp, respectively). 0.2 nM of 811-bp cytK-2 PCR 

amplicon was applied to study assay conditions (i.e. H=hybridization temperature; 

hybridization buffer ionic strength; and W=washing temperature) affecting mismatch 

recognition. Normalized signals were calculated by referring to CYTK-2_Cp signals. 

B. Detection specificity as a function of mismatch recognition. Chip arrays were 

functionalized with CYTK-2_Cp or NHEB_Cp, CYTK-2_M1aMM_Cp or 

NHEB_M1aMM_Cp, CYTK-2_M1gMM_Cp or NHEB_M1gMM_Cp, CYTK-

2_M1cMM_Cp or NHEB_M1cMM_Cp, CYTK-2_M3MM_Cp or NHEB_M3MM_Cp, 

CYTK-2_M5MM_Cp or NHEB_M5MM_Cp, and CYTK-2_R3MM_Cp or 

NHEB_R3MM_Cp (described on graph as _Cp, M1aMM_Cp, M1gMM_Cp, M1cMM_Cp, 

M3MM_Cp, M5MM_Cp and R3MM_Cp, respectively), mismatched capture probes. 1 nM 

847-bp cytK-2, 0.2 nM of 811-bp cytK-2 and 317-bp nheB PCR amplicons were applied to 

study the detection specificity among various mismatched sequences. Normalized signals 

were calculated by referring to _Cp signals. 

 Error bars represent the standard deviations on at least three independent 

determinations per column. 

 

 

Table 1: 

Sequences and locations of PCR primers, probes, oligo- and polynucleotides. 
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Chip array reusability test. Chip arrays were 
functionalized with NHEA_Cp, HBLA_Cp, 
HBLC_Cp and CESA_Cp and applied for 
hybridization with 0.1 nM of each target, i.e. 
51-mer HBLC polynucleotide, PCR amplicons 
of nheA, hblA, hblC and cesA genes in the 
4×PBS, respectively. After the first analysis 
(white columns) the hybridized targets were 
stripped by flushing hot water (75 °C for 4 
min). Then, the chip arrays were re-hybridized 
with target and detection probes, and the 
signals are represented by grey bars. Repeated 
stripping and the third hybridization resulted in 
signals represented by dark bars. Normalized 
signals were calculated by referring to 
responses obtained in the first assay. Error bars 
represent the standard deviations on at least 
three independent determinations per column.
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Table 2: 

Program for DNA detection at ‘eMicroLISA’. 


