IBB PAS Repository

Contribution of plasmid-encoded peptidase S8 (PrtP) to adhesion and transit in the gut of Lactococcus lactis IBB477 strain

Radziwill-Bienkowska, Joanna M. and Robert, Véronique and Drabot, Karolina and Chain, Florian and Cherbuy, Claire and Langella, Philippe and Thomas, Muriel and Bardowski, Jacek K. and Mercier-Bonin, Muriel and Kowalczyk, Magdalena (2017) Contribution of plasmid-encoded peptidase S8 (PrtP) to adhesion and transit in the gut of Lactococcus lactis IBB477 strain. Applied microbiology and biotechnology, 101 . pp. 5709-5721. ISSN 1432-0614

[img]
Preview
PDF (This article is an open access publication)
1MB

Abstract

The ability of Lactococcus lactis to adhere to the intestinal mucosa can potentially prolong the contact with the host, and therefore favour its persistence in the gut. In the present study, the contribution of plasmid-encoded factors to the adhesive and transit properties of the L. lactis subsp. cremoris IBB477 strain was investigated. Plasmid-cured derivatives as well as deletion mutants were obtained and analysed. Adhesion tests were performed using non-coated polystyrene plates, plates coated with mucin or fibronectin and mucus-secreting HT29-MTX intestinal epithelial cells. The results indicate that two plasmids, pIBB477a and b, are involved in adhesion of the IBB477 strain. One of the genes localised on plasmid pIBB477b (AJ89_14230), which encodes cell wall-associated peptidase S8 (PrtP), mediates adhesion of the IBB477 strain to bare, mucin- and fibronectincoated polystyrene, as well as to HT29-MTX cells. Interactions between bacteria and mucus secreted by HT29- MTX cells were further investigated by fluorescent staining and confocal microscopy. Confocal images showed that IBB477 forms dense clusters embedded in secreted mucus. Finally, the ability of IBB477 strain and its ΔprtP deletion mutant to colonise the gastrointestinal tract of conventional C57Bl/6mice was determined. Both strains were present in the gut for up to 72 h. In summary, adhesion and persistence of IBB477 were analysed by in vitro and in vivo approaches, respectively. Our studies revealed that plasmidic genes encoding cell surface proteins are more involved in the adhesion of IBB477 strain than in the ability to confer a selective advantage in the gut.

Item Type:Article
Subjects:Q Science > QR Microbiology
Divisions:Department of Microbial Biochemistry
ID Code:1367
Deposited By: Dr Magdalena Kowalczyk
Deposited On:17 Aug 2017 08:13
Last Modified:17 Aug 2017 08:13

Repository Staff Only: item control page