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ABSTRACT Cystathionine β-synthase (CBS) deficiency, a genetic disorder in homocysteine (Hcy) 

metabolism in humans, elevates plasma Hcy-thiolactone and leads to connective tissue abnormalities 

affecting cardiovascular and skeletal systems. However, the underlying mechanism of these 

abnormalities is not understood. Hcy-thiolactone has the ability to form isopeptide bonds with 

protein lysine residues, which generates N-homocysteinylated protein. Because lysine residues are 

involved in collagen crosslinking, N-homocysteinylation of these lysines should impair crosslinking. 

Using a Tg-I278T Cbs-/- mouse model of hyperhomocysteinamia (HHcy) that recapitulates connective 

tissue abnormalities observed in CBS-deficient patients, we show that N-Hcy-collagen was elevated in 

bone, tail, and heart of Cbs-/- mice, while pyridinoline crosslinks were significantly reduced. Plasma 

deoxypyridinoline crosslink and crosslinked carboxyterminal telopeptide of type I collagen were also 

significantly reduced in Cbs-/- mice. Lysine oxidase activity and mRNA level were not reduced by the 

Cbs-/- genotype. We also show that collagen carries S-linked Hcy bound to the thiol of N-linked Hcy. In 

vitro experiments show that Hcy-thiolactone modifies lysine residues in collagen type I alpha-1 chain. 

Residue K160, located in the non-helical N-telopeptide region and involved in pyridinoline crosslink 

formation, was also N-homocysteinylated in vivo. Taken together, our findings show that N-

homocysteinylation of collagen in Cbs-/- mice impairs its crosslinking. These findings explain at least in 

part connective tissue abnormalities observed in HHcy. 

Key Words: hyperhomocysteinemia, homocysteine thiolactone, collagen modification, pyridinoline 
crosslinks, N-telopeptide, Col1A1 
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Homocysteine (Hcy) is an intermediary metabolite that arises from the metabolism of the essential 

dietary protein amino acid methionine (Met). Hcy levels are regulated by remethylation to Met, 

catalyzed by Met synthase (with methyltetrahydrofolate cofactor provided by the MTHFR enzyme) 

and betaine-Hcy methyltransferase, as well as by transsulfuration to cysteine, the first step of which 

is catalyzed by cystathionine β-synthase (CBS) (1).  

Hcy is also metabolized to the thioester Hcy-thiolactone in an error-editing reaction in 

protein biosynthesis when Hcy is erroneously selected in place of Met by methionyl-tRNA synthetase 

(MetRS) (2). Hcy-thiolactone forms isopeptide bonds with protein lysine residues, generating N-Hcy-

protein in a process called N-homocysteinylation (3-5).  

Genetic or nutritional deficiencies in Hcy metabolism lead to hyperhomocysteinemia (HHcy) 

characterized by the accumulation in the blood and tissues of Hcy, Hcy-thiolactone and N-Hcy-

protein, which have been linked to neurological and cardiovascular diseases (6). For example, Hcy-

thiolactone is a predictor of acute myocardial infarction in patients with angiographically confirmed 

cardiovascular disease in a large randomized controlled clinical trial with over 2000 patients (7). 

In humans, severe HHcy due to CBS deficiency causes connective tissue abnormalities in most 

body systems, including bones and vasculature (1). HHcy due to MTHFR deficiency has also been 

linked to bone abnormalities in humans (8, 9). Similar connective tissue abnormalities affecting 

bones are also observed in Cbs-/- mice (10, 11).  

Collagen is a major component of fibrous connective tissues such as tendons and bone (12). 

It is the most abundant protein and accounts for 25-35% of total body protein content in mammals. 

Collagenous fibers provide structural support and resistance to stretch forces. Mechanical properties 

of collagenous fibers come from specific inter-chain crosslinks involving lysine residues within and 

between collagen chains (13). The crosslink formation is initiated by the conversion of specific lysine 

and hydroxylysine resides to the aldehydes allysine and hydroxyallysine, respectively, catalyzed by 

lysine oxidase (LOX) (14, 15). The allysine or hydroxyallysine and ε-amino group of a neighboring 

lysine residue react spontaneously to form a Schiff-base adduct, which matures into a stable 

pyridinoline crosslink (16). There are one to two crosslinks per triple helical collagen unit. The main 

fibril-forming collagens (type I, II, and III) have four cross-linking sites, one in each of the short non-

helical ends of collagen molecules (telopeptides) and two in the triple helical region, close to its N- 

and C-terminal ends. The pyridinoline crosslinks occur in bone, skeletal tissues, and cartilage 

collagens and provide the tensile strength and mechanical stability of collagen fibrils, required for 

normal function of connective tissues (12, 13). 
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Mechanisms by which HHcy causes connective tissue abnormalities are not understood. 

Because collagen lysine residues are involved in crosslink formation, N-homocysteinylation of these 

lysines should impair crosslinking (3, 17). To examine this prediction, we studied collagen N-

homocysteinylation and crosslinking in tissues of Cbs-/- mice and their Cbs+/- littermates. 

MATERIALS AND METHODS 

Mice 

Transgenic Tg-I278T Cbs-/- mice on C57BL/6J genetic background (11) and their Cbs+/- littermates 

were bred and housed at the Rutgers-New Jersey Medical School Animal Facility. In these animals, 

the human CBS-I278T variant is under control of the zinc-inducible metallothionein promoter, which 

allows rescue the neonatal lethality phenotype of Cbs-/- in mice by supplementing the drinking water 

of pregnant dams with 25 mM zinc chloride. Zinc water is replaced by plain water after weaning.  

Tg-I278T Cbs-/- mice exhibit facial alopecia, osteoporosis (rough periosteal surface and small 

holes in femur, reduced trabecular bone mass, decreased bone mineral density), endoplasmic 

reticulum stress in the liver and kidney, and life span reduced by 20% (11). Tg-I278T Cbs-/- mice also 

exhibit a thin, smooth, and shiny tail and have significantly lower body weight than their Cbs+/- 

littermates (males: 23.8.3±2.2 vs. 27.9±1.9 g, n=14 each group, P=0.0001; females 18.8±1.2 vs. 

24.3±1.9 g, n=5 each group, P=0.004). The mice were fed a normal rodent chow (LabDiet5010, Purina 

Mills International, St. Louis, MO). Six to nine month-old mice of both sexes were used in 

experiments. Animal procedures were approved by the Institutional Animal Care and Use Committee 

at the Rutgers-New Jersey Medical School.  

tHcy, S-Hcy, and N-Hcy assays 

tHcy, S-Hcy, and N-Hcy were assayed by the conversion to Hcy-thiolactone, which was then 

separated by cation exchange HPLC, post-column derivatized with OPA, detected and quantified by 

fluorescence as previously described (18). Agilent Infinity 1260 system, containing HiP degasser, 

binary pump, high performance auto-sampler, thermostated column compartment, diode array 

detector, and fluorescence detector was used. Samples (5 µL) were injected into Poly CAT A column, 

35x2.1 mm, 5 µM, 300 Å (Poly LC).  

Plasma and urinary tHcy assays 

Mouse plasma or urine (10 µL) was diluted to 100 µL with 20 mM K2HPO4, 2 mM dithiothreitol (DTT), 

and ultra-filtered on Amicon 10 kD cut off devices (4°C, 14,000 g, 30 min). Hcy in the filtrate (30 µL) 

was converted to Hcy-thiolactone by the treatment with 2 µL 0.25 M DTT, 5 µL 6 N HCl (100°C 30 

min). D,L-Hcy standards (1.25-10 µM in 20 mM K2HPO4) were treated in the same manner. Tested 
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samples and standards were dried, dissolved in water (30 µL) and Hcy-thiolactone was quantified by 

cation exchange HPLC. 

Urinary Hcy-thiolactone and N-Hcy-protein assays 

Urine (10 µL) was neutralized with K2HPO4. Hcy-thiolactone was extracted from the neutralized urine 

using the chloroform/methanol method (19, 20) and quantified by HPLC (21).  To quantify N-Hcy-

protein, the neutralized urine (10 µL) was diluted 50-fold, treated with 2 mM DTT, and free Hcy 

removed by ultrafiltration using 3 kDa molecular weight cut-off Sartorius centrifugal ultrafiltration 

devices. The dilution-ultrafiltration cycle was repeated 5 more times to assure complete removal of 

free Hcy, confirmed by quantifying Hcy in protein-free filtrates. N-Hcy-protein was hydrolyzed under 

reducing conditions, under which liberated N-linked Hcy is quantitatively converted to Hcy-

thiolactone, which was then extracted with chloroform/methanol, and quantified by cation exchange 

HPLC (22).  

Tissue tHcy and N-Hcy-protein assays 

Frozen mouse tissue (about 50 mg) was transferred to 10 volumes of ice-cold 20 mM potassium 

phosphate buffer (pH 7.4), 0.2 mM EDTA containing protease inhibitor mixture (Sigma-Aldrich) and 

disintegrated by sonication on wet ice. Bone (hind leg tibia and femur) was pulverized with dry ice 

using a pestle and mortar pre-chilled to -80°C, prior to sonication. Crude extracts were clarified by 

centrifugation (15,000g, 15 min) and supernatants and pellets were saved. Protein in the supernatant 

was quantified using a Coomassie protein assay reagent (Sigma-Aldrich) according to the Bradford 

method (23).  

To quantify tissue tHcy, the supernatant (50 µL) was treated with 25 mM DTT, 20 mM K2HPO4 

(50 µL) and deproteinized by ultrafiltration using Amicon 10 kDa molecular weight cut-off devices. 

Reduced Hcy in the protein-free filtrate (30 µL) was converted to Hcy-thiolactone by the treatment 

with DTT (2 µL 0.25 M) and HCl (5 µL 6N, 100°C, 30 min). In parallel, D,L-Hcy standards (1.25-10 µM in 

20 mM K2HPO4) were treated in the same manner. After the conversion, reaction mixtures were 

dried under vacuum using a Labconco Centri-Vap concentrator, dissolved in deionized water, and 

Hcy-thiolactone was quantified by HPLC.  

To quantify tissue N-Hcy-protein, free Hcy was removed from the protein left on 

ultrafiltration devices by 4 cycles of dilution with 450 µL 20 mM K2HPO4, 2 mM DTT and ultra-

filtration. After the last cycle, protein was quantified using the Bradford method, transferred to a 

glass ampule, and hydrolyzed with 6 N HCl, 20 mM DTT (120°C, 1 h). The hydrolysats were dried and 

stored at -80°C for Hcy-thiolactone quantification. 

S- and N-Hcy determination in bone collagen 
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Pellets after tissue homogenization and centrifugation were washed with 100 mM potassium 

phosphate buffer (pH 7.4), 0.2 mM EDTA (4 times, 300 µL). After the last wash, pellets were treated 

with 20 mM potassium phosphate (pH 7.4), 0.2 mM EDTA, 20 mM DTT (50 µL, 25°C, 5 min) to liberate 

disulfide-bound Hcy and clarified by centrifugation. Hcy in the resulting supernatant was converted 

to Hcy-thiolactone, which was then quantified by HPLC. To quantify collagen Hyp, N-Hcy, and 

pyridinolines,  the pellet was washed twice with 1 mL of 20 mM K2HPO4 containing 2 mM DTT, dried, 

and transferred to dark glass ampules, containing 15 µL water, 25 µL 20 mM K2HPO4, and 40 µL 12 N 

HCl. The ampoules were frozen on dry ice, sealed under vacuum, and hydrolyzed at 120°C for 1 hr. 

Hydrolysates were dried, dissolved in 30 µL water and one half (15 µL) was used for N-Hcy 

determination and the other half for Hyp and pyridinoline assays. 

S- and N-Hcy determination in acid-soluble tail collagen 

Following tissue homogenization, insoluble pellets were collected by centrifugation, washed with 100 

mM potassium phosphate buffer (pH 7.4) containing 0.2 mM EDTA and protease inhibitor (Sigma-

Aldrich), defatted with chloroform/methanol mixture (2:1, v/v), and washed again with the buffer. 

Pellets were extracted with 0.5 M acetic acid containing 0.1 mg/mL pepsin (4°C, 24 h) and the 

extracts clarified by centrifugation (18,000 g, 15 min). Supernatants containing acid-soluble collagen 

were dried using a Labconco CentriVap concentrator.  

To quantify S-Hcy and N-Hcy, dried acid-soluble collagen preparations were treated with 20 

mM DTT, 20 mM K2HPO4 (50 µL, 25°C, 5 min) and clarified by centrifugation (18,000 g, 30 min). S-Hcy 

in the supernatants (30 µL) was converted to Hcy-thiolactone and quantified by HPLC (22, 24).  

To quantify N-Hcy, collagen pellets were washed twice with 20 mM K2HPO4, 2 mM DTT (500 

µL) to remove residual free Hcy, dried, and hydrolyzed with 6 N HCl, 30 mM DTT (120°C, 1 h). The 

hydrolysates were dried, the resulting Hcy-thiolactone was solid-phase extracted (see below), and 

quantified by cation exchange HPLC (22). 

Solid phase extraction of Hcy-thiolactone from protein hydrolysates 

Hcy-thiolactone was extracted from tissue protein hydrolysates using reversed phase C18 sorbent in 

Empore C18-SD, 7 mm/3 mL extraction disk cartridge (Supelco). The C18 sorbent was first 

conditioned with acetonitrile, water and 10 mM sodium phosphate, pH 7.7 (500 µL each). Dried 

protein hydrolysates were dissolved in 50 µL of 1M K2HPO4, diluted to 1 mL with 10 mM sodium 

phosphate, pH 7.7, and transferred into the extraction disk cartridge. Because under these conditions 

Hcy-thiolactone is neutral (pKa=6.67, (25)), it is retained on a C18 sorbent. After unbound substances 

were washed off the cartridge with 500 µL of 10 mM sodium phosphate, pH 7.7, Hcy-thiolactone was 

eluted with 500 µL of 70% acetonitrile containing 0.02 M HCl. At acidic pH Hcy-thiolactone becomes 
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positively charged and is released from the C18 sorbent (20). Eluents were dried and stored at -80°C 

for Hcy-thiolactone quantification by cation exchange HPLC (22). 

Determination of pyridinoline crosslinks 

Collagen pyridinoline crosslinks were quantified by HPLC (26). Collagen was acid-hydrolyzed (6 N HCl, 

110°C, 24 h) and pyridinolines were separated on a cation exchange polysulfoethyl aspartamide 

(PSEA) column, 100x2.1 mm, 3 µM, 300 Å (Poly LC) using a salt gradient at flow rate 0.36 mL/min at 

24°C. Solvent A was 0.1% trifluoroacetic acid, solvent B, 1 M NaCl. The gradient was as follows: 15% 

to 50% B for 8 min, 50% B from 8 to 9 min, and re-equilibration with 15 % B from 9.1 to 11 min. 

Pyridinoloine (Pyd) and deoxypyridinoline (Dpd) elute as a single peak, detected and quantified by 

fluorescence with excitation at 295 nm and emission at 395 nm. Authentic Pyd and Dpd (cat. no. 

8004, Quidel Corp., San Diego, CA) were used as standards.   

Hydroxyproline assay 

Hydroxyproline (Hyp) was quantified using the chloramine method (27). Protein hydrolysates (3 µL) 

diluted with water to 40 µL were incubated with 20 µL of chloramine-T solution (50 mM chloramine-

T, 30% (v/v) ethylene glycol monomethylether, 50% chloramine-T buffer, pH 6.0  (0.26 M citric acid, 

1.46 M sodium acetate, 0.85 M sodium hydroxide, 1.2% (v/v) glacial acetic acid; 25°C, 20 min). 

Reaction mixtures were then treated with perchloric acid (3.15 M, 20 µL; 25°C, 5 min) and Ehrlich’s 

solution (1.34 M p-dimethylaminobenzaldehyde ether, 20 µL; 60°C, 20 min). The absorbance was 

read at 595 nm in ELx808 BioTek plate reader. 

Cross-linked C-telopeptide of type I collagen and carboxyterminal propeptide of type I procollagen 

assays 

Cross-linked C-telopeptide of type I collagen (CTXI) and procollagen I C-terminal propeptide (PICP) in 

mouse plasma were quantified using commercial Enzyme-linked Immunosorbent Assays kits (Cloud-

Clone Corp. and Blue Gene, respectively), in which tested CTXI or PICP from samples competes with 

horse radish peroxidase-labeled CTXI or PICP for binding to a CTXI- or PICP-specific antibody pre-

coated onto a microplate. Samples were analyzed in duplicates following manufacturer’s protocol.  

Analysis of collagen N-homocysteinylation by mass spectrometry 

Rat tail or mouse bone collagen type I (10 mg/ml) was modified with L-Hcy-thiolactone (10 mM) 

(Sigma-Aldrich) in 0.1 M phosphate buffer pH 7.4 as previously described (28). Resulting N-Hcy-

collagen was reduced with 0.1M DTT (56°C, 30 min) or 5 mM tris(2-carboxyethyl) phosphine (TCEP) 

(room temperature, 1 h), carboxyamidomethylated with 0.5 M iodoacetamide (IAA) (room 

temperature, 45 min) or methylthiolated with 10 mM methyl metanethiosulfonate (MMTS) (room 
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temperature, 10 min) to block free thiols, and digested overnight with 10 ng/µL trypsin (Promega). 

Mouse bone collagen was isolated from Cbs-/- and wild type animal using the acetic acid/pepsin 

extraction method (29) and processed as above to generate tryptic peptides (30). Tryptic peptides 

were concentrated and desalted on a RP-C18 pre-column (Waters). 

Analyses of collagen tryptic peptides were carried by LC-MS/MS. Peptides  were separated on 

a nano-Ultra Performance Liquid Chromatography (UPLC) RP-C18 column (Waters, BEH130 C18 

column, 25 cm x 75 µm i.d.) using a nanoACQUITY UPLC system, and a 160-min gradient of 5-30 % 

acetonitrile  at a 300 nl/min flow rate.  

The UPLC system was interfaced with micrOTOF-q mass spectrometer electrospray ionization 

ion source of the Orbitrap Elite type mass spectrometer (Thermo)  working in the regime of data 

dependent MS to MS/MS switch with HCD type peptide fragmentation (30). An electrospray voltage 

of 2 kV was used. Raw data files were pre-processed with Mascot Distiller software (version 2.4.2.0, 

MatrixScience). Peptide masses and fragmentation spectra were matched to the National Centre 

Biotechnology Information (NCBI) non-redundant database (57412064 sequences/20591031683 

residues), with a Rodentia filter (733975 sequences) using the Mascot search engine (Mascot 

Daemon v. 2.4.0, Mascot Server v. 2.4.1, MatrixScience). The search parameters were as follows: 

enzyme specificity – semi-trypsin; variable modifications – oxidation (M), carbamidomethylation (C), 

de-methylation (M), and methylatiolation (C). The N-Hcy-Lys modification was added to the MASCOT 

database as S-carbamidomethyl- or S-methylthio-Hcy. Mass increase due to Lys modification by S-

carbamidomethyl- or S-methylthio-Hcy is 174 Da or 163 Da, respectively. The protein mass was left 

as unrestricted, and mass values as monoisotopic with one missed cleavage allowed. The peptide and 

fragment ion mass tolerances were determined separately for individual LC–MS/MS runs by a 

procedure based on two database searches with an intermittent mass measurement error 

recalibration step, using an DatViewer software developed in-house 

(http://proteom.ibb.waw.pl/mscan/) (30). The statistical significance of each peptide identification 

was estimated using a joined target/decoy database search approach, false discovery rate was set 

below 1%. 

LOX activity assay 

We used LOX activity assay kit (Abcam, ab112139) to quantify LOX activity in the heart and liver of 

Cbs-/- and Cbs+/- mice. The assay quantifies hydrogen peroxide generated by LOX using a proprietary 

red fluorescence substrate in a horseradish peroxidase-coupled reaction. 

Mouse tissues (heart, 30 mg; liver, 50 mg) were homogenized by sonication with 10 volumes 

of ice-cold RIPA buffer containing protease inhibitors (Sigma-Aldrich). Cell debris were separated by 

centrifugation at 15,000 g for 15 min and the resulting supernatants were used for LOX activity 
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measurement. Protein concentration was measured using the Bradford method. To eliminate any 

unspecific fluorescence signal, one set of tissue extracts was pre-incubated (37°C, 30 min) with 25 

mM D,L-Hcy thiolactone, an irreversible inhibitor of LOX (31), while another set was preincubated 

without Hcy-thiolactone. Assays were carried out using black 96-well microtiter plates (OptiPlate-

96F, Perkin Elmer). Pre-incubated tissue extracts (liver, 4 µL or heart, 40 µL) were diluted to 50 µL 

with assay buffer and mixed with 50 µL of reaction buffer prepared according to manufacturer’s 

instruction.  Fluorescence was measured at Ex/Em=540/590 nm for 20 or 30 min using a Tecan 

Infinite M200Pro plate reader. The rate of fluorescence increase in samples pre-incubated with Hcy-

thiolactone was subtracted from the rate of fluorescence increase in the absence of Hcy-thiolactone. 

LOX activity is expressed as fluorescence units/min/µg protein. 

Real-time PCR 

Total RNA was extracted using Total RNA Purification Kit (Novazym), treated with DNase I (Thermo 

Scientific), and retrotranscribed using RiverAid Reverse Transcriptase (Thermo Scientific). 

Quantitative real-time PCR reactions were carried out using Eppendorf Mastercycler®ep realplex and 

iTaq Universal SYBR Green Supermix (Bio-Rad) following suppliers’ protocols. The custom-designed 

primers (from Sigma Aldrich) were as follows:  

Mouse Lox: forward 5’-TGCCAGTGGATTGATATTACAGATGT-3’, reverse 5’- 

AGCGAATGTCACAGCGTACAA-3’ (product length 124 bp); 

Mouse Gapdh: forward 5’-CGTCCCGTAGACAAAATGGT-3’, reverse 5’-TTGATGGCAACAATCTCCAC-3’ 

(product length 110 bp); 

Mouse β-actin: forward 5’-TGTTACCAACTGGGACGACA-3’, reverse 5’- GGGGTGTTGAAGGTCTCAAA-3’.  

Each reaction was carried out in duplicate for at least three individual mice of each Cbs genotype. 

The Pfaffl method (32) was used to calculate the relative Lox mRNA level normalized to Gapdh or β-

actin mRNA level.  

Statistics 

Data are expressed as means±SD. For non-normally distributed variables, data were log-transformed. 

Comparisons between genotype groups were analyzed using a two-sided Student’s t-test. 

  

RESULTS 

Cbs deficiency elevates plasma and urinary Hcy-thiolactone and N-Hcy-protein in mice 

CBS-deficient patients are known to exhibit homocystinuria and HHcy. Similar to CBS-deficient 

humans, homozygous Cbs-deficient mice exhibit the HHcy phenotype (11, 33) and as shown here, a 

homocystinuria phenotype. We found that urinary tHcy levels were 68-fold elevated in Cbs-/- mice 
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compared to Cbs+/- littermates (from 68.7±4.7 to 4628±1105 μM, Table I); plasma tHcy was severely 

elevated (54-fold; from 5.0±2.6 to 272 ±50 μM), as previously described (11, 34). Urinary Hcy-

thiolactone levels were elevated 100-fold (from <0.2 to 15.1±4.7 μM) in Cbs-/- mice relative to Cbs+/- 

animals. These Hcy-thiolactone values are the highest recorded in a mammalian organism (17, 35). 

Plasma N-Hcy-protein was elevated 11-fold, as previously described (34).  Urinary N-Hcy-protein was 

30-fold higher in Cbs-/- mice than in Cbs+/- animals. 

S- and N-homocysteinylation status of mouse collagen 

We asked whether collagen is targeted for N-homocysteinylation and whether such collagen 

modification might be affected by inactivation of the Cbs gene. To answer these questions we set out 

to detect and quantify N-Hcy in collagen from Cbs-/- mice and their Cbs+/- littermates.  

We found that N-Hcy was present in total bone collagen preparations from Cbs+/- mice at 3.3 

pmol N-Hcy/μg bone collagen. In Cbs-/- mouse, N-Hcy increased 14.6-fold to 49 pmol N-Hcy/μg bone 

collagen (Fig. 1A). We also found that acid-soluble tail collagen from Cbs+/- mice contained 0.7 pmol 

N-Hcy/μg collagen, which increased to 58 pmol N-Hcy/μg collagen in Cbs-/- animals (Fig. 1B). 

Because Hcy is known to also bind to protein cysteine residues via disulfide bonds, we 

addressed a question of whether a disulfide-bound Hcy occurs in collagen. However, because mature 

collagen type I does not contain cysteine residues, we predicted that the only thiol groups that might 

be present in collagen molecules and engage in disulfide bond formation with free Hcy would come 

from the N-Hcy residues. To test this prediction we quantified S-Hcy in bone and tail collagen.  

We found that S-Hcy levels in bone, tail, and heart collagen were equal to, or lower than, the 

corresponding N-Hcy levels. For example, in total bone collagen of Cbs+/- mice, S-Hcy was lower than 

N-Hcy (1.0 vs. 3.3 pmol N-Hcy/μg bone collagen, P=0.036; Fig 1A), while acetic acid-soluble tail 

collagen contained similar levels of S- and N-Hcy (1.3 vs. 0.7 pmol/μg tail collagen, P=0.43; Fig. 1B).  

In total heart collagen of Cbs+/- mice, S-Hcy was lower than N-Hcy (0.18 vs. 1.5 pmol N-Hcy/μg heart 

collagen, P=0.002; Fig 1C). 

In Cbs-/- mice, both S- and N-Hcy were elevated; however, the S- and N-Hcy values were not 

significantly different from each other in the total bone collagen (30 vs. 49 pmol N-Hcy/μg bone 

collagen, P=0.31; Fig 1A) and acetic acid-soluble tail collagen (15.7 vs. 59 pmol N-Hcy/μg tail collagen, 

P=0.31; Fig 1B), while in total heart collagen, S-Hcy tended to be lower than N-Hcy (4.4 vs. 20.5 pmol 

N-Hcy/μg heart collagen, P=0.07; Fig 1C). 

Identification of collagen lysine residues susceptible to N-homocysteinylation in vitro and in vivo 

To demonstrate that collagen is susceptible to N-homocysteinylation, we modified rat tail collagen 

type I with 50-fold molar excess of Hcy-thiolactone in vitro. Modified collagen was reduced, 
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derivatized, digested with trypsin, and subjected to LC-MS/MS analyses. Using the IAA-derivatization 

procedure, we identified seven N-Hcy-peptides (Table II), five in collagen type I alpha 1 chain 

(Col1A1) two in alpha 2 chain (Col1A2). Sequence coverage was 12% and 13% for Col1A1 and Col1A2, 

respectively. The N-Hcy-Lys residues were located at positions K160, K266, K583, K1085, K1225 in 

Col1A1 and positions K1070, K1146 in Col1A2. Residues K160 and K266 were also found to be N-

homocysteinylated using the MMTS procedure (Table II). Two N-Hcy-Lys residues are located in the 

N-terminal (K266) and C-terminal (K1085) helical regions, one in the middle (K583), and one (K160) is 

located in the non-helical telopeptide region (Fig. 2) (36).  

We also analyzed by LC-MS/MS tryptic peptides from collagen type I isolated from bones of 

Cbs-/- mice using the MMTS procedure. We identified one N-Hcy-peptide in Col1A1 containing N-Hcy-

Lys residue at position K160 (Table III). Sequence coverage was 14-24%.  Treatment of mouse bone 

collagen with Hcy-thiolactone led to N-homocystienylation of two additional residues: K266 in and 

K1070 in Col1A2 (Table III, Fig. 2). These results suggest that K160 is a predominant site of collagen 

N-homocysteinylation in vivo. Interestingly, the K160 residue in mouse Col1A1 corresponds to K170 

in human Col1A1 that is known to be involved in pyridinoline crosslink formation (13). 

Cbs gene inactivation affects collagen levels 

In assessing effects of the Cbs gene inactivation on collagen crosslinking it is important to consider a 

possibility of changes in collagen levels in Cbs-/- mice relative to Cbs+/- animals. Thus, we quantified 

collagen levels in mouse tissues by hydroxyproline (Hyp) measurements in hydrolysates of collagen 

preparations from Cbs-/- mice and their Cbs+/- littermates. We found that collagen levels were 

significantly elevated in the heart (0.33 vs. 0.15 μg Hyp/mg heart, P=0.0003) (Fig. 3A) and tail (13.6 

vs. 9.3 μg Hyp/mg dry tail, P=0.0003) (Fig. 3B) of Cbs-/- mice relative to Cbs+/- animals. In bone, 

collagen levels tended to be elevated in Cbs-/- relative to Cbs+/- mice (0.90 vs. 0.65 μg Hyp/mg bone, 

P=0.14) (Fig. 3A). 

Cbs gene inactivation reduces collagen crosslinking 

In order to examine whether HHcy affects collagen crosslinking we used a UPLC-based assay to 

quantify Pyd/Dpd levels in collagen isolated from tissues of Cbs-/- mice and their Cbs+/- littermates. To 

account for effects of HHcy on collagen levels we normalized Pyd/Dpd to collagen levels. We found 

that [Pyd/Dpd]/collagen ratios were reduced in the heart (426 vs. 717 pmol [Pyd/Dpd]/mg collagen, 

P=0.030) and tail collagen (61 vs. 291 pmol [Pyd/Dpd]/mg collagen, P<0.0001) and tended to be 

reduced in bone collagen (321 vs. 515 pmol [Pyd/Dpd] /mg collagen, P=0.059) in Cbs-/- mice relative 

to Cbs+/- animals (Fig. 4). 

Collagen turnover 
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Connective tissue defects observed in HHcy could also be due to deranged collagen turnover. Tissue 

collagen turnover generates free and peptide-bound Dpd, which are released into the blood. To 

determine effects of HHcy due to Cbs deficiency on collagen degradation we quantified total Dpd 

using a competitive enzyme-linked immunoassay. Prior to the assay samples were acid-hydrolyzed to 

liberate Dpd from collagen peptides. We found that plasma Dpd levels were significantly reduced in 

Cbs-/- mice relative to their Cbs+/- littermates (0.92 vs. 2.74 nM, P=0.0003) (Fig. 5).  

To further examine how Cbs deficiency affects collagen synthesis and degradation, we 

quantified plasma procollagen I C-terminal propeptide (PICP) and carboxyterminal telopeptide of 

collagen type I (CTX I) in Cbs-/- mice and their wild type littermates using a competitive enzyme-linked 

immunoassays. PICP, a marker of collagen synthesis, is cleaved off from procollagen during collagen 

biogenesis. CTX I, a marker of collagen turnover, contains sites of Dpd crosslinking and is cleaved off 

during type I collagen degradation in tissues; its serum levels are highly correlated to collagen 

turnover rate. As shown in Table IV, plasma CTX I levels were significantly lower in Cbs-/- mice relative 

to their Cbs+/- littermates (22.0 vs. 60.1 pg/mL, P=0.043). We also found that plasma PICP levels were 

not reduced, but tended to be increased in Cbs-/- mice relative to Cbs+/- animals (5.1±1.0 vs. 3.8±1.1 

pg/mL, P=0.18) (Table IV), consistent with tissue collagen quantification by Hyp measurements (Fig. 

3). 

LOX activity and mRNA are not reduced by the Cbs gene inactivation 

LOX [EC 1.4.3.13] is a copper-dependent oxidoreductase that catalyzes oxidative deamination of Lys 

residues to produce allysyl residues, ammonia and hydrogen peroxide. The generation of allysyl 

resides is required for subsequent formation of cross-links which stabilize collagen fibrils. Thus, it is 

possible that reduced levels of collagen crosslinking could be due to reduced LOX activity in Cbs-/- 

mice. To examine this possibility we quantified LOX activity in Cbs-/- mice and their Cbs+/- littermates. 

We found that LOX activity in the heart was similar in Cbs-/- and Cbs+/- mice: 9.4 vs. 10.1 units/min/µg 

protein, P=0.61 (Table V). Comparison of the assays in the presence and absence of the LOX inhibitor 

(Hcy-thiolactone), shows that most of the fluorescence signal (>90%) was associated with LOX. We 

also found that LOX activity in the liver was not affected by the Cbs genotype (3.5±1.8 vs. 2.4±0.4 

units/min/µg protein, P=0.14).  

We also quantified Lox mRNA by RT-qPCR. We found that Lox mRNA expression in the heart 

of Cbs-/- mice was elevated 1.88±0.18-fold relative to and Cbs+/- animals using Gapdh mRNA as a 

reference (Fig. 6). To confirm this finding, we additionally quantified Lox mRNA using β-actin as a 

reference and found that the results were similar: Lox mRNA was elevated 2.36±0.16-fold in Cbs-/- 

mice relative to Cbs+/- animals (Fig. 6).   Taken together, these findings strongly suggest that neither 

Lox expression nor activity contribute to reduced levels of collagen crosslinks in Cbs-/- mice. 
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DISCUSSION 

Since the discovery of clinical cases of severe HHcy in the 1960s, CBS deficiency has been 

known to cause connective tissue abnormalities  (1). However, the underlying mechanism of these 

abnormalities was unknown. Since lysine residues are involved in intermolecular collagen 

crosslinking, we predicted that modification of collagen lysines by Hcy-thiolactone would impair 

crosslinking.  

We used a Cbs-/- mouse model that recapitulates connective tissue abnormalities observed in 

CBS-deficient patients (11). We found that: 1) mouse bone, tail, and heart collagen is N-

homocysteinylated in vitro and in vivo;  2) N-Hcy is elevated in Cbs-/- mouse collagen; 3) Pyd/Dpd 

crosslink levels are reduced in heart, bone, and tail collagen of Cbs-/- mice; 4) plasma soluble Dpd  

crosslink and crosslinked telopeptide CTX I are significantly reduced in Cbs-/- mice. 5) That these 

findings reflect a causal relationship between N-homocysteinylation and crosslinking, is supported by 

our LC-MS/MS experiments showing that N-homocysteinylation occurs at lysine residue K160, which 

is located in N-telopeptide of collagen type I alpha-1 chain, and which is involved in pyridinoline 

crosslink formation in Cbs-/- mice. 6) We also demonstrated that the reduction in pyridinoline 

crosslink level is not caused by lysine oxidase, whose expression and activity were not reduced by the 

Cbs-/- genotype. Taken together, our findings indicate that N-homocysteinylation impairs collagen 

crosslinking and thus provide a mechanistic explanation for connective tissue abnormalities observed 

in severe HHcy. 

Collagen fibril assembly involves oxidation of lysine residues catalyzed by the Lox enzyme, 

which converts an εNH2- group of a lysine residue to an aldehyde group, generating an allysine 

residue (Fig. 6). Allysine residues undergo spontaneous condensation with other lysine resides, 

generating Pyd and Dpd crosslinks in mature collagen fibers (Fig. 6). These intermolecular crosslinks 

are essential for mechanical properties and stability of collagen fibrils. Deficiencies in collagen 

crosslinking lead to connective tissue abnormalities (14, 15, 37). Our present findings strongly 

suggest that connective tissue abnormalities observed in HHcy are caused by N-homocysteinylation 

of lysine residue K160 located in the non-helical N-telopeptide region of Col1A1, which reduces the 

pyridinoline crosslink formation. 

That HHcy may interfere with the collagen crosslink formation has been proposed in 1960s 

(38) and  subsequently substantiated by studies that demonstrated reduced collagen crosslinking in 

CBS-deficient patients (39) and animal models of HHcy (40, 41). However, an underlying mechanism 

by which HHcy reduces collagen crosslinking remained unknown.  

In the past, several attempts have been made to explain mechanistic basis of collagen 

crosslinking abnormalities in HHcy. For example, it has been suggested that defects in dermal 
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collagen in CBS-deficient patients are due to the condensation of Hcy with the precursor aldehyde 

residues (allysine) in collagen forming tetrahydrothiazine adducts (39). However, although free Hcy 

and aldehydes easily form stable tetrahydrothiazines (25, 42), such adducts have not been identified 

in collagen (39).  

Biochemical studies of the Lox enzyme show that Hcy-thiolactone, a metabolite that 

accumulates in HHcy in mice and humans (34, 43), irreversibly inhibits the Lox enzyme activity by 

reacting with the active site lysine tyrosylquinone cofactor (31). However, our present findings that 

the Lox activity is not reduced by overproduction of Hcy-thiolactone in the Cbs-/- mouse model 

indicates that this reaction does not occur in this animal model.  

Tissue culture studies suggest that reduced collagen crosslinking may be due to the inhibition 

of Lox enzymatic activity (31) and expression (44) by Hcy. For example, studies with cultured porcine 

vascular endothelial cells show that supplementation with Hcy inhibits Lox activity and down-

regulates its expression; cysteine has a similar inhibitory effect on Lox activity (45). In cultured 

osteoblasts supplementation with Hcy inhibits the expression of Lox (44). However, it is not known 

whether these Lox-mediated mechanisms affect collagen crosslinking in vivo in HHcy patients or 

animal models. Our present findings clearly show that effects of HHcy on collagen crosslinking in Cbs-

/- mice are not mediated by Lox. 

Our previous studies have established that N-Hcy-protein is a significant component of Hcy 

metabolism in mice (34) and humans (19, 35) and identified over two dozen specific proteins (19, 22, 

35) that carry N-Hcy, including human serum albumin (46-48) and fibrinogen (35, 49) which are N-

homocysteinylated in vivo and in which specific N-Hcy-Lys residues have been identified. Our present 

findings, showing that K160 in mouse Col1A1 is N-homocysteinylated in vivo, add collagen to this list. 

A preponderance of evidence strongly suggests that modification of protein lysine residues 

by Hcy-thiolactone, i.e. protein N-homocysteinylation, is involved in the pathology of HHcy (6). For 

example, N-Hcy-protein accumulates in plasma of CBS- or MTHFR-deficient patients who suffer from 

neurological and cardiovascular diseases (35). A clinical study found that plasma N-Hcy-protein is 

associated with coronary heart disease (50).  In cardiac surgery patients, N-Hcy-protein accumulates 

in myocardium and aortas (51). Animal studies show that N-Hcy-protein accumulates within 

atherosclerotic lessions in aortas of ApoE-/- mice fed a normal chow diet, and increases in the animals 

fed a high-methionine diet that induces HHcy (51). Mechanistic studies suggest that  N-

homocysteinylation can cause disease by inducing amyloid-like structural transformation and 

generating toxic (52), pro-thrombotic (53), and autoimmunogenic proteins (42, 54).  

Our present findings identify a novel pathogenic consequence of  N-homocysteinylation—

reduced pyridinoline crosslink formation in collagen—which provides a long-sought mechanistic 

explanation regarding how HHcy can lead to connective tissue abnormalities (38). These findings 
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support the following mechanism (Fig. 7). HHcy greatly enhances ATP-dependent metabolic 

conversion of Hcy to Hcy-thiolactone catalyzed by MetRS (Table I and ref (43)), illustrated by 

Reactions 1a,b.  

 
(Reaction 1a) 

 
(Reaction 1b) 

Hcy-thiolactone modifies lysine residues in collagen, which generates N-Hcy-collagen containing a 

free thiol group (Reaction 2).  

εNH2-Lys-collagen  +  Hcy-thiolactone    εNH-(Hcy-SH)-Lys-collagen   (Reaction 2) 

Because collagen type I, the most abundant of all collagens, does not contain cysteine residues in its 

primary structure, the -SH of N-Hcy residue is the sole thiol that is present in mature collagen trimers 

(Fig. 7). This thiol engages in a disulfide bond formation with a thiol of free Hcy affording S-Hcy 

(Reaction 3). 

εNH-(Hcy-SH)-Lys-collagen  +  Hcy-SH    εNH-(Hcy-S-S-Hcy)-Lys-collagen  (Reaction 3) 

Concomitant with elevated levels of N-Hcy in collagen, we observed reductions in collagen 

Pyd/Dpd crosslinks levels in the bone, tail, heart (Fig. 3), and plasma (Fig. 4, Table IV) of Cbs-/- mice. 

These reductions in collagen crosslinking in Cbs-/- mice are consistent with the fact that crosslinking  

and N-homocysteinylation (Table III) both target the same lysine residue K160 located in the non-

helical N-telopeptide region of Col1A1 (13, 36).  

Our present in vivo findings that N-homocysteinylation impairs collagen crosslinking are 

consistent with an early in vitro study that examined relationships between chemical modifications of 

collagen lysine residues and crosslinking (55). That study  found that modification of collagen lysine ε-

amino groups with ethyl acetimidate prevented crosslinking, which was assessed indirectly by 

measuring collagen physicochemical properties such as molecular size and solubility  (55).  

Our findings that plasma levels of collagen degradation products, soluble Dpd crosslink and 

crosslinked C-terminal telopeptide of collagen type I (CTX I), were reduced in plasma of Cbs-/- mice 

suggest two scenarios: (i) reduced collagen crosslinking or (ii) suppressed bone collagen turnover in 

Cbs-/- mice relative to wild type animals. We favor the first scenario because mouse Cbs deficiency 

does not affect bone collagen level (Fig. 3), and tends to reduce crosslinking of bone collagen (Fig. 4). 

The second scenario is unlikely because plasma levels of PICP, a marker of collagen synthesis, were 
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not affected by Cbs genotype (Table IV). Thus, reduced levels of plasma total Dpd and CTX I reflect 

reduced crosslinking of bone collagen, most likely due to elevated N-homocysteinylation of collagen 

in Cbs-/- mice (Fig. 1). Plasma CTX I, but not markers of collagen I and III synthesis (PICP and N-

terminal propeptide of procollagen III), are reduced also in CBS-deficient patients (56), which 

suggests that HHcy similarly effects collagen metabolism in mice and humans. 

Lox is responsible for the first step in crosslink formation by oxidizing collagen lysine residues 

to allysine. Because decreased level of Lox activity impairs crosslinking (15), it was possible that 

reduced collagen pyridinoline crosslinks in Cbs-/- mice could be caused by reduced Lox expression 

and/or activity. However, our results exclude this possibility by showing that Lox expression and 

activity were not reduced by the Cbs-/- genotype (Table V, Fig. 6).  

Our findings that collagen levels were elevated in the tail and heart of Cbs-/- mice suggest that 

dysregulated collagen accumulation can also contribute to connective tissue deficiencies in severe 

HHcy. That HHcy can enhance collagen synthesis and accumulation has been demonstrated by 

previous findings in cultured smooth muscle (57) and liver (58) cells treated with Hcy and in livers of 

mice with HHcy induced by a high-Met diet (58). 

In conclusion, our data support a mechanism that explains at least in part the connective 

tissue abnormalities observed in HHcy mice and humans. In this mechanism HHcy increases the 

conversion of Hcy to, and accumulation of, Hcy-thiolactone, which then causes N-homocysteinylation 

of collagen lysine residues, which in turn impairs the formation of pyridinoline crosslinks important 

for collagen fibril structure/function. Our data point to a critical role of lysine residue K160 located in 

N-telopeptide of Col1A1 in this mechanism. Tissue-specific alterations in collagen accumulation can 

also contribute to connective tissue abnormalities in HHcy.
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The abbreviations used are: bp, base pairs; Cbs, cystathionine β-synthase; Col1A1, collagen alpha-1(I) 
chain; CTX I, carboxyterminal telopeptide of collagen type I; Dpd, deoxypyridinoline; DTT, 
dithiothreitol; Hcy, homocysteine; HHcy, hyperhomocysteinemia; HPLC, high performance liquid 
chromatography; IAA, iodoacetamide; LC, liquid chromatography; Lox, lysyl oxidase; MetRS, 
methionyl-tRNA synthetase; MMTS, methyl methanethiosulfonate; MS, mass spectrometry; N-Hcy, 
Hcy linked to a protein via an isopeptide bond with ε-amino group of  a lysine residue; PICP, 
procollagen I C-terminal propeptide;  Pyd, pyridinoline; TCEP, tris(2-carboxyethyl) phosphine; tHcy, 
total Hcy; S-Hcy, Hcy linked to a protein via a disulfide bond with a protein thiol; N-Hcy, Hcy linked to 
a protein via an isopeptide bond with an ε-amino group of a lysine residue. 

 

FIGURE LEGENDS 

Figure 1.  Collagen N- and S-Hcy are elevated in Cbs-/- mice.  N-and S-Hcy were quantified by HPLC in 
total bone collagen (panel A.), acid-soluble tail collagen (panel B.), and total heart collagen from Cbs-

/- and Cbs+/- mice. Asterisks (*) denote significant (P<0.05) differences between Cbs-/- (n=4-5) and 
Cbs+/-   (n=4-6) mice. P values shown are for comparisons between N-and S-linked Hcy levels. 

Figure 2. Localization of N-homocysteinylation and crosslinking sites in the primary structure of 
collagen type I alpha-1 chain. N-homocysteinylation sites were identified by LC-MS/MS in the present 
work. Crosslinking sites were identified by other investigators (13). The amino acid sequence of 
mature mouse Col1A1 (residues 152-1207 of procollagen) is from 
http://www.uniprot.org/uniprot/P11087. N- and C-terminal nonhelical telopeptide regions are 
underlined. Peptides containing N-Hcy are indicated in boldface. Lysine residue susceptible to N-
homocysteinylation in vitro and in vivo (K160) is indicated by a superscript number. Lysine residues 
susceptible to N-homocysteinylation only in vitro (K266, K584, K1085) are indicated by superscript 
numbers and italicized. Lysine residues K160, K254, K1097, K1197 corresponding to homologous lysines in 
human Col1A1 that are involved in pyridinoline crosslink formation, are highlighted in gray. 

Figure 3. Collagen content in tissues of Cbs-/- and Cbs+/- mice. Collagen was quantified in the bone, 
heart (panel A.), and tail (panel B.) by measurements of hydroxyproline in tissue hydrolysates. The 
values shown for the heart and bone were obtained with 4-6 mice, while the values for the tail were 
obtained with 12-20 mice for each genotype. 

Figure 4. Reduced collagen crosslinking in Cbs-/- mice. Pyd/Dpd crosslinks were quantified using an 
UPLC assay in heart (n=5-6), bone (n=5-6), and tail (n=16-23) collagen from Cbs-/- (n=6-16) and Cbs+/- 
(n=5-23) mice. P values shown are for comparisons between Cbs-/- and Cbs+/- mice. Asterisks (*) 
indicate significant (p<0.05) effect of the Cbs genotype.  

Figure 5. Reduced plasma Dpd levels in Cbs-/- mice. Dpd was quantified by a competitive 
immunoassay in acid-hydrolyzed plasma samples from Cbs-/- (n=7) and Cbs+/- (n=10) mice. 

Figure 6. Increased Lox mRNA expression in the hearts of Cbs-/- mice. Lox expression was quantified 
by real-time PCR. *p<0.05 for Cbs-/- (n=3) vs. Cbs+/- (n=3) mice. 

Figure 7.  Schematic representation of collagen N-homocysteinylation and pyridinoline crosslink 
formation. See text for discussion. 
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Fig. 2 

 

 

 

 

 
 

 

Fig. 3 

 

 

152QMSYGYDEK160SAGVSVPGPMGPSGPRGLPGPPGAPGPQGFQGPPGEPGEPGGSGPMGPRGPPGPPGKNGDDGEAGKPGRPGERGPPGPQGARGLPGTAGLPGMKGHRGFSGLDGAK266GDAGPAGPK
GEPGSPGENGAPGQMGPRGLPGERGRPGPPGTAGARGNDGAVGAAGPPGPTGPTGPPGFPGAVGAKGEAGPQGARGSEGPQGVRGEPGPPGPAGAAGPAGNPGADGQPGAKGANGAPGIAGAPGFPGARGPSG
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PGPAGQDGRPGPAGPPGARGQAGVMGFPGPKGTAGEPGK583AGERGLPGPPGAVGPAGKDGEAGAQGAPGPAGPAGERGEQGPAGSPGFQGLPGPAGPPGEAGKPGEQGVPGDLGAPGPSGARGERGFPGERG
VQGPPGPAGPRGNNGAPGNDGAKGDTGAPGAPGSQGAPGLQGMPGERGAAGLPGPKGDRGDAGPKGADGSPGKDGARGLTGPIGPPGPAGAPGDKGEAGPSGPPGPTGARGAPGDRGEAGPPGPAGFAGPPGA
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Fig. 4 
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Fig. 5 

 

 

 

 

 

 
 

 

Fig. 6 
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Fig. 7  
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TABLE I. Plasma and urinary N-Hcy-protein, Hcy-thiolactone, and tHcy are severely elevated in Cbs-
deficient mice a 

Genotype (n) N-Hcy-protein, μM Hcy-thiolactone, μM tHcy, μM 

Plasma 

Cbs-/-  (4) 16.6±4.1 272±50 

Cbs+/- (4) 1.5±0.2 0.006±0.0002       5.0±2.6 

Urine 

Cbs-/- (6) 15.1±4.7 11.8±0.9 4628±1105

Cbs+/- (6) 0.5±0.2 <0.2  69 ±16 

 
a Data are shown as means±SD.  
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TABLE II. N-Hcy-peptides identified by LC-MS/MS in rat tail collagen type I modified with Hcy-
thiolactone in vitro a 

Collagen type I  N-Hcy-peptide Chain Ion 
score 

N-Hcy-Lys 
residue no. 

Start-end 

Procedure with DTT reduction and IAA modification 
QMSYGYDEKHcySAGVSVPGPMGPSGPR Alpha 1 88 160 152–176 
GFSGLDGAKHcyGDTGPAGPK Alpha 1 139 266 258-275
GTAGEPGKHcyAGER Alpha 1 59 583 576-587 
GDKHcyGETGEQGDR Alpha 1 72 1085 1083-1094 
DLEVDTTLKHcySLSQQIENIR Alpha 1 146 1225 1217-1235 
GPAGPSGPIGKHcyDGR Alpha 2 133 1070  1060-1073
DYEVDATLKHcySLNNQIETLLTPEGSR Alpha 2 67 1128 1120-1144 

Procedure with TCEP reduction and MMTS thiolation 
GPPGPLGLGGNFASQMSYGYDEKHcySAGVSVPGPM
GPSGPR 

Alpha 1 76 160b  138-176

PGPPGPPGPPGPPGLGGNFASQMSYGYDEKHcySAGV
SVPGPMGPSGPR 

Alpha 1 89 160c 131-176

GFSGLDGAKHcyGDTGPAGPK Alpha 1 123 266c 258-275
KHcy denotes N-Hcy-Lys residue. 
a Collagen peptides were analyzed using the IAA or MMTS sample preparation procedure. 
b Identified in native collagen 
c Identified in native collagen treated with Hcy-thiolactone 
 

 

 

 

 

 

  

TABLE III. N-Hcy-peptides identified by LC-MS/MS in Cbs-/- mouse bone collagen type I a 

Collagen type I  N-Hcy-peptide Chain Ion 
score 

N-Hcy-Lys 
residue no. 

Start-end

PGLGGNFASQMSYGYDEKHcySAGVSVPGPMGPSGPR Alpha 1 64 160b 143-176 
DEKHcySAGVSVPGPMGPSGPR Alpha 1 77 160c 158-176 
GFSGLDGAKHcyGDTGPAGPK Alpha 1 91 266c 258-275 
GPAGPSGPIGKHcyDGR Alpha 2 110 1070c 1060-1073
KHcy denotes N-Hcy-Lys residue 
a Collagen was reduced with TCEP and thiolated with MMTS 
b Identified in native collagen 
c Identified in native collagen treated with Hcy-thiolactone 
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TABLE IV. Levels of plasma carboxyterminal telopeptide of collagen type I (CTX I) and procollagen I C-
terminal propeptide (PICP) in Cbs-/- and Cbs+/- mice a 

 

Genotype (n) Age, 

days 

Plasma 
tHcy, 
µM 

Plasma CTXI Plasma PICP, 

pg/mL Median 
(range), 
pg/mL 

Log 
transformed 

adjusted mean,

ln[pg/mL] 

Adjusted 
original scale, 

(pg/mL) 

Cbs+/-(n=20) 293±50 10.5±4.5 68.6 (2-342) 4.1±1.4 60.1 3.8±1.1 

Cbs-/-(n=26) 285±50 251±53 37.6 (1-292) 3.1±1.7 22.0 5.1±1.0

P value   <0.001   0.043 0.18 

 
a Data are shown as means±SD. P values were calculated using two-tailed t-test. Adjusted means for 
plasma CTXI were calculated using the log-transformed data. These were exponentiated to obtain 
adjusted values on the original scale.  
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TABLE V. LOX activity in Cbs-/- and Cbs+/- mice a 

 
Genotype 

Heart  Liver  
LOX activity inhibited by Hcy-thiolactone, 

Fluorescence units/min/µg protein 
Cbs-/-   9.4±2.4 (n=4) 3.5±1.8 (n=10)
Cbs+/- 10.1±1.0 (n=4) 2.4±0.4 (n=6) 
 
 Total activity,

Fluorescence units/min/µg protein 
Cbs-/- 10.3±8.4   (n=15) 23.1±8.5 (n=15)
Cbs+/-   8.4±3.8  (n=15) 20.0±6.8 (n=14) 
Differences between genotypes are not statistically significant,   
P values=0.14 to 0.61 

 

 


