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Abstract: Toxin–antitoxin systems constitute a native survival strategy of pathogenic bacteria and
thus are potential targets of antibiotic drugs. Here, we target the Zeta–Epsilon toxin–antitoxin
system, which is responsible for the stable maintenance of certain multiresistance plasmids in
Gram-positive bacteria. Peptide ligands were designed on the basis of the ε2ζ2 complex. Three α
helices of Zeta forming the protein–protein interaction (PPI) site were selected and peptides were
designed conserving the residues interacting with Epsilon antitoxin while substituting residues
binding intramolecularly to other parts of Zeta. Designed peptides were synthesized with an
N-terminal fluoresceinyl-carboxy-residue for binding assays and provided active ligands, which were
used to define the hot spots of the ε2ζ2 complex. Further shortening and modification of the binding
peptides provided ligands with affinities <100 nM, allowing us to determine the most relevant PPIs
and implement a robust competition binding assay.

Keywords: protein–protein interactions; toxin–antitoxin system; drug discovery; bacterial resistance;
fluorescence polarization

1. Introduction

Antibiotic-resistant strains of pathogenic bacteria have emerged as a worldwide health problem
over the past few decades [1–6]. As a result, infectious diseases affecting the human population,
which are difficult to treat with currently available medications, have become a serious challenge for
medicine [7,8]. The situation is worsened by the fact that the development of novel antimicrobial
agents has dramatically declined over the past 30 years [9]. Thus, the ability of pathogenic species to
respond quickly and effectively to the current treatments creates an urgent medical need to discover
new methods of pharmacological intervention based on newly identified cellular targets [8,10–12].

Bacterial toxin–antitoxin (TA) systems constitute one class of potential new drug targets against
pathogenic bacteria. These systems are frequently found in bacteria and are notably abundant in
pathogenic strains [13–15]. The TA systems are genetic modules comprising two components: a stable
toxic molecule and unstable cognate inhibitory element that prevents the lethal action of the toxin.
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In normally growing cells, no evident effects of the TA systems are observed. However, different
stress conditions lead to the activation of TA systems: non-neutralized toxin inhibits cell growth by
targeting essential cellular processes [16,17]. Therefore, several methods of artificially activating the
toxin, including the targeting of toxin–antitoxin interactions, have been considered for the potential
exploitation of TA systems as an antibacterial strategy [18–21]. Attempts to find a molecule specifically
abolishing TA interactions have been undertaken in the last decade. In 2010, Agarwal and co-workers
showed that short peptides can disrupt interactions between toxin–antitoxin proteins [22]. They
tested the efficacy of several peptides designed to mimic the two most likely interaction sites of
the PemI–PemK proteins of the TA system from Bacillus anthracis and 10%–35% inhibition of the
PemI–PemK interaction was accomplished with 2 µM of an octapeptide ligand. In the study of
Agarwal et al., disruption of the PemI-PemK TA system was obtained by peptide ligands targeting the
toxin protein (PemK). In 2015 Lee and co-workers designed peptides that mimic the helical regions of
the VapB30 or VapC30 (TA system from Mycobacterium tuberculosis) in the heterodimer interface of the
VapBC30 complex, capable of disrupting the interactions within the VapBC30 complex in vitro [23].
Also in 2010 Lioy and co-workers published screening results of several libraries of mixed artificial
peptides as potential inhibitors of the interactions between Epsilon and Zeta proteins. The study,
however, did not provide conclusive results. When the number of peptides of the sub-libraries
rendering the positive hits was reduced, the decrease in the BRET signal (proof of disruption of the
Epsilon–Zeta interaction) was lost [24].

In this study, we will focus on the toxin–antitoxin system comprising the toxin Zeta (ζ) and
the antitoxin Epsilon (ε). The εζ-operon, originally discovered on the pSM19035 plasmid from the
clinical Streptococcus pyogenes strain [25], is one of the best described TA systems in Gram-positive
bacteria [26,27]. It is frequently found on plasmids [28–31] or on the chromosomes of human
pathogens [32–34]. The presence of this TA system in the plasmid ensures its stable maintenance in
bacterial populations. However, as genes that are responsible for macrolide resistance are present on
the same plasmid, the εζ system ensures bacterial resistance to commonly used antibiotics as well.

The Zeta toxin is a protein with kinase activity that directly affects cell wall synthesis by
phosphorylating the peptidoglycan precursor (uridinediphosphate-N-acetylglucosamine, UNAG),
consequently leading to cell lysis [35]. The Epsilon and Zeta proteins form the heterotetramer ε2ζ2,
in which the toxic activity of Zeta is neutralized by direct contact with the Epsilon antitoxin. The
molecular basis for the function of the εζ system is the difference in the half-life times of these
two proteins [36]. While the Zeta toxin is stable, the free Epsilon antitoxin is a labile protein that is
vulnerable to degradation by cellular proteases [37]. Under normal cellular conditions, excess antitoxin
stabilizes the TA complex, thereby neutralizing the Zeta toxin. However, when the cellular level of
the antitoxin decreases (e.g., upon loss of the plasmid), the toxin protein can no longer be neutralized
and then acts on its specific cellular target, leading to bacterial cell death. Considering this functional
scenario, we reasoned that disruption of protein–protein interactions in the ε2ζ2 complex could cause
the release of Zeta toxin, thereby killing bacterial cells.

While protein–protein interactions (PPIs) play a key role in the organization of a plethora
of biological processes, including conditions of pathological disease states, the disruption of
protein–protein binding by small molecules is a considerable challenge for medicinal chemistry [38–40].
Nevertheless, rapid progress in this field has been observed in recent years, and several drugs targeting
PPIs have been successfully introduced into the market [41–43], and more drug-like candidates that
target PPIs are currently in clinical trials [44]. A detailed structural knowledge of complexes of
interacting protein partners is very helpful for better understanding the functions of PPIs and for the
development of PPI inhibitors (PPIIs) [45–47]. Based on structural data of protein–protein interactions,
peptidic and non-peptidic inhibitors of proline-recognition domains, PDZ domains, SH2 domains, and
helix–helix interactions have been developed [48–50].

Peptides derived from native protein–protein interaction sites are valuable tools to probe
protein–protein interfaces for the identification of “hot-spot” areas and have proven to be excellent
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starting points for the design of efficient PPI modulators [50–52]. The hot-spot regions are formed by
residues localized on protein–protein interfaces that have a major impact on complex stabilization and
confer most of the free energy of bindings [51–53]. Therefore, hot-spot regions are preferred target sites
for protein–protein interaction inhibitors.

As the ε2ζ2 complex structure has been solved by crystallography, a rational starting point for the
development of molecules disrupting formation of the complex was available [54].

In this article, we describe the design and development of peptides that are potent ligands of
the Epsilon protein. Three α-helices of the Zeta protein that form the binding interface with Epsilon
have been selected and were used as the starting point for the development of Epsilon-Zeta interaction
disruptors. Potential Zeta-derived peptide ligands were labeled with a fluorophore, and binding of the
peptides to Epsilon was determined by a fluorescence polarization assay [55]. Peptide mapping of the
interaction surfaces of the ε2ζ2 complex was expected to define the hot-spots of the binding interface,
i.e., amino acids that are essential for binding and that significantly contribute to the binding energy
of the complex. Finally, short peptide ligands were identified, and a competitive binding assay was
established, allowing for the detection of non-fluorescent binders of the hot-spot area of the complex in
high throughput formats. This assay will enable the discovery of non-peptidic, drug-like molecules that
are able to bind to the Epsilon protein and that could act as inhibitors of ε2ζ2 complex formation. Thus,
we expect to find new candidates for resistance-free antibiotics, with a novel mechanism of action.

2. Results and Discussion

2.1. The Design of Peptides as Potential Disruptors of the Epsilon(ε)–Zeta(ζ) Interaction

To propose peptides that could effectively disrupt interactions between the Zeta and Epsilon
subunits, we used a template-based modeling approach. As a starting point, a crystal structure of
the ε2ζ2 TA complex (PDBid: 1GVN) derived from the plasmid pSM19035 of S. pyogenes [54] was
analyzed. The biologically inactive complex forms a stable tetramer (ε2ζ2)—where a central part
consists of a homodimer of two Epsilon antitoxin subunits that is sandwiched by two Zeta toxin
subunits (Figure 1) [26,54].
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Figure 1. (a) The crystal structure of the Epsilon–Zeta tetramer complex ε2ζ2 (PDBid: 1GVN). The
structure is colored by chain: blue/light blue for ε1 and ε2 and green/light green for ζ1 and ζ2. (b) The
structure of the ε2ζ2 hetero-dimer complex, with a schematic representation of the fragments selected
for further evaluation (peptide I—red, peptide II—yellow, peptide III—magenta).
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Crucial interactions that are responsible for complex formation and for blocking the toxic activity
of Zeta are located at the interface of the Epsilon–Zeta heterodimer, mainly between α-helix A of
Epsilon and the corresponding binding groove on the surface of the Zeta subunit. Thus, disruption
of the interaction between the Zeta and Epsilon subunits should be sufficient to induce cellular
toxicity. The three α-helices of the Zeta protein that constitute the binding interface with Epsilon in the
tetrameric complex were selected as potential peptide ligands, I (AA8-25, red), II (AA43-58, yellow),
and III (AA149-165) (Figures 1 and 2; Table 1), and were further evaluated.
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Figure 2. Template-based modelling of potential disruptors of the Epsilon-Zeta interaction. (a) Distance
range map of the inter-molecular contacts between Epsilon–Zeta interface residues: red, yellow, green,
and blue indicate contacts within 7 Å, 10 Å, 13 Å and 16 Å, respectively (generated by the COCOMAPS
server). (b) The amino acid sequence of the Zeta protein, with a description of secondary structure
elements and indicators of the Zeta regions.

The Zeta fragment comprising residues 67–75 (0), which is also responsible for formation of the
Epsilon–Zeta interface architecture, was rationally omitted in further experimental studies, due to the
fact that the corresponding surface buried on the Epsilon monomer has a very narrow character and
is unsuitable for targeting by drug-like molecules in a future step of the drug development process.
In order to exclude the aggregation of native Zeta-based peptides with Zeta protein, which could
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interfere with its folding process and/or block its toxicity [56,57], we introduced mutations into the
designed peptides. All amino acids in the three helical peptides interacting with Epsilon were left
unchanged, whereas in the helix interfaces interacting with other parts of the Zeta protein, two amino
acids were modified in the native sequence (Table 1). Finally, to more precisely map the hot-spot
areas of the Epsilon–Zeta interface, the proposed peptides were synthesized in three different lengths
(Table 2).

Table 1. Description of the native amino acid sequences of Zeta protein and their corresponding
unnatural modification considered in this study. The amino acids that have been changed in the
original amino acid sequence are in bold.

Peptide Abbreviations Peptide Sequences

I (native) 8-TDKQFENRLNDNLEELIQ-25
Ia 18-LNDNHEELIQ-25
Ib 12-FENRLNDNHEELIQ-25
Ic 8-TRKQFENRLNDNHEELIQ-25

II (native) 43-GSGKTSLRSAIFEETQ-58
IIa 49-LRSAEFEETQ-58
IIb 45-GDTSLRSAEFEETQ-58
IIc 43-GSGDTSLRSAEFEETQ-58

III (native) 149-INSYLGTIERYETMYADD-166
IIIa 157-ERYKTMYADD-166
IIIb 153-HGTIERYKTMYADD-166
IIIc 149-INSYHGTIERYKTMYADD-166

Table 2. Amino acid sequence of the proposed fluorescein-labeled peptides Fluo-I-III, their acetylated
homologs, Ac-I-III, and binding constant determination for the fluorescein-labeled.

Entry Peptide Peptide Sequence tR a (min)
Mass d Binding Constant Values

Calculated Found KD (nM) e ∆mP

1 Fluo-Ia Fluo-LNDNHEELIQ 19.7 b 1582.6332 1582.6327 74.5 ˘ 10.5 127
2 Fluo-Ib Fluo-FENRLNDNHEELIQ 17.4 b 2128.8883 2128.8901 89.5 ˘ 13.9 105
3 Fluo-Ic Fluo-TRKQFENRLNDNHEELIQ 17.2 b 2642.1906 2642.1822 No binding -
4 Fluo-IIa Fluo-LRSAEFEETQ 20.1 b 1567.6223 1567.6235 169.5 ˘ 16.0 61
5 Fluo-IIb Fluo-GDTSLRSAEFEETQ 18.1 b 1927.7505 1927.7498 99.5 ˘ 12.2 110
6 Fluo-IIc Fluo-GSGDTSLRSAEFEETQ 18.3 b 2071.8040 2071.8009 134.0 ˘ 15.0 106
7 Fluo-IIIa Fluo-ERYKTMYADD 17.4 b 1649.6213 1650.2056 No binding -
8 Fluo-IIIb Fluo-HGTIERYKTMYADD 16.2 b 2057.8334 2057.0183 No binding -
9 Fluo-IIIc Fluo-INSYHGTIERYKTMYADD 18.4 b 2536.0398 2536.1358 No binding -

10 Ac-Ia Ac-LNDNHEELIQ 14.3 c 1266.5961 1266.5998 n/a n/a
11 Ac-Ib Ac-FENRLNDNHEELIQ 14.0 c 1812.8511 1812.8543 n/a n/a
12 Ac-Ic Ac-TRKQFENRLNDNHEELIQ 13.2 c 2325.1682 2325.1653 n/a n/a
13 Ac-IIa Ac-LRSAEFEETQ 15.8 c 1251.5852 1251.5811 n/a n/a
14 Ac-IIb Ac-GDTSLRSAEFEETQ 13.8 c 1611.7133 1611.7113 n/a n/a
15 Ac-IIc Ac-GSGDTSLRSAEFEETQ 13.5 c 1755.7668 1755.7641 n/a n/a
16 Ac-IIIa Ac-ERYKTMYADD 13.4 c 1333.5841 1333.5891 n/a n/a
17 Fluo-Id Fluo- LNANHEELIQ 18.5 c 1538.6434 1538.6474 No binding -
18 Fluo-Ie Fluo-DNLNHEELIQ 18.3 c 1582.6332 1582.6327 175.0 ˘ 8.90 115
19 Fluo-If Fluo-NDNLEE 17.5 c 1091.3476 1091.3465 74.4 ˘ 8.05 199
20 Fluo-Ig Fluo-DNLEE 17.5 c 976.2974 976.2969 71.6 ˘ 9.15 225

a HPLC purification using Agilent Technologies (Santa Clara, CA, USA) 1260 Infinity equipment, a reverse
phase column (Nucleodur, C-18 HTec, 5 µm, Macherey-Nagel, Düren, Germany), and a solvent mixture of water
and acetonitrile containing 0.01% TFA. The purity % (UV, λ = 210 nm), for all peptides was 100%; b Purification
was performed starting from 25% B to 95% B over 40 min at a flow rate of 30 mL¨min´1 with a linear gradient;
c Purification was performed starting from 5% B to 95% B over 40 min at a flow rate of 30 mL¨min´1 with a linear
gradient; d nLC-MS/MS ESI (electrospray ionization) interface (Advion). Fluo: N-5-(6)-fluoresceinyl-carboxy-;
Ac: acetyl group; e Values represent three independent experiments, including three replicates (n = 3 ˘ SD);
n/a: not applicable.



Toxins 2016, 8, 222 6 of 16

2.2. Synthesis of Fluorescein- and Acetyl-Labeled Peptides

The synthesis of in silico proposed peptides was performed as described in the Section 4.
Briefly, synthesis was performed by using solid phase peptide methodology, using 2-chloro-trityl
resin as a polymer support. For all peptides, amino acid coupling was performed using the
corresponding Fmoc-protected amino acid. Each peptide was modified by the introduction of an acetyl
or 5-(6)-fluoresceinyl-carboxy group at the N-terminus, generating a focused library of fluorescent
and non-fluorescent probes [49,50] (Table 2). Their ability to interact with Epsilon was evaluated
experimentally by a fluorescence polarization (FP) assay. The peptides Fluo-III(a–c) and Ac-III(a–c)
were obtained with oxidized methionine residues containing a sulfoxide in the side chain. Even
when the synthesis was conducted under a nitrogen atmosphere and when triisopropylsilane (TIS)
was added to various modified cleavage mixtures [58–62], quantitative formation of the sulfoxide
derivatives was observed. After HPLC purification and lyophilization, the molecular weights were
confirmed by mass spectrometry using the nLC-MS/MS ESI (electrospray ionization) interface (Table 2).
The purity of all fluorescent peptides was over 95%, based on their HPLC results.

2.3. Characterization of Epsilon–Peptide Interactions by Fluorescence Polarization

Binding affinities of the fluorescein-labeled peptides Fluo-(I–III) with Epsilon protein were
determined in a fluorescence polarization (FP) assay [40,63–65]. For the purpose, 10 nM solutions of
each fluorescein-labeled peptide containing different concentrations of Epsilon (from 5 nM to 7.5 µM)
were irradiated with polarized light at the excitation wavelength of 470 nm and the polarization of the
emitted light was recorded in mP at 520 nm (see Section 4). Binding affinities of all peptide ligands
were determined by plotting the observed polarization values as a function of the logarithm of the
protein concentration as EC50 values (Figure 3). As in all experiments, the fluorescence intensities of
the bound ligand (IB) were equal to those of the free ligand in solution (IF), i.e., the ratio Q = IB/IF

was close to 1 (Figure S1, Supplementary Materials); the protein concentration at the half-maximal
polarization value (EC50) corresponds directly to the binding affinity KD value of the fluorescent
peptide ligand (Table 2). Fluorescent peptides Fluo-Ia, b and Fluo-II(a–c) showed binding affinities
for Epsilon in the nanomolar range, whereas no saturation of the polarization with increasing protein
concentrations was observed for peptides Fluo-III(a–c), derived from the α-helix G of Zeta, indicating
that the latter peptides have no affinity for the Epsilon protein.

N-terminally fluorescein-labeled peptides Fluo-I(a–c) derived from the α-helix A (red in
Figures 1 and 2) showed higher binding affinities (i.e., lower KD values) with shortening of the amino
acid sequence. The decapeptide Fluo-Ia was most effective in binding to the Epsilon protein, with
a KD of 74.5 nM, whereas the 18mer-peptide Fluo-Ic lacked affinity toward the Epsilon protein. The
peptides Fluo-II(a–c) displayed affinities in the KD range between 99.0 and 170 nM that did not depend
strongly on the peptide length with the 14-mer Fluo-IIb as the best in the series. The fluorescent
peptide Fluo-Ia was selected for further development and optimization of the FP assay based on the
following considerations: (i) the high binding affinity (KD 74.5 nM), which allows the detection limit
of the assay to be increased; and (ii) the large dynamic range, which will provide a better signal to
noise ratio (∆mP = 127). With this peptide, the influence of either the salt (NaCl) concentration or the
DMSO proportion, a commonly solvents used in high-throughput screening, on the binding constant
was studied.

The obtained results showed that the binding affinity of the fluorescent peptide Fluo-Ia is affected
by the salt concentration, modifying either the dynamic range or the shape of the binding curve
(Figure S2, Supplementary Materials). In general, increasing the salt concentration (up to 100 mM)
drastically reduces the interaction of Fluo-Ia with the Epsilon, not considering the saturation curve.
In presence of 10 mM NaCl, the binding constant is 1.4 times less than in the absence of NaCl (105 vs.
74 nM). The influence of the DMSO proportion (up to 2% DMSO) on the binding constant was studied.
In this case, the binding constant, the dynamic range and the shape of the binding curve were not
altered, indicating that the FP assay is stable up to 2% DMSO (Figure S2, Supplementary Materials).
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Figure 3. Dose-response curve for the binding of Fluo-(I–II) to the Epsilon protein. The fluorescent-
labeled peptides Fluo-(I–II) at a concentration of 10 nM were treated with increasing concentrations of
Epsilon (from 0.05 nM to 2.5 µM) in 10 mM HEPES assay buffer, pH 7.5, with 0.1% Tween-20. Values
are plotted as the means ˘ standard deviation (n = 3) from three independent experiments. (a) Peptide
Fluo-Ia ( ); Fluo-Ib (N); Fluo-Ic (�); (b) Fluo-IIa ( ); Fluo-IIb (�); Fluo-IIc (N); (c) Fluo-If ( ) and Fluo-Ig
(�). Nonspecific binding of fluorescein in graphs a, b, c is plotted as black (�), (t), (N) respectively.

The potential binding mode of peptide Ia was proposed by structure-based modeling. For this
purpose, a binding model of Ia was derived from the crystal structure (Figure 4), suggesting that
binding between the peptide and the Epsilon protein mainly occurred through hydrogen bonds and
electrostatic interactions between the negatively charged residues of the peptide Ia (D18 and E22)
and the complementary, positively charged residues on the surface of the Epsilon protein, namely
K36, K51, K54, and R55. The nitrogen atom of Epsilon K51 is predicted to be located 2.8 and 3.8 Å
away from the O1 and O2 atoms, respectively, of the D18-carboxylate in Ia. The O1 and O2 atoms
of D18 in Ia could also form additional hydrogen bonds with the side chain of Epsilon K36 and the
hydroxyl group of Y22, respectively, because the distance between donor and acceptor in both cases is
approximately 2.8 Å. In the case of E22 from Ia, the atoms O1 and O2 of the carboxylate group are close
to the Epsilon residues K51 (2.8 Å) and K54 (3.0 Å), respectively. Binding of Ia and Epsilon appears
to be stabilized further by the interactions between E22 and D25 of Ia and K36 and R55 of Epsilon,
respectively. Moreover, mutagenic studies have shown that the mutation D18A in the α-helix A of
Zeta abolished the interaction between the Epsilon–Zeta pair [24]. In order to investigate the relevance
of D18 for the interaction with Epsilon on the peptide level the D18A mutation was introduced into the
Fluo-Ia furnishing peptide Fluo-Id. In addition, the aspartate D18 was exchanged with L20 obtaining
Fluo-Ie (D18L, L20D with respect to Fluo-Ia). In the D18A mutation of Fluo-Ia completely abolished the
binding between Fluo-Id and Epsilon (Table 2/Figure S3). In the case of the double mutation Fluo-Ie,
the binding affinity in comparison to Fluo-Ia was reduced more than twofold (KD 175 nM vs. 74.5 nM,
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see Table 2 and Figure S3). Shifting the aspartate residue from D18 to D20 by exchange with L20 did not
abolish binding of Fluo-If to Epsilon completely and the remaining KD value suggests that the aspartate
in position D20 can still interact with the cationic cluster of the Epsilon protein. Thus, the two mutants
of peptide Ia, Fluo-Id, and Fluo-Ie both confirmed the importance of the D18 amino acid residue for
binding. Finally, the significance of the Zeta hot spot D18-E22 for complex formation with Epsilon
was challenged by preparing the even further shortened hexa- and penta-peptides Fluo-If and Fluo-Ig,
retaining the (N)DNLEE sequence but omitting the C-terminal amino acids. Both peptides Fluo-If
and Fluo-Ig maintained the nanomolar affinities (74.4 ˘ 8.05 nM and 71.6 ˘ 9.15 nM, respectively)
(Table 2/Figure 3) and thus represent the short binding motif of the Zeta-Epsilon interaction. It is
worth mentioning, that our best obtained peptides show an affinity one order of magnitude higher
than observed in the Epsilon–Zeta complex (KD = 1 µM) [26].
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Figure 4. Interaction between Epsilon and the most active peptide Ia. The picture visualizes
the electrostatic interactions between Epsilon and Ia—the distances between most crucial atoms
(red—oxygen, blue—nitrogen) have been shown in the close-view picture by dashed lines. The Epsilon
and Ia has been shown as violet and green cartoon representations, respectively.

2.4. Competitive Binding Assays

The fluorescent high-affinity peptide ligands could be the basis for an especially economic and
reliable high-throughput assay, if the fluorescence polarization read-out can be used for the screening
of potential ligands that are able to bind to Epsilon in a competitive binding assay. For this purpose,
we utilized the unlabeled peptides Ac-Ia and Ac-IIb containing the same amino acid sequence as
the initial peptides but with their N-terminus modified by the introduction of an acetyl group [66].
The competitive binding assays were performed by using appropriate amounts of Epsilon protein
based on the binding affinity, expressed in terms of the KD value, for the labeled peptides Fluo-Ia and
Fluo-IIb. In both cases, the protein concentration was set to the KD value and 5-fold the KD value to
study the influence of the protein concentration on the IC50-value of every acetylated peptide. Thus,
the Epsilon protein (100 nM or 500 nM final concentration) was treated with Fluo-Ia or Fluo-IIb (10 nM
final concentration). After incubation, each mixture was treated with different concentrations of the
unlabeled peptides Ac-Ia and Ac-IIb, ranging from 0.01 to 100 µM. Figure 5 shows the competitive
binding curves for the labeled Fluo-Ia and Fluo-IIb peptides. Binding curves were fitted with a
dose-response inhibition model (log c (inhibitors) vs. response, three parameters) and provided IC50
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values of 18.6 ˘ 4.64 µM (100 nM of Epsilon) and 51.8 ˘ 7.4 µM (500 nM of Epsilon) for the peptide
Ac-Ia and 15.3 ˘ 2.5 µM (500 nM of Epsilon) for the peptide Ac-IIb, respectively. The ability to identify
active compounds (hits) from a particular high-throughput screening (HTS) assay depends largely on
the suitability or quality of the assay conditions used in the screening. In this context, the Z'-factor
provides a useful tool for comparing and evaluating the quality of the assay described in terms of four
parameters related to the mean and standard deviation of both positive and negative controls (see
Supplementary Materials and Section 4). To determine if our assay system can be used to identify
active compounds (hits) from large chemical libraries, the reliability of the 384-well Epsilon FP assays
was tested by performing Z'-factor analysis. The expected Z'-factor values for a reliable assay should
be between 0.5 and 1.0 [67], which was found for Fluo-Ia and Fluo-IIb (0.881 and 0.839, respectively)
(Figure S4, Supplementary Materials).
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Figure 5. Competitive binding of the fluorescein-labeled peptides Fluo-Ia and Fluo-IIb to the Epsilon
protein in 384-well plates. Epsilon (100 nM (�) or 500 nM ( ), final concentration) was incubated
with 10 nM (final concentration) of Fluo-Ia and different concentrations of Ac-Ia (ranging from 0.01 to
100 µM) in 10 mM HEPES assay buffer, pH 7.5, with 0.1% Tween-20. Epsilon protein (500 nM (�), final
concentration) was incubated with 10 nM (final concentration) of Fluo-IIb and different concentrations
of Ac-IIb (ranging from 0.01 to 100 µM). Fluorescence polarization was measured on a SAFIRE II
(Tecan, Crailsheim, Germany) microplate reader, using an excitation wavelength of 470 nm and
emission wavelength of 525 nm. Values are plotted as the means of duplicates in three independent
experiments ˘ SD. IC50 values of 18.6 ˘ 4.64 µM (100 nM) and 51.8 ˘ 7.4 µM (500 nM) were obtained
for the peptides Fluo-Ia and Ac-Ia, respectively.

3. Conclusions

In summary, the presented results have revealed a strong peptide–protein interaction within
the ε2ζ2 complex that holds promise for the development of small molecule ligands able to disrupt
the Epsilon-Zeta TA system. The fluorescent peptide discovered in this work enabled the direct
determination of protein binding by fluorescence anisotropy measurements and bound to Epsilon
with nanomolar affinity. Applying the fluorescent peptidic ligands in competitive binding assays
with non-fluorescent ligands showed that this could be an excellent tool for the rapid and efficient
screening of chemical libraries of drug-like molecules. Thereby, it will enable us to find inhibitors of
protein–protein interactions of the Epsilon–Zeta TA system that could be effective antibacterial agents.
In particular, genes predicted to encode TA systems are highly abundant in free-living bacteria but are
absent from the genomes of host-associated bacteria as well as from human cells [68].
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4. Materials and Methods

4.1. Peptide Design

Peptide ligands were designed by in silico analysis of a tetramer ε2ζ2 complex crystal structure [54].
First, the heterodimer ε/ζ interaction interfaces have been defined according to the method
implemented in the COCOMAPS server [69,70]; the cutoff distance was set to 8 Å. The three
continuous sequence fragments of Zeta, which contain interface residues, were selected as prototypes
for the final peptides: 8-TDKQFENRLNDNLEELIQ-25 (I), 43-GSGKTSLRSAIFEETQ-58 (II), and
149-INSYLGTIERYETMYADD-165 (III). However, another fragment, 67-DTFKQQHPN-75 (0), was
omitted in further experimental studies (for more details, see Section 2). Further modifications of
the selected sequences have been proposed to disallow the potential effect of native Zeta sequences
interfering with correct Zeta protein folding. Thus, following mutations have been introduced: D9R
and L20H for peptide I, K46D and I53E for peptide II, and L153H and E160K for peptide III. All
structural analyses and figure visualizations were conducted by using PyMOL [71] (Version 1.7,
Schrödinger, LLC, New York, NY, USA).

4.2. Reagents and Resins

Reagents and resins were purchased from Sigma-Aldrich (Saint Louis, MO, USA), Acros Organics
(Geel, Belgium), and Novabiochem (Darmstadt, Germany) and were used without further purification,
unless otherwise stated. The Fmoc-protected amino acids used in this work were Fmoc-Ile-OH,
Fmoc-Leu-OH, Fmoc-Glu(OtBu)-OH, Fmoc-His(Trt)-OH, Fmoc-Asn(Trt)-OH, Fmoc-Asp(OtBu)-OH,
Fmoc-Arg(Pbf)-OH, Fmoc-Phe-OH, Fmoc-Gln(Trt)-OH, Fmoc-Lys(Boc)-OH, and Fmoc-Thr(tBu)-OH.

4.3. Synthesis

Fluorescein-labeled peptides were synthesized via Fmoc-mediated solid phase synthesis on
2-chloro-2-trytyl chloride resin (200 mg, f = 1.18 mmol¨ g´1). First, the resin was placed in a
10-mL polypropylene syringe fitted with a polyethylene filter disk and was treated with the
corresponding Fmoc-protected amino acid (Fmoc-Gln(trt)-OH or Fmoc-Asp(OtBu)-OH; 4 eq.) and
with diisopropylethylamine (DIPEA, 4 eq.) in DMF for 15 min at room temperature. Subsequently,
an additional portion of DIPEA (8 eq.) was added, and the reaction mixture was stirred for 18 h
at room temperature. The resin was filtered off, washed three times with DMF, CH2Cl2, and Et2O,
and dried under a high vacuum. When the reaction was finished, the loading was calculated by UV
spectroscopy (f = 1.18 mmol¨ g´1) (Jasco V-500 UV/Vis, Oklahoma City, OK, USA). The remaining
coupling positions were capped with MeOH/DMF (0.5:1, v/v). The Fmoc group was removed
by treatment with 20% piperidine in DMF twice, for 10 min. The amino acids were coupled by
the addition of 4 eq. of Fmoc-protected amino acids, 4 eq. of diisopropylcarbodiimide (DIC), and
4 eq. of hydroxybenzotriazole (HOBt) in DMF for 2 h at room temperature. Fmoc deblocking and
coupling steps were repeated for additional amino acid couplings. The completion of all couplings
was confirmed with a negative ninhydrin test result by using Kaiser’s test [72]. After 10 amino acid
couplings, the resin was split into three portions; two of the portions were used for the synthesis
of modified peptides with 10 amino acid residues, and the other portion was used for forward
synthesis. After the last amino acid coupling for each sequence, the Fmoc protective group was
removed with 20% piperidine in DMF, and the amino terminus was acetylated or modified by the
introduction of 5-(6)-carboxyfluorescein. For the acetylated peptide, the resin was treated twice with
4 eq. of acetic anhydride (Ac2O) for 2 h at room temperature, until the ninhydrin test was negative.
Treatment of the resin with 4 eq. of 5-(6)-carboxyfluorescein, 4 eq. of HOBt, and 4 eq. of DIC in
DMF for 6 h at room temperature (until the ninhydrin test was negative) afforded the corresponding
fluorescein-labeled peptides. Finally, the peptides were cleaved from the resin, and the protective
amino acid side chains were removed using a cleavage cocktail of TFA/TIS/H2O/EDT (94:1:2.5:2.5)
or TFA/TMBS/TIS/EDT (92:3.5:1:3.5) for 3 h at room temperature. The filtrates were collected, and



Toxins 2016, 8, 222 11 of 16

the solvents were removed under an N2 current. Each product was precipitated by the addition of
cleavage solution to cold diethyl ether or methyl-t-butyl ether (4 ˝C). After centrifugation (4000 min´1,
3 min) the upper phase was removed from the vial, and the peptides were washed with diethyl
ether or methyl-t-butyl ether for 5 min in an ultrasonic bath. Then, the vial was centrifuged. The
remaining solid was dissolved in CH3CN/H2O (1:4, v/v) and lyophilized. After that, each peptide
was purified by reverse HPLC (Agilent Technologies 1260 Infinity equipment, Santa Clara, CA, USA)
using a reverse phase column (Nucleodur, C-18 HTec, 5 µm, Macherey-Nagel, Düren, Germany), and
a solvent mixture of water and acetonitrile containing 0.01% TFA, starting from 5% B to 95% B over
40 min, at a flow rate 30 mL¨ min´1 with a linear gradient). The final peptides were isolated as a white
or yellow solid after lyophilization, yielding between 10% and 15%. LC-MS analyses were conducted
on an Agilent 1100 system equipped with a reverse phase column (Polaris-NH2, C-8 column, 3 µm,
L ˆ ID = 100 ˆ 4.6 mm, Agilent Technologies, Santa Clara, CA, USA) operated with acetonitrile-water
mixtures containing 0.1% formic acid, a diode array detector and a single quadruple mass spectrometer
with electrospray ionization (ESI). For nLC-MS/MS analysis, the synthetic peptides were dissolved
in a solution containing 2.5% acetonitrile (ACN, HPLC grade, Carl Roth GmbH) and 0.1% formic
acid (HCOOH). The employed nLC-MS/MS system comprises an 1100 series nanoHPLC dual pump
system (Agilent Technologies, Santa Clara, CA, USA) and a LTQ-FT mass spectrometer (Thermo Fisher
Scientific, San José, CA, USA). A Nanomate ESI (electrospray ionization) interface (Advion) was used to
couple the separation and the MS techniques. For sample desalting and pre-concentration, the injected
sample was loaded on a trap column (Zorbax 300SB C18, 5 µm, 5 mm ˆ 0.3 mm) at a flow rate of
25 µL¨ min´1, using 5% ACN and 0.1% HCOOH as the mobile phase, for 5 min. Then, preconcentrated
peptides were eluted and transferred to a reverse phase nanocapillary analytical column (Zorbax 300SB
C18, 3.5 µm pore size, 150 mm ˆ 75 µm) by reversing the flow at 350 nL¨ min´1. Peptide elution was
performed applying a two-step gradient: 10%–50% B linear in 33 min, 50%–90% B linear in 3 min,
holding the system at 90% B for 4 min. Mobile phases used were: A, 5% ACN, 0.1% HCOOH, and B,
99.9% ACN, 0.1% HCOOH. During the MS analysis, the instrumental parameters were set as follows:
spray voltage 1.7 kV (positive mode); capillary temperature 200 ˝C. High resolution full scan spectra
were acquired in the FT analyzer for exact mass identification (m/z range 350–2000, resolution 100,000).
Alternatively, collision induced dissociation (CID) MS/MS fragmentations (35% normalized collision
energy, 4 Da isolation window) were detected in the ion trap to confirm the identity.

4.4. Protein Purification

The N-terminally hexa-histidine-tagged His6-Epsilon protein was overproduced in E. coli BL21
(DE3) and purified under native conditions, as previously described [37]. Purified protein eluted from
a Ni-TED column was dialyzed against the storage buffer (25 mM Tris pH 8, 100 mM KCl, 5 mM
DTT, 1 mM MgCl2, 50% glycerol) and then stored at ´20 ˝C. Before being used in FP assays, the
His6-Epsilon protein was dialyzed against the storage buffer without glycerol. After dialysis, the
His6-Epsilon protein sample was centrifuged at 4 ˝C at 7000ˆ g for 3 min to remove the insoluble
fraction, concentrated using the AmiconUltra-4 10K filter device (Millipore, Billerica, MA, USA) and
stored at 4 ˝C. The purity of the protein was verified by SDS-PAGE with Coomassie blue staining. The
protein concentration was determined by comparing the intensity of the protein bands with that of the
bovine serum albumin standard using Multi Gauge V3.0 software (Fujifilm, Tokyo, Japan). The quality
and identity of the protein was also determined by Matrix-Assisted Laser Desorption/Ionization Mass
Spectrometry (MALDI)-TOF, using sinapic acid as a matrix (Figure S5, Supplementary Materials).

4.5. Fluorescence Polarization Assay

For fluorescence polarization measurements, peptides were dissolved in DMSO at 10 mM and
diluted in 10 mM HEPES (pH 7.5) containing 0.1% Tween-20. The assay was conducted on untreated
black 384-well microtiter plates (low volume, non-binding surface, round bottom, non-sterile black
polystyrene, Corning B.V. Life Sciences, Nr. 3676, Kennebunk, ME, USA) in a final volume of 10 µL,
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using 10 mM HEPES (pH 7.5) with 0.1% Tween-20 as a buffer. The final DMSO proportion in the assay
was less than 0.1%. The measurements were performed on a SAFIRE II (Tecan) microplate reader, using
an excitation wavelength of 470 nm and emission wavelength of 525 nm. The final assay mixtures
contained 5 µL fluorescein-labeled peptide (furnishing a final assay concentration of 10 nM), and 5 µL
of increasing amounts of Epsilon protein (final concentrations ranging from 0.05 nM to 5 µM). The
negative controls comprised 5 µL fluorescein-labeled peptide (maintaining a final assay concentration
of 10 nM) and 5 µL 10 mM HEPES buffer (pH 7.5) containing 0.1% Tween-20. To avoid protein
aggregation, Tween-20 (0.1% final concentration) was used as a detergent in all experiments. After
adding the fluorescent peptide, the plates were centrifuged (2000 min´1, 3 min) and shaken briefly
(2000 rpm for 10 min at room temperature), and polarization of the emitted fluorescence was directly
recorded. In every case, the well containing only the fluorescein-labeled peptide was subtracted from
the assay well as background. The polarization values (mP) were plotted as a function of the logarithm
of the protein concentration. Binding curves were fitted by using GraphPad Prism software (version 4
for Windows, GraphPad, San Diego, CA, USA) employing a sigmoidal dose-response model (4 PL),
and KD values in the nanomolar range were obtained. All of the experiments were carried out in
duplicate in three independent experiments, and the results are expressed as the mean ˘ standard
deviation (SD).

4.6. Competitive Binding Assays

For the competitive binding assays, unlabeled peptides containing the same amino acid sequence
as the previous one but with the N-terminal end modified by the introduction of acetyl group were
used. In this assay, the final Epsilon protein concentration was set at the KD concentration defined for
each peptide. The assay was conducted on untreated black 384-well microtiter plates (low volume,
non-binding surface, round bottom, non-sterile black polystyrene, Corning B.V. Life Sciences, Nr. 3676,
Kennebunk, ME, USA) in a final volume of 10 µL, using 10 mM HEPES (pH 7.5) with 0.1% Tween-20
as a buffer. The final DMSO proportion in the assay was less than 1%. The measurements were
performed on a SAFIRE II microplate reader (Tecan), using an excitation wavelength of 470 nm
and emission wavelength of 525 nm. The final assay mixtures comprised 1 µL fluorescein-labeled
peptide (maintaining a final assay concentration of 10 nM), and 5 µL of the corresponding Epsilon
concentration and 4 µL of a different concentration of unlabeled peptide ranging from 0.01 to 100 µM.
To avoid protein aggregation, Tween-20 (0.1% final concentration) was used as a detergent in all
experiments. After addition of the fluorescent peptide and the protein, the plates were centrifuged
(2000 min´1, 3 min) and shaken briefly (2000 rpm for 10 min at room temperature), and the mixture
was incubated for 10 min at room temperature. Then, 4 µL of the acetyl-labeled peptide was added
(final concentration ranging from 0.01 µM to 100 µM). The mixtures were centrifuged (2000 min´1,
3 min) and shaken briefly (2000 rpm for 10 min at room temperature), and the polarization of the
emitted fluorescence was directly recorded. In every case, the negative controls formed by a mixture
of the fluorescein-labeled peptide plus acetyl-labeled peptides were subtracted from the assay well as
background. The polarization values (mP) were plotted as a function of the logarithm of the protein
concentration. Binding curves were fitted by using GraphPad Prism software (version 4 for Windows
GraphPad, La Jolla, CA, USA) with a sigmoidal dose-response model (4 PL) and provided IC50 values
in the micromolar and submicromolar ranges. All of the experiments were carried out in duplicate in
three independent experiments, and the results are expressed as the mean ˘ standard deviation (SD).

4.7. Calculation of the Z1-Factor

This value is used to compare a large number of compounds from a single measurement of an
unknown sample to positive and negative control samples. For Z1-factor determination, the assay was
carried out on untreated black 384-well microtiter plates (low volume, non-binding surface, round
bottom, non-sterile black polystyrene, Corning B.V. Life Sciences, Nr. 3676, Kennebunk, ME, USA) in a
final volume of 10 µL, using10 mM HEPES (pH 7.5) with 0.1% Tween-20 as a buffer. The final assay
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mixtures were composed as follows: (a) in a bound state (positive control), by using a mixture of 5 µL
fluorescein-labeled peptide (maintaining a final assay concentration of 10 nM) and 5 µL of Epsilon
protein (final concentration of 500 nM or 750 nM, depending on the fluorescein-labeled peptide); and
(b) in a free state (negative control), by using a mixture of 5 µL buffer, 5 µL fluorescein-labeled peptide
(maintaining its final assay concentration at 10 nM). After that, the plates were centrifuged (2000 min´1,
3 min) and shaken briefly (2000 rpm for 10 min at room temperature), and polarization of the emitted
fluorescence was directly recorded at an emission wavelength of 525 nm. The mean and standard
deviation from the bound and free states were calculated to subsequently determine the Z1 value using
Equation (1):

Z1 ´ factor “ 1 ´

`

σp ` σn
˘

´

µp ´ µn

¯ , (1)

where the Z1-factor is defined in terms of four parameters: the means and standard deviations of both
the positive (p) and negative (n) controls (µp, σp, µn, σn).

Supplementary Materials: The following are available online at www.mdpi.com/2072-6651/8/7/222/s1.
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