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Phosphorylation of thymidylate synthase affects
slow-binding inhibition by 5-fluoro-dUMP and
N4-hydroxy-dCMP

Jan Ludwiczak,†a Piotr Maj,†a Piotr Wilk,†‡a Tomasz Frączyk,§a Tomasz Ruman,b

Borys Kierdaszuk,c Adam Jarmułaa and Wojciech Rode*a

Endogenous thymidylate synthases, isolated from tissues or cultured cells of the same specific origin,

have been reported to show differing slow-binding inhibition patterns. These were reflected by biphasic

or linear dependence of the inactivation rate on time and accompanied by differing inhibition parameters.

Considering its importance for chemotherapeutic drug resistance, the possible effect of thymidylate

synthase inhibition by post-translational modification was tested, e.g. phosphorylation, by comparing

sensitivities to inhibition by two slow-binding inhibitors, 5-fluoro-dUMP and N4-hydroxy-dCMP, of two

fractions of purified recombinant mouse enzyme preparations, phosphorylated and non-phosphorylated,

separated by metal oxide/hydroxide affinity chromatography on Al(OH)3 beads. The modification, found

to concern histidine residues and influence kinetic properties by lowering Vmax, altered both the pattern

of dependence of the inactivation rate on time from linear to biphasic, as well as slow-binding inhibition

parameters, with each inhibitor studied. Being present on only one subunit of at least a great majority of

phosphorylated enzyme molecules, it probably introduced dimer asymmetry, causing the altered time

dependence of the inactivation rate pattern (biphasic with the phosphorylated enzyme) and resulting in

asymmetric binding of each inhibitor studied. The latter is reflected by the ternary complexes, stable

under denaturing conditions, formed by only the non-phosphorylated subunit of the phosphorylated

enzyme with each of the two inhibitors and N5,10-methylenetetrahydrofolate. Inhibition of the phosphorylated

enzyme by N4-hydroxy-dCMP was found to be strongly dependent on [Mg2+], cations demonstrated

previously to also influence the activity of endogenous mouse TS isolated from tumour cells.

Introduction

Thymidylate synthase (TS; EC 2.1.1.45), a prominent target for
fluoropyrimidines and antifolates in chemotherapy,1–4 catalyzes
20-deoxyuridine-50-monophosphate (dUMP) C(5) methylation,
producing 2 0-deoxythymidine-5 0-monophosphate (dTMP).5

The enzyme potent inhibition by 5-fluoro-dUMP (FdUMP) is
responsible for the antiproliferative activity of certain fluoro-
pyrimidines, including 5-fluorouracil, 5-fluorodeoxyuridine
(FdUrd), 5-fluorocytosine and trifluorothymidine prodrugs.6–8

Several reports presented a possible mechanism of resistance
to FdUrd based on alteration of the target enzyme causing less
potent inhibition by FdUMP.9–15 While several of those reports
documented the ability of the enzyme’s mutation(s), either
naturally occurring12,13 or experimentally induced,11,14 to influence
properties, in the case of parental and FdUrd-resistant mouse
leukemia L1210 cells alteration of thymidylate synthase expressed
by the resistant cells was found to involve posttranslational
modification(s), rather than a mutation.15 However, although
phosphorylation appeared involved, such conclusions could
not be documented unequivocally (ref. 15; cf. 16).

It should be mentioned that drug resistance limits effectiveness
of chemotherapy, used to treat different pathogens, including
infectious agents,17–21 as well as cancer,22,23 with tumours resistant
to drugs, both intrinsically (present before treatment) and acquired
as a result of treatment, being mostly caused by altered drug
metabolism or drug target.22,23

Both FdUMP and N4-hydroxy-dCMP (N4-OH-dCMP) are com-
petitive vs. dUMP, slow-binding and N5,10-methylenetetrahydro-
folate-dependent thymidylate synthase inhibitors,24 causing
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time-dependent inactivation of the enzyme.25 When studied
with endogenous thymidylate synthases, isolated from tissues
or cultured cells, the dependence of the inactivation rate on
time was usually biphasic, the inactivation rate decreasing after
about 2 min of enzyme preincubation with one of the inhibitors
(ref. 24, 26–32; cf. 33). Biphasic FdUMP binding by human
recombinant thymidylate synthase was also presented.34 Thus
differing interactions are suggested by the inhibitor with two
binding sites on the enzyme molecule that may be interpreted
in terms of negative cooperativity. In this context, it should be
mentioned that although TS is a homodimer with two equivalent
active sites, each composed of residues from both subunits, it
shows half-the-site activity, with associated negative cooperativity,35–37

the latter questioned recently to occur with the bacterial enzyme.38

However, as presented in Table 1, the enzyme isolated from
certain sources showed linear dependence of rate of inactivation
by FdUMP on time, and both behaviors could be found in
enzyme preparations isolated from sources of the same specific
origin. Of particular interest is the group of mouse TSs
(Table 1), as the coding sequences of both L1210 parental
and FdUrd-resistant cell TSs proved to be identical to that
of the mouse enzyme,15 suggesting the observed differences,
including those concerning inactivation parameters, result from
posttranslational modification. Furthermore, the difference
between inhibition profiles observed with L1210r and L1210r*

enzyme preparations (Table 1) pointed to possible influence of
phosphorylation.

In order to test a possibility of thymidylate synthase inhibition
to be affected by post-translational modification, e.g. phosphory-
lation, two metal oxide/hydroxide affinity chromatography (MOAC)-
separated fractions, phosphorylated and non-phosphorylated, of
the recombinant mouse enzyme were compared with respect to
sensitivity to inhibition by each of two slow-binding inhibitors,
FdUMP and N4-hydroxy-dCMP.

Experimental

Pro-Qs Diamond Phosphoprotein Gel Stain and SYPROs Ruby
Protein Gel Stain are from Molecular Probes.

Enzyme preparations

Cloning of the mTS coding region into the pPIGDM4+stop
vector and its expression as a HisTag-free protein in thymidylate
synthase-deficient TX61- (a kind gift from Dr W. S. Dallas) E. coli
strain was previously described.39

Purification of the enzyme was done at 2–4 1C with 20 mM
2-mercaptoethanol and phosphatase inhibitors (50 mM NaF,
5 mM Na-pyrophosphate, 0.2 mM EGTA, 0.2 mM EDTA and
2 mM Na3VO4) present in all buffers. The cell pellet, collected
following centrifugation of 1 l of E. coli culture, was suspended
in 100 ml of 50 mM sodium/potassium phosphate buffer,
pH 7.5, containing 0.1 M KCl, immersed in an ice-ethanol bath
and sonicated (Branson Sonifier 250), applying ten pulses of
60 s each, separated with 15 s pauses. After removal of cell debris
by centrifugation for 20 min at 20 000 � g, 2% streptomycin
sulfate was added to the supernatant, the suspension stirred for
20 min and the precipitated nucleic acid was removed by 20 min
of centrifugation at 20 000 � g. Solid ammonium sulfate was
added to the stirred supernatant to 30% saturation and, after
additional 20 min of stirring, the resulting mixture was centri-
fuged for 20 min at 20 000 � g. The ammonium sulfate content
of the supernatant was raised to 80% saturation and, after
stirring for 20 min, the resulting precipitate was spun down. It
was dissolved in 10 mM sodium/potassium phosphate buffer,
pH 7.5, dialyzed overnight against two 2 liter changes of the
same buffer and loaded onto a DE-52 column (2.5 � 7 cm)
equilibrated with the above buffer. The column was washed with
150 ml of the same buffer, followed by 250 ml of 25 mM sodium/
potassium phosphate buffer pH 7.5, and the enzyme was eluted
with 50 mM sodium/potassium phosphate buffer, pH 7.5.
Fractions containing thymidylate synthase activity were pooled
and precipitated with solid ammonium sulfate at 80% saturation.
Following centrifugation, the pellet was dissolved in 10 mM
sodium/potassium phosphate buffer, pH 7.5, containing 1 M
ammonium sulfate, and loaded onto a phenyl-Sepharose column
(1.5 � 7 cm) equilibrated in the same buffer. The column was
washed with 200 ml of the same buffer and the enzyme was
eluted with 10 mM sodium/potassium phosphate buffer, pH 7.5,
containing 0.8 M ammonium sulfate. The most active and
purest fractions (assessed electrophoretically) were pooled and

Table 1 Parameters for inactivation of thymidylate synthases from different
mouse, rat and human sources by FdUMP. The plots of log (remaining
activity) vs. time were either linear or biphasic (cf. ref. 24), the latter
suggesting different interactions of each inhibitor with the two binding
sites on the TS molecule. With the biphasic plots, inhibition constants and
inactivation rate constants were calculated with the use of apparent inactiva-
tion rate constants during the initial (0.0–1.5 min) and later (4–10 min)
periods of preincubation with a given inhibitor at various concentrations.
The corresponding inhibition constants and inactivation rate constants are
then Ki

0 and k2
0 and Ki

00 and k2
00, respectively

Enzyme source

Inactivation rate
dependence on
preincubation time

Ki
0 (nM)/k2

0

(min�1)
Ki
00 (nM)/k2

00

(min�1)

Mouse TS
Thymusa Biphasicb 2.6/0.24 61/0.44
L1210pc Biphasic 1.8/0.17 20/0.12
L1210rc Biphasic 12.2/0.25 14/0.06
L1210p*d Biphasic 15.3/0.22 6.5/0.10
L1210r*d Lineare 47.5/0.59
Ehrlich carcinoma f Biphasic 6/0.18 71/0.17

Rat TS
Regenerating liverc Biphasic 10/0.29 15/0.14
Colon tumour K-12g Linear 120/1.2

Human TS
CCRF-CEM leukemia f Biphasic 4/0.18 6/0.11
Colon tumour HCT-8g Linear 130/0.8

a Ref. 26. b The inactivation rate lowered after 2 min of preincubation
of the enzyme with the inhibitor. c Ref. 24. d Ref. 15. e The inactivation
rate did not change during the entire time of preincubation of the
enzyme with the inhibitor. f Ref. 27. g Ref. 30. L1210p and L1210r are
mouse leukemia L1210 cells parental and 5-FdUrd-resistant, respec-
tively; the enzyme from L1210p* and L1210r* cells was purified in the
presence of protein phosphatase inhibitors.
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concentrated in an Amicon Column Eluate Concentrator apparatus.
TS activity was measured either spectrophotometrically40 or with
the use of the tritium release assay.27 The final preparation was
highly homogeneous, as judged by SDS/PAGE analysis of samples
containing up to 40 mg protein. Its specific activity (the tritium
release assay) was 1.75 mmol min�1 mg protein�1 at 37 1C.

The purified TS preparation was separated into phosphorylated
and non-phosphorylated fractions using MOAC on Al(OH)3 beads
(ref. 41; cf. 16).

Electrophoretic analysis and testing the presence of phosphate
groups

Purified enzyme preparations were analyzed by polyacrylamide
gel (7.5%) electrophoresis under non-denaturing conditions
(4 1C, 150 V, 90 min, electrode buffer containing 25 mM Tris
and 192 mM glycine), and by SDS/polyacrylamide gel (12.5%)
electrophoresis according to Laemmli.42 Following electro-
phoresis, gels were fixed by incubation in 50 mM Tris-HCl,
pH 8.0, containing 25% (v/v) 2-propanol.43 Then the assay for
the presence of protein phosphate groups, with the use of
the Pro-Qs Diamond Phosphoprotein Gel Stain, followed by
staining of the same gel for protein by SYPROs Ruby Protein
Gel Stain was performed as previously described.15

Kinetic studies

Quantitative analyses of thymidylate synthase slow-binding
inhibition by FdUMP and N4-OH-dCMP, leading to time-
dependent inactivation of the enzyme, were performed by
following the decrease of enzyme activity with time (usually at
0.5, 1, 1.5, 4, 6, 8, and 10 min) during preincubation of the enzyme
at 37 1C in the presence of 0.4 mM (6RS)-meTHF, 3.3 mM dUMP
(to prevent thermal inactivation), and various concentrations of
inhibitor. Activity remaining after preincubation was determined
by addition of 50 mM [5-3H]dUMP (4 � 104 dpm nmol�1) and
measurement of tritium release following 4 min incubation.32

The slopes of the semi-log plots of percent remaining activity
vs. preincubation time, expressing apparent inactivation rate
constants (kapp) and corresponding inhibitor concentrations ([I]),
were then replotted as double-reciprocal plots, and the values of
k2 and Ki were determined from the plot intercept and slope,
respectively.44

Results and discussion
Comparative analysis of m-TS and m-pTS

TS preparation of mouse recombinant TS expressed in bacterial
cells, highly purified in the presence of phosphatase inhibitors
and analyzed with the Pro-Qs Diamond Phosphoprotein Gel
Stain following SDS-PAGE, showed the presence of low levels
of phosphorylated protein (not shown). Enrichment of the
phosphorylated fraction, by separation from non-phosphorylated,
using MOAC on Al(OH)3 beads, yielded E1% of the total purified
TS protein. Electrophoretic comparison of the non-phosphorylated
with enriched phosphorylated fraction allowed for confirmation of
the effective separation of m-pTS from m-TS and demonstrates

that both fractions are highly purified (Fig. 1; note: empty lane 3
indicates that in m-TS no phosphate is detected, although lane 6
shows the presence of a single protein band, with subunits left
unseparated. At the same time m-pTS shows the presence of
phosphate, detected in lane 2. However, this modification
concerns apparently only one subunit, causing differing electro-
phoretic mobilities of the two subunits, suggested by the two
protein bands in lane 5). Moreover, it showed the phosphory-
lated fraction, or at least its prevailing part, to be modified on
one subunit only (Fig. 1; cf. lanes 2 and 5; note: of the two protein
bands stained in lane 5, corresponding to the two subunits
(cf. ref. 16), only the upper one shows the presence of a
phosphate group, as detected in lane 2, causing lower electro-
phoretic mobility of the phosphorylated subunit). Assuming
the presence of a fraction of TS molecules phosphorylated on
both subunits, it was too small to be detected. Alternatively,
rare enzyme molecules that underwent phosphorylation in
bacterial cells on both subunits could be lost in the process
of MOAC, the loss also remaining undetected. The two TS
fractions have been previously characterized by comparing
their 31P NMR spectra and found to contain unmodified and

Fig. 1 Phosphorylated (lanes 2 and 5) and non-phosphorylated (lanes
3 and 6) fractions (separated by MOAC on Al(OH)3) of recombinant mouse
TS preparation, and PeppermintStickt phosphoprotein molecular weight
standards (lanes 1 and 4), analyzed for phosphoprotein/protein following
SDS-PAGE. Gels were stained with Pro-Qs Diamond Phosphoprotein Gel
Stain, to reveal phosphoprotein, followed by SYPRO Ruby Protein Gel
Stain, in order to detect total protein (note: both fluorescent stains were
applied on the same gel in a series, with the gel image collected following
each staining, as instructed by the vendor). The molecular weight standards
included phosphorylated (ovalbumin – 45.0 kDa; b-casein – 23.6 kDa)
and non-phosphorylated (b-galactosidase – 116.2 kDa; BSA – 66.2 kDa;
avidine – 18.0 kDa; lysozyme – 14.4 kDa) proteins.
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histidine-phosphorylated enzymes,16 respectively. The latter was
evidenced by the phosphorylated fraction spectrum containing a
resonance at 2.14 ppm, belonging to inorganic phosphate, and
two upfield shifted singlet peaks at �7.39 ppm and �9.87 ppm,
with the singlet resonances in the negative spectrum region
assigned to reflect N-phosphorylated histidine species (3-pHis
and 1-pHis, respectively). The latter was confirmed by the acid-
labile character of both resonances.16 Different lines of evidence
pointed to modification of His298 (affinity chromatography of
a phosphate-containing peptide, followed by sequencing) and
His33 (MS). In addition, by MS analysis phospho-Ser118 was
determined.16 It may not be excluded that the latter result, being
in clear disagreement with the 31P NMR spectra, is an artifact, as
previously discussed.16 Kinetic studies of both phosphorylated
and non-phosphorylated TS fractions demonstrated the mod-
ification to be responsible for a 3-fold lower Vapp

max (0.59 �
0.05 mmol per min mg per protein vs. 1.64 � 0.05 mmol per
min mg per protein; N = 5), with unaltered Kapp

m for either dUMP
or meTHF.16

Inhibition of m-TS and m-pTS by FdUMP and N4-OH-dCMP

Inhibition of mouse recombinant TS by FdUMP and N4-OH-dCMP
was examined with the use of the [5-3H]dUMP tritium release
activity assay. Each inhibitor, when preincubated with TS, in
the presence of meTHF, caused time-dependent inactivation of
the enzyme, consistent with the behavior as a slow-binding
inhibitor.25 While with the m-TS fraction treated with any of the
two inhibitors, the inactivation rate did not change during
preincubation, reflected by its linear dependence on time, with

the m-pTS-catalyzed reaction, the same dependence was biphasic,
reflecting apparently negative cooperativity of binding (Fig. 2 and
Table 2). While with inactivation by FdUMP, the altered inactiva-
tion rate dependence on time resulted only in the later inactivation
phase showing an almost 3-fold lower inhibition constant and over
10-fold lower inactivation rate constant, with N4-OH-dCMP the
effect of transition from the linear to biphasic inactivation profile
was distinctly stronger. It amounted to a 5.5-fold increase of
the inhibition constant, associated with an over 10-fold higher
inactivation rate constant, followed by the later phase, charac-
terized by the inhibition constant similar to that observed for
m-TS, and inactivation rate constant 2.5-fold lower than that
observed for m-TS, and over 10-fold lower than that observed
for m-pTS during the earlier inactivation phase (Table 2).

With each of the two enzyme forms, both inhibitors form
ternary complexes, reflected by gel shifts under conditions
of non-denaturing electrophoresis (Fig. 3) and stable under
conditions of SDS electrophoresis (Fig. 4). Comparison of the
same gel stained for phosphate and later for protein allowed for
monitoring of protein phosphorylation and the presence of a
protein-bound nucleotide phosphate group. FdUMP is bound
by m-TS only in the presence of meTHF (Fig. 3, cf. lanes 2 and 3),
the complex moving faster than free enzyme under non-
denaturing conditions (Fig. 3, lane 1). Apparently two forms
of the complex, differing in mobility, are formed, containing
presumably one (in the case of most TS molecules) or two
inhibitor molecules bound per dimer. However, under denaturing
conditions only the complex formed by one subunit remains
stable, reflected by the protein pattern corresponding to free

Fig. 2 Slow-binding inhibition of non-phosphorylated (panels A and B) and phosphorylated (panels C and D) fractions of mouse recombinant
thymidylate synthase by FdUMP (panel A and C) and N4-OH-dCMP (panels B and D). FdUMP concentrations were 9.14 nM (’), 12.8 nM (K), 21.3 nM (m)
and 32.0 nM (.), and N4-OH-dCMP concentrations were 0.29 mM (’), 0.41 mM (K), 0.68 mM (m) and 1.02 mM (.).
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enzyme separated into two bands, with only one of them (the
slower) showing the presence of phosphate (Fig. 4, lane 3). With
the phosphorylated enzyme form the picture is less sharp,
presumably due to protein molecules being not uniformly
phosphorylated, as suggested by MS results,16 therefore show-
ing small differences in mobilities. Nevertheless the shift of the
ternary m-pTS–FdUMP–meTHF complex may be seen (Fig. 4,
lane 6). Also with m-pTS only the complex formed by one
subunit, the non-phosphorylated one, appears stable under
denaturing conditions (Fig. 4, lane 6).

N4-OH-dCMP appears to bind weaker to m-TS than m-pTS,
causing only a small fraction of the mTS protein to shift under
non-denaturing conditions and in the presence of meTHF
with the complex presumably formed with one enzyme subunit
(Fig. 4, lane 9) and remaining stable under denaturing conditions

(Fig. 4, lane 9). The corresponding effects were definitely stronger
with m-pTS (Fig. 3, lane 12 and Fig. 4, lane 12). Similar to FdUMP,
N4-OH-dCMP, in the presence of meTHF, bound only to the
non-phosphorylated subunit (Fig. 4, lane 12).

Interestingly, the modification differing m-pTS from m-TS
affected the time-dependent inactivation by each of the inhibitors
studied (Fig. 2 and Table 2). The latter was of particular interest,
as providing model evidence for a potential dependence on
posttranslational modification of enzyme inhibition. It should
be mentioned that previously studied TS nitration did not
influence inhibition of the enzyme by FdUMP.45 It should be
noted that the difference between the parameters of inhibition
by N4-OH-dCMP of m-TS and m-pTS (Table 2) is reminiscent
of the difference between the corresponding parameters of
L1210p and L1210r inhibition by FdUMP (Table 1).

Table 2 Parameters for inactivation by FdUMP and N4-OH-dCMP of the m-TS and m-pTS fractions of mouse recombinant thymidylate synthase. For
the biphasic plots of log (remaining activity) vs. time (cf. ref. 24), suggesting different interactions of each inhibitor with the two binding sites on the TS
molecule, inhibition constants and inactivation rate constants were calculated with the use of the apparent inactivation rate constants during the initial
(0.0–1.5 min) and later (4–10 min) periods of preincubation with a given inhibitor at various concentrations. The corresponding inhibition constants and
inactivation rate constants are then Ki

0 and k2
0 and Ki

00 and k2
00, respectively

Enzyme protein Ki
0 (nM) Ki

00 (nM) k2
0 (min�1) k2

00 (min�1)

FdUMP
m-TSa 4.8 � 0.1 (3) 0.89 � 0.13 (3)
m-pTS 4.1 � 1.1 (3) 0.32 � 0.06 (3) 1.05 � 0.15 (3) 0.087 � 0.032 (3)

N4-OH-dCMP
m-TSa 14.3 � 0.4 nM (3) 0.07 � 0.01 (3)
m-pTSa 77 � 11.5 nM (3) 12.7 � 1.1 (3) 0.41 � 0.04 (3) 0.029 � 0.008 (3)

a The inactivation rate did not change during the entire time of preincubation of the enzyme with the inhibitor; results are presented as means �
SEM, followed by the number of separate experiments in parentheses.

Fig. 3 Ternary complex formation by m-TS and m-pTS fractions with
FdUMP and N4-OH-dCMP in the presence of meTHF, monitored by
non-denaturing-PAGE, with gels analyzed for phosphoprotein (upper
part)/protein (bottom part); cf. Fig. 1 legend.

Fig. 4 Ternary complex formation by m-TS and m-pTS fractions with
FdUMP and N4-OH-dCMP in the presence of meTHF, monitored by
SDS-PAGE, with gels analyzed for phosphoprotein (upper part)/protein
(bottom part); cf. Fig. 1 legend.
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Considering the influence of phosphorylation on the inacti-
vation rate pattern (changing from linear to biphasic; Fig. 2), it
appears to result from the asymmetry introduced by phosphory-
lation of only one subunit, at least in most molecules (Fig. 1).
The latter seems to cause asymmetric binding of each inhibitor
studied, reflected by the stability under denaturing conditions
of complexes m-pTS–FdUMP–meTHF and m-pTS–N4-OH-dCMP–
meTHF, being formed only with the non-phosphorylated subunit
(Fig. 4, lanes 6 and 12). Importantly, a consequence of TS being a
half-the-sites reactive enzyme is that catalytic complex formation
on one monomer renders the other monomer inactive,35–37 with
respect to both ligand binding and catalysis. Thus more frequent
(if not exclusive) phosphorylation of one subunit appears to
influence the latter mechanism by introducing subunit asymmetry
and causing differing ligand binding and reactivity.

With respect to such a possibility, it is worth noting the
results of MD simulations (based on the crystal structure 1I00),
considering the dimeric structure of the human TS–dUMP–
Tomudex complex, with antifolate replaced by the tetrahydro-
folate (THF) molecule.16 An interesting effect was noted on the
binding behavior of ligands by phosphorylation at His304,
homologous to His298 in mTS (both found to undergo phos-
phorylation). With both active sites occupied by ligands, the
alignment between the dUMP pyrimidine ring and THF pterin
was dependent on whether phosphorylation concerned one or
both subunits, in the former case being substantially disturbed
in both subunits, whereas in the latter being much more
disturbed on subunit A than B, where both ligands were more
or less ‘‘in place’’, i.e. aligned parallel to each other (Fig. 5).
Interestingly, no disturbance was apparent with only a single
active site of the dimeric enzyme being occupied by the ligands.16

It should be added that the above mentioned influence of His304

phosphorylation is a long-distance effect, as the distances
between the centroids of the histidine imidazole and dUMP
pyrimidine rings are: 23.3 Å and 25.2 Å in non-phosphorylated
subunits A and B, respectively.

TS inhibition by FdUMP and N4-OH-dCMP involves different
molecular mechanisms. The former inhibitor forms with the
enzyme and meTHF, in a reaction similar to that involving dUMP,
a ternary covalently bound complex, with FdUMP C6 and C5
bound to the enzyme’s catalytic Cys and meTHF methylene group,
respectively.46 The complex is stable, i.e. irreversibly bound, only
under denaturing conditions. At this step the reaction stops, as
the C(5) fluorine fails to dissociate (due to the strength of the C–F
bond), as it happens with C(5) hydrogen in dUMP, resulting in
a slowly reversible enzyme inactivation.5 In contrast, the latter
inhibitor appears to participate as a suicide substrate in an
abortive enzyme-catalyzed reaction. Based on the crystal structure
of a complex formed with the enzyme in the presence of N4-OH-
dCMP and meTHF (PDB ID: 4EZ8), the reaction appears to involve
one-carbon group transfer to a hitherto unknown site, accompanied
by THF oxidation to DHF and associated N4-OH-dCMP pyrimidine
C(5) reduction, leading to a covalently bound enzyme–inhibitor
complex.47 Stability, i.e. irreversible binding, of the latter complex
was confirmed under denaturing conditions (Fig. 4, lane 12), as
previously suggested for bacterial TS.33

Dependence of m-TS- and m-pTS inhibition by N4-OH-dCMP on
[Mg2+]

Dependence on [Mg2+] for the inhibition by N4-OH-dCMP of
m-TS- and m-pTS-catalyzed reactions differed significantly.
While with m-TS the degree of inhibition, defined as (v0 � vi)/v0

(with vi and v0 being the initial rates determined in the presence
and in the absence of the inhibitor, respectively), was only
modestly dependent on [Mg2+], with m-pTS the dependence was
biphasic, with the strongest inhibition observed at a concentration
of B40 mM (Fig. 6).

In view of the above presented hypothetical mechanism
of TS inactivation by N4-OH-dCMP, it should depend on the
hydride transfer step of the TS-catalyzed reaction, causing THF
oxidation (cf. ref. 5), and this step of bacterial TS-catalyzed
reaction was recently found to be influenced by Mg2+ ions.48,49

Interestingly, only inhibition of m-pTS by N4-OH-dCMP was
found strongly dependent on Mg2+ concentration, with the
highest degree of inhibition at 40 mM Mg2+, the concentration
demonstrated previously to influence also mouse TS activity.50

As this Mg2+ concentration is about one order of magnitude
higher than those found in cells,51 even considering the known
uncertainty of cellular [Mg2+] measurements,52 the effect may
be without physiological relevance. However, of note is consis-
tency with which previously studied endogenous enzyme forms,
purified from different mouse tumour cells,10,50 as well as the
phosphorylated fraction of recombinant mouse enzyme studied
here (Fig. 6), were sensitive only to Mg2+ at a certain range of
concentrations (30–40 mM). Moreover, not only endogenous TS
activation/inhibition,10,50 but also an increase of the phosphorylated

Fig. 5 Ribbon representation of the human TS–dUMP–THF complex
structure, containing ligands in both active sites, with phosphorylated
His304 residue (pHis) either in one (left) or both of the two subunits (right).
Subunits are marked A (greenish blue) and B (brown). Below each of the
two structures, enlarged fragments of active sites formed mainly by either
subunit A or B, presenting the alignment between dUMP and THF. The
distances between the centroids of the histidine imidazole and dUMP
pyrimidine rings in subunits A and B are 23.7 Å and 25.4 Å (with pHis304 on
both subunits) or 24.0 Å and 23.4 Å (with pHis304 only on subunit A),
respectively. Based on MD simulations presented previously.16
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enzyme inhibition degree (Fig. 6), plotted as a function of [Mg2+],
resulted in a bell-shaped curve, also observed with effects of the
cation on other enzymes.51,52

Conclusions

With TSs of the same specific origin, differing slow-binding
inhibition patterns, including biphasic or linear dependence of
the inactivation rate on time, may result from varying post-
translational modification statuses of the enzyme proteins, e.g.
phosphorylated or non-phosphorylated. This may cause altered
inhibition parameters, leading potentially to diminished TS
sensitivity to inhibition and drug resistance. Further studies are
needed to test the potential influence of other posttranslational
modifications and their combinations.

Abbreviations

FdUrd 5-Fluoro-dUrd
FdUMP 5-Fluoro-dUMP
TS Thymidylate synthase
meTHF N5,10-Methylenetetrahydrofolate
MOAC Metal oxide/hydroxide affinity chromatography
m-pTS Phosphorylated, MOAC-separated from the

corresponding non-phosphorylated TS fraction
of mouse enzyme recombinant protein

m-TS Non-phosphorylated, MOAC-separated from the
corresponding phosphorylated TS fraction of
mouse enzyme recombinant protein

pHis Phosphorylated His residue.
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