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ABSTRACT 

An electrochemical immunosensor for the detection of hemagglutinin from avian influenza 

virus H5N1 is presented in this paper. The following steps lead up to the construction of 

immunosensor: (i) modification of gold electrodes with 4,4’-thiobisbenzenethiol, (ii) 

modification of self-assembled monolayer of 4,4’-thiobisbenzenethiol with gold colloidal 

nanoparticles, (iii) immobilization of single chain variable fragments of antibodies (scFv) 

against hemagglutinin H5 via S-Au covalent bonds, (iv) blocking of the remaining free space 

with bovine serum albumin. The interactions between the scFv and hemagglutinin variants 

have been explored with electrochemical impedance spectroscopy in the presence of 

[Fe(CN)6]
3-/4-

 as an electroactive marker. The immunosensor was able to detect two different 

His-tagged variants of recombinant hemagglutinin from H5N1 viruses: the short fragment 

(17-340 residues) of A/swan/Poland/305-135V08/2006 and the long (17-530 residues) of 

A/Bar-headed Goose/Qinghai/12/2005. The strongest response has been observed for the 

long variant with a detection limit of 0.6 pg/mL and a dynamic range from 4.0 to 20.0 pg/mL. 

The recombinant hemagglutinin (17-527 residues) from A/chicken/Netherlands/1/03 (H7N7), 



used as the negative control generated a weak response. This confirms the selectivity of the 

immunsensor proposed. A miniaturized version of the immunosensor, based on screen-

printed gold electrodes, was tested with the same set of recombinant hemagglutinins and it 

achieved a linear range from 1 to 8 pg/mL with a detection limit of 0.9 pg/mL for the long 

fragment of hemagglutinin. 
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1. Introduction 

Highly pathogenic avian influenza viruses (HPAIVs) cause huge economic losses in 

the poultry industry around the world. Hundreds of millions of domestic birds have died as a 

result of infection and during culling activities to control the spread of epidemics. 

Furthermore the virus has posed a potential risk for transmission to humans. Rapid and 

specific detection of avian influenza virus (AIV) is urgently needed due to the concerns over 

the potential outbreaks [1,2].  

Electrochemical immunosensors, based on the highly biospecific recognition 

interaction between antigen and antibodies, have recently aroused much interest for the fast 

and sensitive detection of a target antigen [3–5]. In most cases, the key element is the quality 

of the antibody used. Advances in antibody gene cloning and expression have led to the 

development of recombinant antibodies, comprising the binding fragments of antibody 

molecules such as antibody-binding fragments (Fab’) and single chain variable fragments 

(scFv). Recombinant scFv is a small (~25 kDa) protein composed of antibody variable heavy 

(VH) and light (VL) chains that are connected by a peptide linker [6]. The key advantage of 

using a scFv as a recognition element is its excellent selectivity to the antigen and the low 

production costs [7,8]. 

Nowadays, the design of an electrochemical sensor has been developed in the field of 

electrochemistry to improve the analytical efficiency in terms of sensitivity, selectivity, 

reliability, low cost, ease of fabrication and use [9]. The advent of screen-printing technology 

has provided new exciting opportunities to apply electrochemical techniques for analyses 

outside a centralised laboratory. Generally, screen-printed electrodes (SPEs) are made on 

plastic or ceramic substrates where working, counter and reference electrodes are printed 

[10,11]. They are commercially available and they present a great versatility, because they 



can be manufactured depending on the application. They can be connected to a portable 

potentiostat and can be operated in static mode (drop sensor), hydrodynamic mode (common 

electrochemical cell) or in flow systems. The SPEs offer a number of advantages versus 

conventional electrodes such as the possibility for miniaturization, the low costs of mass 

production, and their portable and disposable nature [12]. They have been successfully used 

as electrochemical sensors in various studies [9,13-15]. 

Here, we present a construction of a novel type of an electrochemical immunosensor 

and demonstrate its suitability for the detection of H5 hemagglutinin from avian influenza 

virus. 4,4’-Thiobisbenzenethiol (TBBT) was used for the creation of a self-assembled 

monolayer (SAM) suitable for gold nanoparticles deposition and covalent immobilization of 

scFv antibody fragments [16]. The specificity of immunosensor is determined by the 

specificity of the used antibody fragment. Interactions between scFv immobilized on the 

surface of gold disc electrodes (GDEs) and two His-tagged variants of recombinant 

hemagglutinin from A/swan/Poland/305-135V08/2006 (H5N1) and A/Bar-headed 

Goose/Qinghai/12/2005 (H5N1) were observed using electrochemical impedance 

spectroscopy (EIS) and Osteryoung square-wave voltammetry (OSWV) in the presence of 

[Fe(CN)6]
3-/4-

 as an electroactive marker. In addition, this analytical device was miniaturized 

using screen-printed gold electrodes (SPGEs).  

 

2. Experimental 

2.1. Reagents and materials (see Supporting Information) 

2.2. Preparation of the immunosensor based on the gold disc electrodes (see Supporting 

Information) 

 

2.3. Preparation of the immunosensor based on the screen-printed gold electrodes 

The disposable screen-printed gold electrodes (SPGEs) were purchased from 

DropSens (Oviedo, Spain). They are designed in a conventional three electrode configuration 

printed on the same strip. The dimensions of the strips are 3.4 ×10 × 0.05 cm (length × 

weight × height), where both the working (4 mm diameter) and the counter electrodes are 

made of gold, whereas the reference electrode and electric contacts are made of silver. An 

insulating layer serves to delimit the working area and silver electric contacts.  

The SPGEs were washed with Milli-Q water and cleaned electrochemically by Cyclic 

Voltammetry (CV). They were dipped in 0.5 M sulphuric acid solution and swept with a 

potential between -0.2 V and 1.1 V with scan rate of 0.1 V/s, number of cycles: 3, 50 and 10. 



The clean SPGEs were washed repeatedly with Milli-Q water, ethanol and immersed in a cell 

in Teflon for screen-printed electrodes (DropSens, Oviedo, Spain). Then, 20 µL of 1 mM 

TBBT in ethanol were dropped onto the surface of each working electrode. The cells 

containing the electrodes and TBBT were sealed with parafilm to avoid solvent evaporation 

and stored for 0.5 h. After incubation, the electrodes were rinsed with ethanol, Milli-Q water 

and next 10 µL of AuNPs were dropped onto the gold surfaces for 2 h. Subsequently the 

electrodes were rinsed with Milli-Q water and 0.1 M PBS, pH 7.4. Then 10 µL droplets of 1 

µg/mL scFv in PBS buffer were spotted onto the surface of each electrode and incubated for 

1 h. Next, the electrodes were carefully rinsed with PBS buffer. BSA was used for the 

blocking of any unspecific binding. As in the prior steps, 10 µL of 1 % BSA were dropped on 

each electrode and this was stored for 0.5 h. Finally, the electrodes were rinsed with 0.1 M 

PBS and kept in a refrigerator (+4
o
C) in 0.1 M PBS buffer until use, no longer than one day 

unless stated otherwise. 

 

2.4. The specific interaction between scFv and His-tagged recombinant hemagglutinin 

variants  

“Qinghai”, “HA/Nde” and “Netherlands” were diluted in the buffer (0.1 M PBS, pH 

7.4) to the concentration of 4, 8, 12, 16, 20 pg/mL for the GDEs and 1, 4, 8 pg/mL for the 

SPGEs, respectively. The reactions between the scFv and the His-tagged recombinant 

hemagglutinin variants were performed by dropping of 10-µL aliquots of the respective 

concentrations of the antigens on the BSA/scFv/AuNPs/TBBT/Au modified electrode 

surfaces. The GDEs were covered by Eppendorf tubes and the SPGEs were kept in the cell in 

order to protect against evaporation and air pollution. After 0.5 h of incubation at room 

temperature, the electrodes were rinsed with 5 mL of 0.1 M PBS, at pH 7.4 in order to 

remove the unbound antigens. 

 

2.5. Electrochemical measurements (see Supporting Information) 

 

3. Results and Discussion 

3.1. Fabrication of the immunosensor – successive steps of electrode modification 

Scheme 1 illustrates the process of immunosensor construction. Gold electrodes, after 

cleaning, were coated with TBBT. The structure of TBBT SAMs on Au has been investigated 

by surface enhanced Raman scattering (SERS), electrochemical CV, EIS, and atomic force 

microscopy (AFM) [17]. TBBT adsorbed on the electrode surface by losing a H atom, 



forming one Au-S bond, and the other mercapto group is free at the surface of the monolayer 

owing to the presence of the νS-H at 2513 cm
-1

 and the δC-S-H at 910 cm
-1

 in SERS. The 

enhancement of the vibration of C-S (1064 cm
-1

), the aromatic C-H vibration (3044 cm
-1

), 

and the absence of the vibration of S-S illustrate TBBT adsorbed on Au forming a monolayer 

with one benzene ring tilted with respect to the Au surface. AFM of TBBT exhibits a 

clustered surface morphology with irregularly shaped islands covering the surface measuring 

from 1 to 5 nm. Zooming in to view the surface indicates surface roughness of about 0.5 nm, 

which demonstrates the monolayer of TBBT. Because S between the two phenyl groups 

presents a sp3 hybridization, the angle between the two phenyl groups must be about 110°. 

[17]. Next, a AuNPs layer was formed via covalent Au-S bonds. Then, scFv was deposited 

onto the colloidal gold layer, also through Au-S bonds. At the N-end of scFv thioredoxin has 

been attached. Thioredoxin is a 12-kD oxidoreductase enzyme containing a dithiol-disulfide 

active site. BSA was used to block any possible remaining active sites against non-specific 

adsorption on the electrode surfaces. 

 

Please insert here Scheme 1 

 

Each step of the GDEs modification was controlled using CV (Fig. S1 in Supporting 

Information) and EIS (Fig. S2 in Supporting Information) in the presence of 1.0 mM 

K3[Fe(CN)6]/K4[Fe(CN)6] (1:1) as redox marker in 0.1 M PBS pH 7.4. The bare GDEs have 

no obstacles affecting electron transfer which results in CV peak separation ΔEp = 75 mV 

(Fig. S1, curve a) and an almost straight line in the Nyquist plot (Fig. S2, curve a). These 

indicate a diffusion controlled electrochemical process. The covalent attachment of TBBT on 

the GDEs surfaces reduced the accessibility of the redox marker to the electrode surfaces. 

This increased the CV peak separation to ΔEp = 361 mV (Fig. S1, curve b) and the electron 

transfer resistance to Ret = 425.4 kΩ (Fig. S2, curve b). The chemisorption of AuNPs on the 

TBBT layer caused an increase of the conduction pathways and promoted the electron 

transfer between the redox marker and electrode surface. As the result AuNPs decreased the 

CV peak separation to ΔEp = 120 mV (Fig. S1, curve c) and the electron transfer resistance to 

Ret = 75.3 kΩ (Fig. S2, curve c). The immobilization of scFv on the colloidal gold layer 

formed an insulating layer and decreased the accessibility of [Fe(CN)6]
3−/4−

. This caused an 

increase of the CV peak separation to ΔEp = 156 mV (Fig. S1, curve d) and the electron 

transfer resistance to Ret = 159.0 kΩ (Fig. S2, curve d). Further decreasing of the CV peak 

separation to ΔEp = 244 mV (Fig. S1, curve e) and the electron transfer resistance to Ret = 



382.7 kΩ (Fig. S2, curve e) were observed upon immobilization of BSA onto the remaining 

sites on the gold layer. 

Successive fabrication steps of the SPGEs modification were controlled using CV 

(Fig. S3 in Supporting Information) and OSVW (Fig. S4 in Supporting Information) in the 

presence of 1.0 mM K3[Fe(CN)6]/K4[Fe(CN)6] (1:1) as redox marker in 0.1 M PBS pH 7.4. 

The bare SPGEs had the CV peak separation ΔEp = 90 mV (Fig. S3, curve a) and the peak 

current I = 12.3 µA in OSWV (Fig. S4, curve a). After the covalent attachment of TBBT on 

the electrode surfaces the CV peak separation increased to ΔEp = 198 mV (Fig. S3, curve b) 

and the peak current in OSWV decreased to I = 3.4 µA (Fig. S4, curve b). The chemisorption 

of AuNPs on the TBBT layer decreased the CV peak separation increased to ΔEp = 102 mV 

(Fig. S3, curve c) and increased the peak current in OSWV to I = 9.5 ± 10 µA (Fig. S4, curve 

c). The immobilization of scFv on AuNPs layer caused an increase of the CV peak separation 

to ΔEp = 161 mV (Fig. S3, curve d) and a decrease of the peak current in OSWV to I = 3.9 

µA (Fig. S4, curve d). Blocking the remaining sites of the colloidal gold layer with BSA 

increased the CV peak separation to ΔEp = 215 mV (Fig. S3, curve e) and decreased the peak 

current in OSWV to I = 2.4 µA (Fig. S4, curve c). 

 

3.2. Detection of His-tagged recombinant hemagglutinin variants of H5N1 virus with gold 

disc electrodes 

Quantitative assessment of the sensitivity of the immunosensor based on GDEs was 

done with serial dilutions of two different His-tagged recombinant variants of H5 

hemagglutinin: “Qinghai” and “HA/Nde” in PBS buffer, pH 7.4. Typical responses of the 

immunosensor registered using EIS are shown in Fig. 1. Electron transfer resistance 

measured for the immunosensor in PBS buffer before antigens detection R0 (Fig.1, curve a) 

was used to calculate the relative response towards a specific variant of hemagglutinin. 

Interactions between scFv and recombinant H5 hemagglutinins caused decreased 

accessibility of the redox marker [Fe(CN)6]
3-/4-

 to the GDEs surface. As a result we observed 

a rise of the electron transfer resistance Ri with addition of increasing concentrations of the 

antigen (Fig. 1, curves b–f). The negative control (”Netherlands”) generated a weak response 

(Fig. 1B), which confirmed the selectivity of the immunsensor.  

 

Please insert here Fig. 1 

 



The highest concentration of antigen (20 pg/mL) caused a significant increase of the 

electron transfer resistance to 84.6 ± 4.7 % for “Qinghai” and 60.0 ± 3.6 % for “HA/Nde” 

(Fig. 2). A linear range of the analytical response was observed from 4 to 20 pg/mL. The 

limit of detection (LOD) was calculated using the equation: LOD = 3.3σ/S where σ is the 

standard deviation of the response and S is the slope of the calibration curve [18]. The LOD 

was 0.6 pg/mL for “Qinghai” and 2.1 pg/mL for “HA/Nde”. The negative control 

(“Netherlands”) generated a negligible response. In the presence of the highest concentration 

(20 pg/mL) of “Netherlands” only a 6.5 ± 1.7 % increase of the electron transfer resistance 

was observed (Fig. 2). 

 

Please insert here Fig. 2 

 

In our previous paper [19], we have described an impedimetric immunosensor for the 

detection of “Qinghai” and “HA/Nde”. Its preparation consists of successive modification 

steps of gold electrodes: (i) modification with 1,6-hexanedithiol and gold colloidal 

nanoparticles, (ii) immobilization of antibody-binding fragments (Fab’) of anti-hemagglutinin 

H5 monoclonal antibodies Mab 6-9-1 via S-Au covalent bonds, (iii) filling any free space 

with BSA. The interactions between the Fab’ fragments and antigens have been explored 

with EIS in the presence of [Fe(CN)6]
3-/4-

 as an electroactive marker. LODs were 2.2 pg/mL 

for “Qinghai” and 4.0 pg/mL for “HA/Nde”. The device presented in this paper has better 

sensitivity. The Au / TBBT layer was more reproducible and stable in comparison to the Au / 

HDT layer. The electron transfer resistance of the Au / TBBT layer (Ret = 425.4 kΩ) was 

much lower than for the Au / HDT layer (Ret = 1359.3 kΩ) (Fig. S5 in Supporting 

Information). Moreover, the immunosensor proposed here had a shorter time of modification 

and a four times lower detection limit than the one already reported [19]. 

 

3.3. Detection of His-tagged recombinant hemagglutinin variants of H5N1 virus with screen-

printed gold electrodes – miniaturisation  

An immunosensor based on SPGEs was applied for screening of the interactions 

between the scFv attached to the electrode surface and different recombinant hemagglutinin 

variants present in the sample solution using OSWV. Representative square wave 

voltammograms recorded in the presence of “Qinghai” and “Netherlands” are presented in 

Fig. 3.  

 



Please insert here Fig. 3 

 

Upon increasing the concentration of “Qinghai” and “HA/Nde”, a decrease of the 

peak current was observed. The highest concentration of “Qinghai” and “HA/Nde” (8 pg/mL) 

caused 64.0 ± 1.8% and 53.1 ± 4.2 % decrease of peak current, respectively. In the presence 

of 20 pg/mL of “Netherlands” only 1.5 ± 2.8 % decrease of peak current was observed (Fig. 

4). The current values used in Fig 4 were taken from the experiment described in Fig 3. The 

LODs for the “Qinghai’ and “HA/Nde” were 0.9 pg/mL and 1.7 pg/mL, respectively. 

 

Please insert here Fig. 4 

 

In the next step, the stability over time of the immunosensor based on SPGEs was 

controlled. Fully modified SPGEs were kept in refrigerator (+4
o
C) in 0.1 M PBS buffer, pH 

7.4 for one week. Next, the electrodes were used for the detection of “Qinghai”. The highest 

concentration of “Qinghai” (8 pg/mL) caused 57.2 ± 7.8% (n = 5) decrease of peak current. 

This value is only 10 % lower than the response of immunosensor recorded one day after its 

preparation. 

 

Please insert here Table 1 

 

Considering different parameters, such as sensitivity, selectivity and simplicity of sensor 

preparation, the biosensor presented in this work is superior to numerous immunosensors 

already reported (Table 1). Most of the devices reported in the literature for biosensing 

applications have not been tested with real biological samples. It is worth to emphasize that 

the main advantages of the device proposed here are its simple fabrication, its demand of only 

a small sample volume and its disposable nature. Moreover, due to miniaturization, the use of 

our device is not limited to the laboratory conditions.  

 

Conclusions 

4,4’-Thiobisbenzenethiol (TBBT) SAM deposited on the gold surface possess a 

superior  parameters in regards to reproducibility and stability, as well as  the three times 

lower electron transfer resistance in the comparison to 1,6-hexanedithiol (HDT) SAM. The 

TBBT SAM was suitable for covalent deposition of colloidal gold nanoparticles, which 



function as excellent environment for scFv immobilization. Such modification was the base 

of a sensitive and selective electrochemical immunosensor for the detection of peptides 

hemagglutinin from avian influenza viruses. This device is capable to recognize two His-

tagged variants of H5. The strongest response was observed for the longer variant 

(“Qinghai”) with a detection limit of 0.6 pg/mL and dynamic range from 4.0 pg/mL to 20.0 

pg/mL. A negative control (H7 hemagglutinin), generated only a weak response. The 

miniaturized system was able to detect “Qinghai” with a detection limit of 0.9 pg/mL. 

Therefore, this could be the method of choice for the rapid, simple and direct electrochemical 

detection of H5 hemagglutinin from influenza virus in the field conditions. One should also 

remember that the specificity of immunosensor is strongly affected by the properties (antigen 

affinity and cross-reactivity) of antibody used for immunosensor fabrication. 
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Figure captions 

 

Scheme 1. Steps of immunosensor construction. 

 

Fig. 1. Typical electrochemical impedance spectra obtained for GDE modified with 

BSA/scFv/AuNPs/TBBT/GDE (a) in buffer solution and after treatment with (b) 4, (c) 8, (d) 12, (e) 

16, (f) 20 pg/mL A) “Qinghai” and B) “Netherlands”. The measuring conditions: a bias potential of 

0.17 V; a frequency range from 0.1 Hz to 10 kHz. Solution composition: 1 mM K3[Fe(CN)6] / 

K4[Fe(CN)6], 0.1 M PBS pH 7.4. Circuit model used for fitting Nyquist plots in inset: Rs – solution 

resistance, Ret – electron transfer resistance, and CPE-constant phase element. 

 

Fig. 2. The relationship of (Ri–R0)/R0 [%] vs. concentrations C [pg/mL] of: (●) “Qinghai”; (♦) 

“HA/Nde” and (▲) “Netherlands” proteins. R0 is the electron transfer resistance of a fully modified 

electrode measured in PBS buffer before antigen application and Ri is the electron transfer resistance 

of fully modified electrode measured in 0.1 M PBS buffer with the given concentration of an antigen 

(n = 5). 

 

Fig. 3. Typical square wave voltammograms obtained for SPGEs modified with 

BSA/scFv/AuNPs/TBBT/GDE (a) in buffer solution and after treatment with (b) 1, (c) 4, (d) 8 pg/mL 

A) “Qinghai” and B) “Netherlands”. The measuring conditions: square wave frequency of 25 Hz and 

amplitude of 0.05 V. Solution composition: 1 mM K3[Fe(CN)6] / K4[Fe(CN)6], 0.1 M PBS pH 7.4. 

 

Fig. 4. The relationship of (Ii–In)/In [%] vs. concentrations C [pg/mL] of: (●) “Qinghai”; (♦) 

“HA/Nde” and (▲) “Netherlands” proteins. I0 is the value of peak current of fully modified electrode 

measured in pure PBS buffer before antigen application and Ii is the value of the peak current of the 

fully modified electrode measured in 0.1 M PBS buffer with the given concentration of an antigen (n 

= 5). 
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2. Experimental 

2.1. Reagents and materials 

Gold colloidal nanoparticles (AuNPs, 17-23 nm in diameter), potassium ferro- and 

ferricyanides, phosphate buffer saline (PBS) components (137 mM NaCl, 2.7 mM KCl, 1.8 

mM Na2HPO4, 10 mM KH2PO4) were supplied by Sigma–Aldrich (Poznań, Poland). 4,4’-

Thiobisbenzenethiol (TBBT) was obtained from the University of Leuven (Belgium). 

Alumina slurry 0.3 and 0.05 μm was purchased from Buehler (Lake Bluff, IL, USA). 

Sulphuric acid, potassium hydroxide, ethanol and methanol were obtained from POCh 

(Gliwice, Poland). Bovine serum albumin (BSA) was purchased from Invitrogen Life 

Technologies (Darmstadt, Germany). The single chain variable fragment (scFv) of anti-H5 



hemagglutinin mouse monoclonal antibody mAb6-9-1 was obtained from the Institute of 

Biochemistry and Biophysics (Warsaw, Poland) [16]. Two His-tagged recombinant variants 

of the H5 hemagglutinin were used in this work. The “HA/Nde” protein is based on the 

sequence of A/swan/Poland/305-135V08/2006 (EpiFlu Database Acc no. EPI156789), covers 

region of 17–340 residues (corresponding to the H1 subunit) and was produced in Escherichia 

coli cells. The “Qinghai” protein, (based on the sequence of A/bar headed 

goose/Qinghai/12/2005 (Genbank Acc no. ABE68927); covers region of 17-530 residues and 

was produced in mammalian cells. A His-tagged recombinant hemagglutinin variant of H7N7 

virus: “Netherlands” was used as the negative control. The “Netherlands” protein is based on 

the sequence of A/chicken/Netherlands/1/03 (Genbank Acc no. AY338459) and covers the 

region of 17–527 amino acids. The “Qinghai” and “Netherlands” proteins were purchased 

from Immune Technology (New York, NY, USA), while the “HA/Nde” protein was obtained 

from the Institute of Biochemistry and Biophysics (Warsaw, Poland). 

All aqueous solutions were prepared using Milli-Q water, with resistivity 18.2 MΩ·cm 

(Millipore, Darmstadt Germany). Reagents and solvents were of analytical grade and were 

used without further purification. Experiments were carried out at room temperature unless 

stated otherwise. 

 

2.2. Preparation of the immunosensor based on the gold disc electrodes 

The gold disc electrodes (GDEs, 2 mm diameter) were obtained from Bioanalytical 

System (BAS, West Lafayette, IN, USA). The GDE after washing with methanol and Milli-Q 

water were polished in alumina slurries (Alpha and Gamma Micropolish) with particles size 

of 0.3 and 0.05 μm on microcloth polishing pads (BAS) for 5 minutes each. Afterwards they 

were carefully washed with Milli-Q water. Then, electrochemical cleaning was performed by 

cyclic voltammetry (CV). At first they were dipped in 0.5 M potassium hydroxide solution 

and swept with a potential between -0.4 V and -1.2 V against a silver chloride reference 

electrode (Ag/AgCl) and a platinum wire counter electrode with scan rate of 0.1 V/s, number 

of cycles: 3, 50 and 10. Next, the electrodes were cleaned in 0.5 M sulphuric acid solution in 

the potential window between -0.3 V and +1.5 V, number of cycles: 3, 10 and 3. Before 

modification, the surfaces of the electrodes were refreshed in 0.5 M potassium hydroxide 

solution for 10 cycles. After finishing the electrochemical cleaning each electrode was rinsed 

with Milli-Q water and stored in water (for several minutes, until the next step) to avoid 

contamination from air. All solutions were deoxygenated by purging with nitrogen (ultra pure 

6.0, Air Products, Warsaw, Poland) for 10 minutes. 



The clean GDEs were washed repeatedly with Milli-Q water and ethanol. Then, they 

were immersed for 1 h in 1 mM TBBT in ethanol. The tubes containing the electrodes and 

TBBT were sealed with a Teflon tape and parafilm to avoid solvent evaporation. 

Subsequently the electrodes were rinsed with ethanol and Milli-Q water. These electrodes 

with formed TBBT self-assembled monolayer (SAM) were fixed upside down and 10 µL 

droplets of AuNPs were spotted on each gold surface. The tubes containing electrodes were 

sealed with parafilm and stored in +4
o
C for 18 h. After incubation, the electrodes were rinsed 

with Milli-Q water and 0.1 M PBS, pH 7.4. Next, 10 µL droplets of 1 µg/mL scFv in PBS 

buffer were aliquoted onto the surface of each electrode. The tubes with electrodes were again 

sealed with parafilm and incubated for 1 h. Then, the electrodes were carefully rinsed with 

PBS buffer. BSA (in 0.1 M PBS, pH 7.4) in a concentration of 1 % (m/v) was used for 

blocking of unspecific binding. As in the prior steps, 10 µL droplets were spotted on each 

electrode and stored for 0.5 h. Finally, the electrodes were rinsed with 0.1 M PBS. Fully 

modified electrodes were kept in a refrigerator (+4
o
C) in 0.1 M PBS buffer, pH 7.4 until use, 

no longer than one day. 

 

2.5. Electrochemical measurements 

Electrochemical measurements with conventional three-electrode configuration were 

performed using a potentiostat-galvanostat AutoLab (Eco Chemie, Utrecht, Netherlands). 

Working electrodes were polycrystalline gold discs of 2 mm diameter (BioAnalytical System, 

BAS, West Lafayette, IN). All potentials were measured versus an Ag/AgCl reference 

electrode, and a platinum wire was used as a counter electrode. Electrochemical 

measurements with SPGEs were performed using a µStat 400 potentiostat/galvanostat 

(DropSens, Oviedo, Spain). Electrochemical experiments were performed in a solution 

comprised of 0.1 M PBS pH 7.4 and K3[Fe(CN)6] / K4[Fe(CN)6] (0.5 mM each). In the cyclic 

voltammetry (CV) the potential was cycled from 0.6 to -0.2 V with scan rate 0.1 V/s. The 

electrochemical impedance spectroscopy (EIS) was recorded within a frequency range of 0.1 

Hz to 10 kHz at the formal potential of the redox couple [Fe(CN)6]
3-/4-

 (0.17 V) with ac 

amplitude of 10 mV. Obtained spectra were fitted by AutoLab software in order to obtain 

values of electron transfer resistance (Ri). The electrode responses were expressed as: (Ri – 

R0) / R0 where R0 means the electron transfer resistance of a fully modified electrode 

measured in pure PBS buffer before His-tagged recombinant proteins detection, Ri means the 

electron transfer resistance of a fully modified electrode measured in PBS containing a 

particular concentration of the detected proteins. OSWV was performed with a potential from 



0.55 V to –0.25 V with a square wave frequency of 25 Hz and an amplitude of 0.05 V. The 

electrode responses were expressed as: (In – I0) / I0 where In is the peak current measured in 

the presence of His-tagged recombinant proteins and I0 the peak current before applying the 

target proteins. 

 

Fig. S1. Typical cyclic voltammograms of: (a) bare GDE; (b) TBBT modified electrode; (c) 

AuNPs/TBBT modified electrode; (d) scFv/AuNPs/TBBT modified electrode; (e) 

BSA/scFv/AuNPs/TBBT modified electrode. Solution composition: 1 mM K3[Fe(CN)6]/K4[Fe(CN)6], 

0.1 M PBS pH 7.4. The measuring conditions: three electrode configurations—Au working electrode, 

Ag/AgCl reference electrode, and Pt counter electrode; scan rate 100 mV/s. 

 



 

Fig. S2. Typical electrochemical impedance spectra of: (a) bare GDE; (b) TBBT modified electrode; 

(c) AuNPs/TBBT modified electrode; (d) scFv/AuNPs/TBBT modified electrode; (e) 

BSA/scFv/AuNPs/TBBT modified electrode. Solution composition: 1 mM K3[Fe(CN)6]/K4[Fe(CN)6], 

0.1 M PBS pH 7.4. The measuring conditions: three electrode configurations–GC working electrode, 

Ag / AgCl reference electrode, and Pt counter electrode; a bias potential of 0.17 V; the frequency 

range from 0.1 Hz to 10 kHz. 

 

 



 

Fig. S3. Typical cyclic voltammograms of: (a) bare SPGE; (b) TBBT modified electrode; (c) 

AuNPs/TBBT modified electrode; (d) scFv/AuNPs/TBBT modified electrode; (e) 

BSA/scFv/AuNPs/TBBT modified electrode. Solution composition: 1 mM K3[Fe(CN)6]/K4[Fe(CN)6], 

0.1 M PBS pH 7.4. The measuring conditions: three electrode configurations—Au working and 

counter electrodes, Ag reference electrode; scan rate 100 mV/s. 

 

 

 

 

 



 

Fig. S4. Typical square wave voltammograms of: (a) bare SPGE; (b) TBBT modified electrode; (c) 

AuNPs/TBBT modified electrode; (d) scFv/AuNPs/TBBT modified electrode; (e) 

BSA/scFv/AuNPs/TBBT modified electrode. Solution composition: 1 mM K3[Fe(CN)6]/K4[Fe(CN)6], 

0.1 M PBS pH 7.4. The measuring conditions: three electrode configurations—Au working and 

counter electrodes, Ag reference electrode; square wave frequency of 25 Hz and amplitude of 0.05 V. 

 

 

 



 

Fig. S5. Typical electrochemical impedance spectra of (a) TBBT modified electrode; (b) HDT 

modified electrode. The measuring conditions: a bias potential of 0.17 V; a frequency range from 0.1 

Hz to 10 kHz. Solution composition: 1 mM K3[Fe(CN)6] / K4[Fe(CN)6], 0.1 M PBS pH 7.4.  

 


