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ABSTRACT
Protein phosphatases 2C (PP2Cs) are important regulators of plant responses to abiotic stress. It is
established that clade A PP2Cs inhibit ABA-activated SNF1-related protein kinases 2 (SnRK2s). Our recently
published results show that ABI1, a member of clade A of PP2C is also a negative regulator of SnRK2.4, a
kinase not activated in response to ABA. Here, we show that another member of this clade - PP2CA,
interacts with and inhibits SnRK2.4. The salt-induced SnRK2.4/SnRK2.10 activity is higher in abi1–2 pp2ca-1
mutant than in wild type or single abi1 or pp2ca mutants, indicating that both phosphatases are inhibitors
of SnRK2.4 and are at least partially redundant. Moreover, PP2CA together with ABI1 and SnRK2.4
regulates root growth in response to salinity.
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Plants possess multiple defense mechanisms, which enable them to
cope with harsh environmental conditions. SNF1-related protein
kinases 2 (SnRK2s) are plant specific enzymes involved in ABA-
dependent plant development and in responses to environmental
stresses, mainly drought and salinity (for review see refs.1-5 and
references herein). All SnRK2s, except Arabidopsis SnRK2.9, are
activated rapidly and transiently in response to osmotic stress
(water deficit, salt stress) and some of them are also activated by
ABA treatment. Based on phylogenetic analysis SnRK2s are classi-
fied into 3 groups. The classification correlates with their response
to exogenously applied ABA; group 1 consists of kinases non-acti-
vated by ABA, group 2 - kinases non-activated or weakly activated
by ABA (depending on the plant species), and group 3 - strongly
activated by this hormone.6,7 The activity of SnRK2s is dependent
on phosphorylation of specific Ser/Thr residues within their activa-
tion loops.7-11 It is well established that phosphoprotein phospha-
tases type-2C (PP2C) belonging to clade A are negative regulators
of ABA-activated SnRK2s.12,13 In control conditions, when ABA
level in plant cells is low, the phosphatases interact with ABA-acti-
vated SnRK2s blocking their activity. With the rise of the level of
ABA (e.g., during seed maturation or in response to stress) ABA
receptors - RCAR/PYR/PYL (RCAR, Regulatory Component of
ABA Receptor/PYR1, Pyrabactin Resistance 1/PYL, PYR1-like) –
bind the hormone, which results in interaction with clade A PP2Cs
and their inhibition, allowing ABA-dependent SnRK2 activa-
tion.14-19 This mechanism of PP2Cs inhibition is strongly depen-
dent on ABA. It was recently shown that also Type One Protein
Phosphatase 1 (TOPP1) regulates the activity of ABA-activated
SnRK2s,20 and it was proposed that regulation of TOPP1 activity
and subsequently that of SnRK2s was dependent on PYL11 and
ABA. On the other hand, the SnRK2 OST1 interacts with

regulatory PP2AA- and PP2AB’-subunits and pp2aa regulatory
subunit double mutants show reduced ABA sensitivity in stomatal
closure, although pp2a catalytic subunit double mutants show
enhanced ABA-dependent SnRK2 activation.21 Much less is
known on enzymes controlling the activity of ABA-non-activated
SnRK2, from group 1. Our recently published results showed that
at least one ABA-non-activated SnRK2, namely SnRK2.4 is inhib-
ited by ABI1, a phosphatase from clade A of the PP2C family.22

Moreover, we showed that ABI1 and SnRK2.4 regulate primary
root growth in response to salinity; the phenotype of ABI1 knock-
out mutant (abi1td) exposed to salt stress was opposite to that of
the snrk2.4mutant. Now, in order to check whether the differences
in the phenotypes of the snrk2.4 and abi1 mutants correlate with
differences in SnRK2 activity, we monitored the SnRK2.4/SnR2.10
activity in WT and abi1tdmutant seedlings exposed to NaCl. The
SnRK2.4/SnRK2.10 activity was measured by immunocomplex in
gel-kinase activity assay using MBP as substrate. We measured
simultaneously the activity of SnRK2.4 and SnRK2.10, due to the
specificity of antibodies used. Unfortunately, we did not observe
any significant differences in the kinase activity between WT and
abi1td mutant. Since most of clade A phosphatases are redundant
in respect to inhibition of ABA-activated SnRK2s, we considered
that it might also be the case for ABA-non-activated SnRK2s.
Therefore, we decided to analyze the salt stress-induced SnRK2.4/
SnRK2.10 activity in seedlings of double abi1–2 pp2ca-1 mutant
plants, with insertions in both ABI1 and PP2CA genes, and addi-
tionally in the pp2ca-1 single mutant. We have chosen pp2ca-1
mutants for our studies since our results showed that in vitro
recombinant PP2CA phosphatase dephosphorylates and inhibits
the activity of SnRK2.4 similarly to ABI1 (Fig. 1A). Measurement
of the kinase activity in seedlings exposed to salt stress showed that
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the activity of SnRK2.4/SnRK2.10 was higher by about 50% after
60 min of salt treatment in the abi1–2 pp2ca-1mutant in compari-
son to wild type Arabidopsis (Fig. 1B), whereas we did not observe
higher SnRK2.4/SnRK2.10 activity in the single pp2ca-1mutant, as
it was in the case of abi1td. The enhanced activity of the ABA-non-
activated SnRK2s in the double abi1–2 pp2ca-1 mutant indicates
that not only ABI1, but also PP2CA, might be a physiological regu-
lator of SnRK2.4.Moreover, their function is at least to some extent
redundant.

To check whether PP2CA phosphatase, similarly to ABI1, is
involved in the regulation of root growth in response to salinity
we analyzed the phenotypes of abi1td, double abi1–2 pp2ca-1,
and pp2ca-1 mutants and in parallel the snrk2.4 mutant and
wild type (as controls). We compared the primary root length
of seedlings exposed to 115 mM NaCl (and grown on control

medium), as in the experiments described in refs.22,23 The roots
of snrk2.4 seedlings grown on medium supplemented with
NaCl were significantly shorter than those of all other lines,
confirming previous results showing the positive role of
SnRK2.4 in the control of root growth in these conditions.23 In
contrast, the roots of the abi1–2 pp2ca-1 mutant were signifi-
cantly longer, by 80% comparing with WT, and by about 40%
comparing with to abi1td (Fig. 2). However, we did not observe
any differences in root growth between WT and the pp2ca-1
mutant either in control conditions or under salinity; PP2CA
function in root growth regulation was only apparent in the
double loss-of-function mutant abi1–2 pp2ca-1. The results
indicate that PP2CA together with ABI1 is involved in the reg-
ulation of root growth under salinity stress and their effect
antagonizes that of SnRK2.4. The phenotype of the abi1–2
pp2ca-1 mutant (longer primary roots in comparison to WT
seedlings grown on medium supplemented with NaCl) is most
probably caused by the release of SnRK2.4 from negative inhi-
bition by the phosphatases and its higher activity. However,
having in mind that PP2CA regulates several different signaling
pathways, we cannot exclude that some of them have also an
impact on root growth.

All these results indicate that SnRK2.4 is a cellular substrate
of both ABI1 and PP2CA. However, our previous yeast 2-
hybrid assay data did not show any interaction between
SnRK2.4 and PP2CA. Taking into consideration that the yeast
2-hybrid assay quite often gives false positive or negative
results we checked the binding between SnRK2.4 and the
PP2CA using a pull down assay. The results show clear in
vitro interaction between proteins studied (Fig. 3A). To verify
if SnRK2.4 and PP2CA interact in plant cells we analyzed
complex formation between them in Nicotiana benthamiana
leaves transiently transformed by agroinfiltration with con-
structs encoding PP2CA fused to the N-terminal fragment of
YFP (nYFP-PP2CA) and SnRK2.4 in fusion with the C-termi-
nal fragment (cYFP-SnRK2.4), or cYFP-SnRK2.6 as a positive
control, or cYFP-SnRK2.61–280, cYFP fused to a truncated
form of SnRK2.6 lacking the C-terminal part (amino acids

Figure 1. GST-PP2CA dephosphorylates and inhibits SnRK2.4 in vitro (A). Recombi-
nant SnRK2.4 (1 mg) and in parallel SnRK2.6 (1 mg) and SnRK2.8 (1 mg) as controls
were incubated with increasing amounts of recombinant GST-PP2CA for 30 min at
30�C and kinase activity was analyzed by in-gel kinase activity assay using MBP as
substrate. Dephosphorylation of SnRK2.4 after treatment with GST-PP2CA (0, 12.5,
and 25 U/sample) was monitored by immunoblotting using specific anti-P-SnRK2
antibodies recognizing a phosphorylated residue in the kinase activation loop
(Ser-158). U, amount of enzyme, which releases 1 picomole of phosphate per min-
ute; Autorad, autoradiograph; CBB, Coomassie brilliant blue. Data represent one of
3 independent experiments showing similar results. Salt-induced SnRK2.4/
SnRK2.10 activity is increased in the abi1–2 pp2ca-1 double mutant but not in the
abi1td or pp2ca-1 single mutants (B). Activity of SnRK2.4 and SnRK2.10 in extracts
was monitored simultaneously by immunocomplex kinase in gel activity assay,
using antibodies recognizing both kinases and MBP as substrate. Autoradiographs
(Autorad) represent one of 5 independent experiments.

Figure 2. ABI1 and PP2CA double mutant (abi1–2 pp2ca-1) plants display opposite
phenotypes to snrk2.4 in terms of root growth under salt stress. Five-day-old seed-
lings grown vertically on 1=2 MS media were transferred into square Petri plates
with control media or 115 mM NaCl. After seven days of growth, the increase in
the length of roots was measured and calculated as percentage of primary root
length in wild type plants. The graph presents mean values (§ SE) from 3 indepen-
dent experiments with 4 biological repeats per condition and mutant line each.
Statistical analysis was done by t-test.

e1253647-2 E. KRZYWI�NSKA ET AL.



281–362), as a negative control of the assay. The results of
bimolecular fluorescence complementation (BiFC) assays con-
firmed the in vitro binding data (Fig. 3B) and showed that
SnRK2.4 interacts with PP2CA in plant cells.

Concluding, our results show that the activity of
SnRK2.4, a member of the ABA-non-activated SnRK2s, in
plant response to salt stress is regulated by at least 2 clade
A PP2Cs (PP2CA in addition to ABI1 shown previously).
All three enzymes are involved in the regulation of root
growth in response to salinity. Since we do not observe
reduction of the kinase activity in single abi1 or pp2ca
mutants we can conclude that both phosphatases are at
least partially redundant in respect to their inhibition of
ABA-non-activated SnRK2s, similarly as it is in the case of
ABA-activated SnRK2s. At this stage the mechanism of reg-
ulation the PP2C activity in response to salinity or osmotic
stress, which would allow SnRK2s activation in an ABA-
independent manner, is not known. Studies on this issue
are vital for gaining a better understanding of ABA-inde-
pendent osmotic stress signal transduction in plants.
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