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ABSTRACT 

Phylogenomic approaches have the potential to improve confidence about the inter-

relationships of species in the order Mucorales within the fungal tree of life. Rhizopus 

species are especially important as plant and animal pathogens and bioindustrial 

fermenters for food and metabolite production. A dataset of 192 orthologous genes 

was used to construct a phylogenetic tree of 21 Rhizopus strains, classified into four 

species isolated from habitats of industrial, medical and environmental importance. 

The phylogeny indicates that the genus Rhizopus consists of three major clades, with 

R. microsporus as the basal species and the sister lineage to R. stolonifer and two 

closely related species R. arrhizus and R. delemar. A comparative analysis of the 

mating type locus across Rhizopus reveals that its structure is flexible even between 

different species in the same genus, but shows similarities between Rhizopus and 

other mucoralean fungi. The topology of single-gene phylogenies built for two genes 

involved in mating is similar to the phylogenomic tree. Comparison of the total length 

of the genome assemblies showed that genome size varies by as much as three-fold 

within a species and is driven by changes in transposable element copy numbers and 

genome duplications.  

 

INTRODUCTION 

Rhizopus (Ehrenb. 1821) is a genus of saprotrophic zygomycete fungi 

(Mucoromycotina, Mucoromycota) that is ubiquitous in soil, animal excrement, and 

rotting vegetation (Pidoplichko and Mil’ko, 1971). The genus is especially relevant to 

human enterprises. For example, certain species can act as plant pathogens that affect 

crops, some are producers of enzymes in industrial biofermentation, and others are 

used as fermentation agents in food production. Furthermore, certain species are 

https://paperpile.com/c/uw1XuV/z4oH


causal agents of disease in animals, including humans, and are used as model 

organisms in the study of fungal cellular and molecular biology (Abe et al. 2006, 

Ogawa et al. 2004, Saito et al. 2004, Muszewska et al. 2014).  

Some Rhizopus species present a significant threat to post-harvest agricultural 

products by damaging the appearance and taste of crops, most notably sweet potatoes 

and strawberries (Eckert 1978, Tournas 2005). Infection can also lead to human 

poisoning due to release of the phytotoxin rhizoxin, which is synthesized by 

endosymbiotic Burkholderia bacteria inhabiting the hyphae of some Rhizopus species 

(Partida-Martinez et al. 2007). Rhizopus is also an opportunistic agent of human and 

animal disease in immunocompromised individuals and causes approximately 60% to 

80% of all disease manifestations of mucormycosis (Ibrahim et al. 2008, Ma et al. 

2009). Although Rhizopus-associated mucormycosis is less common than fungal 

infections caused by ascomycete species (e. g., Candida or Aspergillus) or 

basidiomycete species (e. g., Cryptococcus), mucormycosis has an overall mortality 

rate exceeding 50%, and the number of cases with fatal outcomes is currently 

increasing, especially in patients with combat-related injuries or vascular invasion 

(Muszewska et al. 2014, Tribble and Rodriguez, 2014).  

For centuries, Rhizopus species have been used in the production of fermented 

products such as tempeh and ragi (Ogawa et al. 2004, Dolatabadi et al. 2016). More 

recently, Rhizopus species have proved useful in bioindustrial pursuits to synthesize 

metabolites. For example, species of the R. arrhizus/delemar complex are used to 

produce lactic, fumaric, malic, and other organic acids, as well as in the synthesis of 

ethanol, carotenoids, and some hydrolytic enzymes (Abe et al. 2003). 

 

https://paperpile.com/c/uw1XuV/QwoP+sjgW+I0qn+8Jwo
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Given the importance of Rhizopus in both human health and industry, a robust 

classification system is needed to reflect the key differences between species and how 

the relationships between species correlate with properties related to human activities. 

Species traditionally have been differentiated based on discrete morphological and 

physiological features, such as the maximum growth temperature, formation of 

morphological structures (chlamydospores, sporangia, and rhizoids), curvature of the 

columella, sporangiophore features (color, shape, and size), sporangia diameter, acid 

production, and results of the Voges-Proskauer test (a test of acetoin production) (Inui 

et al. 1965). A karyological study of Rhizopus strains isolated from Korean soil 

showed that chromosome number can vary from a minimum of 8 in R. delemar and R. 

arrhizus to a maximum of 16 in R. stolonifer (Min 1984). The Rhizopus classification 

published by Schipper (Schipper 1984) separated the genus into three groups—R. 

microsporus, R. stolonifer, and R. arrhizus (=oryzae)—based on rhizoid branching, 

growth temperature and the size of sporangia and sporangiophores. In 2006, Abe et al. 

(Abe et al. 2006) confirmed the same taxonomic grouping in the first molecular 

phylogenetic study of the genus. In 2007 Liu et al. (Liu et al. 2007) organized the 

genus into 10 species and seven varieties using ribosomal DNA (rDNA) and 

orotidine-5’-monophosphate decarboxylase (pyrG) sequences. In the same year, 

Zheng et al. (Zheng et al. 2007) reanalyzed the data from Liu et al. (Liu et al. 2007)  

along with morphological data, and they instead divided the genus into eight species. 

Due to uncertainties in the phylogenetic analyses (specifically concerning the 

placement of R. americanus syn. R. stolonifer), Abe et al. (Abe et al. 2010) in 2010 

used rDNA ITS, actin-1, and translation elongation factor 1α (EF-1α) sequences to 

confirm the eight-species division of Rhizopus. The fungal species database Index 

Fungorum (http://www.indexfungorum.org) identifies 11 Rhizopus species, whereas 

https://paperpile.com/c/uw1XuV/QwoP
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zygomycetes.org (http://zygomycetes.org/index) lists 13, 11 of which might be valid 

taxonomic names and represent bona fide species. However, most Rhizopus samples 

in culture collections belong to four species or species complexes: R. microsporus, R. 

stolonifer, R. arrhizus (or R. oryzae), and R. delemar (or R. arrhizus var. delemar). 

Other Rhizopus species are rarely collected or deposited in culture collections and 

lack representation within sequence databases (Table 1). These rare species were thus 

the first targets for whole-genome sequencing to better understand their 

environmental, medical, and biotechnological applications. Except for species chosen 

for genome sequencing projects, only a handful of genes or DNA regions have been 

sequenced in other Rhizopus species. Therefore, few known variable nucleotide sites 

are available to resolve relationships between Rhizopus species, and published 

phylogenies of single or multiple genes differ in topology, even with the inclusion of 

the same genes or gene regions (Liou et al. 2007, Liu et al. 2007, Abe et al. 2010, 

Hoffmann et al. 2013). Single-gene phylogenies can be inconsistent with the species 

phylogeny due to insufficient or conflicting phylogenetic signals caused by non-

uniform rates of molecular evolution or genetic exchange among lineages. Inferences 

of species phylogenies from one gene, or a few genes, assume that each gene shares 

the same evolutionary history as the whole organism, an assumption that is not 

consistently supported (Fitzpatrick et al. 2006). Sampling a larger number of genes 

permits the resolution of the phylogenetic relationship as well as analysis of conflict 

among individual genes.  

The main goal of this study was to elucidate major evolutionary trajectories in 

Rhizopus using previously published whole-genome sequences supplemented with 

additional new genomes generated in this project. We have produced a genus-level 

phylogeny of four species using phylogenomic approaches and compared the 



topology to single-gene phylogenies of genes that are important in the Rhizopus 

reproductive cycle. We compared our consensus species tree to the gene trees of RNA 

helicase (rnhA) (Calo et al. 2017), a gene adjacent to the sex mating locus, and the 4-

dihydrotrisporin-dehydrogenase (tsp2) gene that is involved in the synthesis of 

trisporic acid, a trigger of the mating process in mucoralean fungi (Wetzel et al. 

2009). We also assessed the contribution of transposable elements and genome 

duplication to the variance in genome size across the genus, as has previously been 

deduced for R. delemar and other mucoralean fungi (Ma et al. 2009, Corrochano et al. 

2016). We also directly compared our phylogenetic results with a morphological 

phylogeny of the genus and found that they are congruent.   

 

MATERIALS AND METHODS 

Genome sequencing, assembly, and annotation 

Cultures of R. azygosporus strain CBS 357.93 and R. stolonifer strain LSU 92-RS-3 

were grown on 1% potato dextrose agar (PDA, NEOGEN, Lansing, MI, USA). Three 

0.5×0.5-cm pieces were cut from the edge of 5-day-old colonies and homogenized in 

a Waring Blender for further use as inoculum in liquid potato dextrose broth (0.5%). 

Cultures were grown in 250-mL Erlenmeyer flasks in 50 mL of medium on a shaker 

at room temperature for five days in three replicates. Before harvesting, the samples 

were examined microscopically to confirm the absence of bacterial or fungal 

contamination. Consolidated tissue was filtered through sterilized Miracloth (Skory 

and Ibrahim 2007) and washed twice in sterile distilled water before DNA extraction. 

The mycelial biomass was then lyophilized for one to two days and ground in liquid 

nitrogen with a mortar, pestle, and sterilized sand. DNA was extracted with 2× CTAB 

buffer following a modified DNA chloroform extraction technique (Gardes and 



1993). To prevent nucleic acid degradation, the samples were not incubated in a water 

bath prior to the addition of chloroform. The sample quality was verified by SYBR® 

Safe staining on 0.8% agarose gels to detect nucleic acid contamination and traces of 

degradation. The total quantity of high molecular weight DNA was estimated using 

Quantity One
®

 1-D analysis software with a Gel Doc UV transilluminator (Bio-Rad, 

Hercules, CA, USA). Genomic DNA was sequenced in 2×100 paired-end reads on 

Illumina HiSeq 2000 at the High-Throughput Genomic Sequencing Facility of the 

University of North Carolina, Chapel Hill, NC, USA, and assembled using Celera v. 

8.2. The analysis also incorporated the high-quality assembly of R. delemar strain RA 

99-880, the first published genome of a Mucorales species (Table 2, (Ma et al. 

2009)). 

Genome annotation was performed with MAKER (v. 2.31.8) (Holt and Yandell 2011) 

Augustus (2.7), SNAP (v. 2013-11-29) (Korf 2004), and GenemarkHMM (4.32) 

training. When available, we also considered mRNA and protein evidence using 

sequences from either the target species or closely related species (within the 

Rhizopus clade). The Rhizopus oryzae model was used for organisms on which 

Augustus had not been previously trained. SNAP was retrained using the results from 

the first run of MAKER and used to improve the gene models for a second round of 

annotation from the retrained prediction parameters following the best practices for 

the MAKER annotation protocol. Repeat masking was performed using Repeat 

Masker (4-0-5) through the MAKER pipeline, using fungi as the model organism. 

Analyses were run using the High-Performance Computing Cluster in the Institute for 

Integrative Genome Biology at the University of California, Riverside, CA, USA,  

 

Taxon sampling 



A total of 21 Rhizopus genomes were obtained from GenBank and the Joint Genome 

Institute (JGI) to represent the three major Rhizopus lineages: microsporus, arrhizus 

(= oryzae/delemar), and stolonifer (Table 2). We also selected two outgroup 

genomes from the genus Mucor: M. circinelloides strains 1006PhL and B8987.  

 

Phylogenomic resolution of the fungi 

Phylogenetically informative orthologous genes from a pan-Eukaryotic dataset were 

selected (James et al. 2013). In total, 192 orthologs previously identified as primarily 

single-copy genes across 39 eukaryotic species were aligned with TCoffee (Magis et 

al. 2014) and incorporated into Profile Hidden Markov Models (HMM) implemented 

in HMMER (Wheeler and Eddy 2013). Each HMM was searched against the 

predicted proteome from the 23 sampled species in this study. For each ortholog, the 

highest scoring protein sequence in each species was identified by hmmsearch with a 

significance cutoff of 1
-10

. A multiple sequence alignment of orthologous sequences 

was generated by aligning the homologous protein sequences to the marker HMM 

using hmmalign. These alignments were trimmed with TrimAl (Capella-Gutiérrez et 

al. 2009) with the -strictplus parameter. 

Gene trees were constructed using RAxML with the ‘-f a’ fast bootstrapped tree 

method on the trimmed individual alignments using PROTGAMMAAUTO and 100 

bootstrap replicates to assess the clade support. The alignments were concatenated 

into a single super matrix alignment, and the complete tree was inferred using the 

RAxML ‘-f a’ fast bootstrapped tree method and PROTGAMMAAUTO model and 

100 bootstrap replicates. 

 

Comparative genomics of sexual reproduction genes 



We used BLASTP to search against predicted proteomes of each Rhizopus genome 

(Altschul et al. 1990) for RNA helicase (rnhA, accession numbers), which is adjacent 

to the sex (mating type) locus (Gryganskyi et al. 2010), and 4-dihydrotrisporin-

dehydrogenase enzyme (tsp2, accession AM937248), which is required for 

pheromone production (Wetzel et al. 2009). The highest scoring contigs were 

searched for high mobility group (HMG) domains and triose phosphate transporters 

(tptA) in close vicinity to rnhA. A gene cluster consisting of an HMG domain-

containing gene flanked by rnhA, with or without tptA, was considered the putative 

sex locus.  

The sequences of the genes found in or near the sex locus were aligned using 

MUSCLE (Edgar 2004). The alignments were visually inspected, and ambiguous 

regions were excluded using Mesquite v. 3.2 (Maddison and Maddison 2018). The 

alignments for the rnhA tree consisted of 235 amino acid characters. The alignment 

for the tsp2 tree consisted of 138 amino acid characters for 17 Rhizopus species, and 

the tsp2 sequence from Mucor mucedo (Wetzel et al. 2009) was used as the outgroup. 

Maximum likelihood (ML) for all trees was estimated using GARLI-2.0 (Bazinet et 

al. 2014). Phylogenetic support was assessed by 1,000-bootstrap analysis using 

PAUP* 4.0a109 (Swofford 1998). 

 

Phylogenetics of ecological and morphological characters 

We selected 16 non-molecular characters to generate a data matrix for phylogenetic 

reconstructions and to assess the morphological similarities between the main 

Rhizopus clades. Non-molecular data were collected directly from pertinent literature 

(Pidoplichko and Mil’ko 1971, Schipper 1984, Benny et al. 2001, Zheng et al. 2007, 

Jennessen et al. 2008), as well as from our own microscopic observations of cultures 



of R. arrhizus, R. delemar, R. microsporus, and R. stolonifer (Figure 1). Sporangia 

were isolated from five- to seven-day-old colonies cultured on 1% malt extract agar 

(MEA, Sigma-Aldrich, St. Louis, MO, USA), and observed with 10× to 40× objective 

lenses on an Olympus BH-2 microscope. Micromorphological features of the 

sporangia, sporangiospores, and sporangiophores, as well as the presence or absence 

of zygospores, rhizoids, and stolons, were taken into account. Additionally, we 

included two ecological characters (growth temperature and substrate), which are also 

considered to be important for the taxonomy of the genus (Table S2).  

The phylogeny of the morphological characters was constructed using maximum 

parsimony (MP) in PAUP* 4.0a146 (Swofford 1998) with 1,000 bootstrap iterations 

with 10 random additions per replicate as a criterion for clade robustness. 

 

Transposon analysis  

Transposable elements (TEs) were identified and annotated using de novo and 

homology-based approaches. Candidate TEs were identified de novo with the inverted 

repeat finding tool irf (Doerks et al. 2002) and RepeatModeler (Jurka et al. 2005). 

These sequences were clustered with cd-hit and scanned for protein domains related 

to transposons using the PFAM and CDD protein domains at pfamscan.pl, with 

HMMer wrapper and RPSTBLASTN+ v. 2.4.0+. TE candidates with coding regions 

that are similar to proteins related to transposon proteins were used. These were 

merged with RepBase and used as a reference in RepeatMasker (Smit et al. 2015). 

The RepeatMasker output was checked and corrected with in-house scripts, and only 

hits with scores higher than 200 were considered. Two datasets were generated for 

each genome: one with all TEs with RepeatMasker scores higher than 200 and the 

other with TEs that also retained similarity to typical TE-encoded protein domains. 



 

Data availability 

De novo genome assembly, annotation, and raw sequence reads of the R. azygosporus 

and R. stolonifer are available in the NCBI Genome and SRA database linked to 

BioProject accession number PRJNA418064 and as accession numbers 

PJQM00000000 and PJQL00000000. Accession numbers of genome sequence and 

assembly of Rhizopus sp. strains from other studies utilized in this study are listed in 

the Table 2. Morphological and physiological data for non-molecular phylogenic 

analyses and their encoding are in the Supplementary Table S1. The types of 

detected transposable elements, their analysis with domains, summary and original 

figures are in the Supplementary Table S2. Sequence and structure of the sex gene 

loci are deposited in NCBI Nucleotide database under the accession numbers 

HQ450311-12, HQ450315-16 (R. arrhizus), HQ450313 (R. delemar), MG967658 (R. 

stolonifer), MG967659-60 (R. microsporus var. azygosporus). Sequences of single 

copy genes for RNA helicase and 4-dihydrotrisporin-dehydrogenase enzyme are 

deposited in NCBI Nucleotide database under accession numbers MG97275-98 and 

MG97299-324. 

 

RESULTS 

Whole-genome sequencing 

Genome assemblies of Rhizopus strains were produced with sequencing depths 

ranging from 10× to 144×. The assembled genome sizes varied three-fold in the five 

R. microsporus strains, from 25.348 Mb in ATCC 52813 strain to 75.133 Mb in CDC 

B9738 strain. In the remaining Rhizopus strains, the assembly size was an average of 

40 Mb, ranging from 29.733 Mb to 38.026 Mb in R. stolonifer, 37.254 Mb to 45.263 



Mb in R. delemar, and 37.464 Mb to 47.535 Mb in R. arrhizus. Due to the genome 

size in R. microsporus strains the gene number varied widely, from 8,847 in ATCC 

52813 strain to 17,671 in UMSOM B9645 strain, with an average 16,010 genes over 

all five strains tested. In other Rhizopus species the gene counts ranged from 11,387 

to 12,951. The GC content was similar among species and varied from 32.5% to 

37.5% (36% on average). The technology and quality of the sequencing data 

significantly influenced the quality and number of predicted genes. For example, 

lower quality sequencing results yielded assemblies with only 4,430 predicted genes 

in R. azygosporus CBS 357.93, which is less than half the number of genes recovered 

from other assemblies in the species complex.  

 

New phylogeny of the main lineages in the genus Rhizopus 

The genus Rhizopus is a well-defined monophyletic group that is distinct from other 

genera of Mucorales (Figure 2A, (Spatafora et al. 2016)). There are four major 

species or species complexes in this genus: the microsporus, stolonifer, arrhizus, and 

delemar clades. All of these lineages are distinct and represent reciprocally 

monophyletic clades with significant statistical support.  

The R. microsporus clade is sister to the other members of the genus, and the 

genomes of the R. microsporus varieties (var. chinensis and var. rhizopodiformis) are 

grouped among other isolates of this species, further supporting their subspecies rank. 

The R. stolonifer strains are sister to a clade of two closely related species R. arrhizus 

and R. delemar. This phylogenetic tree enables corrections of some species 

misidentifications, namely M. racemosus B9645 (which is correctly identified as R. 

microsporus) and M. ramosissimus strain NRRL 97-1192 (which is correctly 

identified as R. arrhizus). In addition, strain NRRL 21789 (which was previously 



mistakenly identified as R. oryzae (Gryganskyi et al. 2010) is actually a strain of R. 

delemar. As expected, R. azygosporus CBS 357.93 is part of the R. microsporus 

clade, as demonstrated for other R. azygosporus strains by Abe et al. (Abe et al. 

2006), Zheng et al. (Zheng et al. 2007), and Dolatabadi et al. (Dolatabadi et al. 2014). 

We built phylogenetic trees from two single genes (rnhA and tsp2) that are likely to 

be important for the sexual reproduction process in these Rhizopus species (Wetzel et 

al. 2009, Gryganskyi et al. 2010, Schulz et al. 2016). In both phylogenies, R. 

stolonifer is included in the R. arrhizus/delemar clade but this clade is distinct from 

the R. microsporus clade. Despite the poorly resolved placement of R. stolonifer, the 

phylogeny of the rnhA and tsp2 genes shares the same topology as our supermatrix 

tree of 192 orthologs with strong bootstrap support (Figures S1-2). Phylogenetic trees 

were constructed from non-molecular characters to assess the relationships among the 

three major clades of Rhizopus independently of the sequence data. The tree 

topologies recovered from the non-molecular parsimony analysis were congruent with 

the phylogenomic tree. In both analyses, R. stolonifer is sister to the closely related 

species R. arrhizus and R. delemar, whereas R. microsporus is sister to all of these 

taxa (Figure 2B). 

 

Genome size is highly variable, even within species 

Genome size varied widely among the examined Rhizopus genomes. R. microsporus 

genomes are the smallest. Rhizopus microsporus var. azygosporus CBS 357.93 and R. 

microsporus var. microsporus ATCC 52813 had the smallest genome sizes at 16 and 

26 Mb respectively (Figure 3). Surprisingly, the assembled genome sizes varied 

nearly three-fold between R. microsporus strains, with the largest assembled genomes 

in strains B9645 (~66 Mb) and B9738 (~75 Mb). The two other R. microsporus 



genomes (strains M201021 and B7455) are comparable to the average genome size of 

44.5 Mb observed in the R. stolonifer and R. arrhizus/delemar clades. 

 

Role of transposons in genome size and structure 

All of the analyzed genomes contain more than 40% repetitive sequences (Figure 3). 

However, only ~10% of those repeats are likely to be active transposons with intact 

transposase-coding regions; the remainder of the repetitive regions are composed of 

either simple repeats or remnants of ancient transposons. The repetitive content also 

correlates with the assembly quality. The best assembled genome of R. delemar 

contains the largest number of transposons and the greatest fraction of genome 

content occupied by repetitive sequences. 

The GC content of the Rhizopus genomes ranges from 32.5% for R. microsporus 

B9645 to 37.5% for R. microsporus 52813. The GC content can have dual influential 

roles in transposon biology: on one hand, AT-rich regions are favored as transposition 

sites, but on the other hand, the GC content is influenced by the mobile elements 

themselves. Transposons tend to insert into transposon-rich regions, possibly 

producing a genomic niche for the acquisition of additional elements. 

Mucorales do not seem to have efficient or deployable genome defense mechanisms 

against transposable elements; some Mucorales species appear to have rampant 

transposon proliferation. The most widespread elements are from the LINE (L1 and 

RTE) and LTR retrotransposon (Ty3/Gypsy) families, which are prevalent in most 

eukaryotic genomes. Rhizopus genomes harbor 12 to 165 copies of DIRS elements 

with a YR transposase and only single cases of Ty1/Copia elements. DNA 

transposons with DDE transposases from the super-families Mutator-like, Merlin, 

PIF-Harbinger, and Tc1/Mariner are present in all genomes. Notably, remnants of 



Caulimovirus sequences with pol fragments are present in one-third of the analyzed 

genomes (Figure 4, Table S3). 

 

Mating type locus variation among Rhizopus species 

The mating type or sex loci of heterothallic mucoralean fungi are defined as either (+) 

or (-) based on a sex gene that encodes a HMG domain-containing protein, flanked by 

an RNA helicase (rnhA) on one side and a triose phosphate transporter (tptA) on the 

other (Schulz et al. 2016, Lee and Idnurm, 2017). However, deviations from this 

composition are observed in all Rhizopus genomes. For example, in R. arrhizus and R. 

stolonifer, a large gene with a BTB domain (contained in BR-C, ttk and bab genes) 

flanks the sex gene opposite rnhA, and the (+) and (-) R. microsporus strains and (+) 

R. stolonifer lack a flanking tptA. BLAST searches of the R. stolonifer (-) genome 

identified a mating locus that is structured similarly to those in (-) strains of R. 

arrhizus except that the sex gene of R. stolonifer does not have a tptA homolog 

adjacent to it. The resolution of the sequence for a (+) isolate of R. stolonifer is 

currently too low to resolve the sex locus in this species (Figure 5). Adjacent to the R. 

microsporus sex locus are genes encoding transcription factors (sagA) and a 

glutathione reductase (glrA), which are located adjacent to the sex locus in other 

mucoralean fungi (Idnurm 2011, Schulz et al. 2016). In most species, the edges 

between the conserved sequences on either side of the divergent sex locus are 

generally clearly defined. Rhizopus microsporus var. azygosporus contains two sex 

loci. Alignment of each against the other reveals the equivalent of idiomorphic 

regions carrying either sexM or sexP genes. However, in the case of R. microsporus, 

there is an additional of approximately 500 bp region (dashed grey in Figure 5), 

where the identity between the two mating types is 92%. 



 

DISCUSSION 

Inadequacy of single-gene phylogenies to resolve relationships within Rhizopus 

The genus Rhizopus has been traditionally divided into three large clades based on 

spore size: sporangiospores ranging in diameter from 6.5 µm in R. microsporus, 8 to 

10 µm in R. arrhizus, and up to 13 µm in R. stolonifer (Schipper 1984, Zheng et al. 

2007). This division is also supported by our phylogenetic tree based on non-

molecular characters (Figure 2B). Such a division lends itself to simple microscopic 

identification, especially for the most commonly found species in the genus.  

However, different single-gene phylogenies have produced sharply contrasting 

results. A phylogeny built with ITS sequences places R. stolonifer as sister to the 

remainder of the Rhizopodaceae, with R. arrhizus, R. delemar and R. microsporus 

forming a single clade. Additionally, this ITS phylogeny groups the genera Syzygites 

and Sporodiniella within Rhizopus in a sister relationship to R. stolonifer (Walther et 

al. 2013). Phylogenies built using other rDNA loci (e.g. 18S and 28S) also place R. 

stolonifer at a basal position, while R. microsporus occupies the most distant branch 

of the tree (Abe et al. 2006). Similar results were obtained by Liou et al. (Liou et al. 

2007) using the 28S D1-D2 region of rDNA for 34 strains of the genus Rhizopus, and 

by Voigt et al. (Voigt et al. 1999) using 18S sequences of six Rhizopus strains. The 

clade that includes R. arrhizus and R. delemar in these single-gene phylogenies is 

placed either independent of the R. microsporus and R. stolonifer clades, or in close 

relationship to the R. stolonifer complex (Abe et al. 2006). In the trees produced by 

Abe et al. (Abe et al. 2010) using a greater number of strains and genes (ITS, actin-1 

and EF-1α), the trees were generally congruent with those described previously. 

However, the elongation factor 1-alpha (EF-1α) phylogeny placed the R. stolonifer 



group between the R. microsporus and R. arrhizus/delemar clades. Quite different 

results were obtained by Liu et al. (Liu et al. 2007), who used ITS and pyrG 

phylogenetic trees for 23 Rhizopus isolates, placing the R. microsporus clade at the 

base of the genus while R. arrhizus/delemar formed the most distant clade. 

The inconsistencies in topologies vary depending on which genes are analyzed or 

which phylogenetic methods are used. The discrepancies demonstrate that single-gene 

approaches are of limited value in generating a phylogeny that robustly resolves 

members of the genus Rhizopus. The use of multiple genes (actin, EF-1α, 18S, and 

28S rDNA) within the broader phylogenetic context of the entire Mucorales places R. 

stolonifer as the most distant clade within Rhizopus, together with Sporodiniella and 

Syzygites, although R. microsporus was placed sister to the rest of the Rhizopodaceae 

family (Hoffmann et al. 2013). 

Here, using 192 orthologous protein-coding genes derived from whole-genome 

sequencing of representative species of the genus Rhizopus, we obtained a robust and 

well-supported phylogeny for the genus. The tree topology supports the findings of 

Liu et al. (Liu et al. 2007) and suggests that R. microsporus is a monophyletic clade 

sister to other Rhizopus clades (Dolatabadi et al. 2014), while R. stolonifer is sister to 

R. arrhizus and R. delemar. All four species are monophyletic, although R. arrhizus 

and R. delemar are closely related and are not differentiated based on morphology 

(Gryganskyi et al. 2010). Our tree topology is also congruent with that obtained by 

Chibucos et al. (Chibucos et al. 2016) using 76 orthologous proteins from the 

genomes of 16 Rhizopus strains. Our results are further supported by a non-molecular 

phylogenetic tree that was built using 14 morphological and two ecological 

characters. Including genome data of other Rhizopus species in future analyses might 

alter the status of some species. We suspect that in the future there will be a reduction 



in the number of accepted species since some of these taxa may actually be 

phylogenetically nested within R. arrhizus, R. delemar, R. stolonifer or R. 

microsporus. There is some early evidence of this pattern; rDNA data suggest that  

R. sexualis is likely part of the R. stolonifer clade (Abe et al. 2006). However, other 

species delimiting criteria can be applied to some species which exhibit homothallic 

life cycle (R. homothallicus, R. sexualis) compared to the rest of the species which are 

known to be heterothallic.    

 

Transposons as agents that impact genome size 

Most genomes of Rhizopus species contain numerous simple sequence repeats 

(Figure 3) and have a genome size of ~45 Mb. This is relatively large compared to 

other fungi, although most of the available genomes represent species in the Dikarya 

(Ascomycota and Basidiomycota) (Stajich 2017).  

Larger genomes generally harbor more mobile elements (Elliott and Gregory 2015), 

and genome inflation may be due to incomplete elimination of transposons arising 

from whole genome duplication and/or inefficient or weakened genome defense 

mechanisms, which has been observed in other taxa (Chuong et al. 2017). The 

genome composition of DNA transposons, LTR retrotransposons, and LINE 

retrotransposons is typical of most fungi and similar to other Mucorales (Muszewska 

et al. 2011). LTR retrotransposons and Tc1/Mariners have been described as the most 

abundant transposons in R. delemar (Ma et al. 2009). Transposon proliferation may 

have occurred alongside whole-genome duplication (WGD) events, or transposon 

proliferation may even be a mechanism that influences genome duplication (Ma et al. 

2009, Carbone et al. 2014).  



 

Additional evidence for a common genome duplication in the Mucorales 

Genome size correlates with the number of chromosomes. Only a handful of studies 

from a single Korean research group have explored Rhizopus karyotypes. They 

reported a wide range of chromosome numbers, from six in R. oligosporus (=R. 

microsporus) to 16 in R. nigricans (=R. stolonifer). However, these studies, which are 

more than three decades old, reveal conflicts even between different isolates of the 

same species (synonyms) (Min 1984, Flanagan 1969, Ganguly and Prasad 1971). 

Based on the data we present here, the higher chromosome count might be consistent 

with whole-genome expansion events. 

Mapping the genome size onto our phylogenetic tree (Figure 2) suggests that smaller 

ancestral Rhizopus genomes expanded two-fold in several branches, possibly through 

incomplete duplication, hybridization, or other mechanisms of genome expansion. 

This size variation is consistent with the occurrence of multiple genome duplication 

events during the evolution of species within the genus Rhizopus (Ma et al. 2009). 

Striking evidence for duplication events is present in R. microsporus, with genomes 

of double (49 Mb) or even nearly triple the size (65 to 75 Mb) of the smallest genome 

sequenced in this study. The genome sizes of other clades of the genus Rhizopus (R. 

arrhizus, R. delemar, and R. stolonifer) are larger (45 Mb on average) but also more 

uniform compared with the R. microsporus clade. One of the possible reasons for a 

larger genome size and potential evidence of genome duplication or triplication could 

also be hybridization between different species of this genus as observed by Schipper 

et al. (Schipper et al. 1985). Evidence of genome duplications—both recently and in 

the past—in Rhizopus mirrors previous observations from analysis of other 



mucoralean lineages (Corrochano et al. 2016). However, obtained data on genome 

size, sequencing coverage and the number of genes and transposons should be treated 

with caution. The quality of genomic DNA, the sequencing technology, and the 

genome assembly methods all have a large impact on the final genome. These 

technical, non-biological factors could be important and might account for the 

differences in genome sizes in some of the clades. For example, the genomes of R. 

arrhizus average 42.4 Mb in size but deviate by ±5 Mb between samples with no 

evidence of genome duplication. Similar deviation occurs within the other clades 

suggesting that additional genomes will help to identify the sources of variation 

between genomes in the same clades.  

 

Structure of the mating type/sex locus 

All of the Rhizopus genomes we examined contain a clear sex gene cluster (Idnurm et 

al. 2008, Gryganskyi et al. 2010, Lee and Heitman, 2014). The structure of the sex 

locus and the relationship of the surrounding genes are not fully understood in 

Mucorales, especially with the increasing number of Mucorales genome sequences 

becoming available. The presence of the glrA homolog (which encodes a putative 

glutathione reductase) instead of the tptA gene in both R. microsporus (+) and (-) 

strains, in close proximity to rnhA, is also observed in the closely related homothallic 

taxon Syzygites megalocarpus. RNA helicase (rnhA) mediates RNAi-dependent 

epimutational silencing in Mucor circinelloides (Calo et al. 2017). Thus, it can be 

inferred that R. microsporus has maintained the ancestral structure of the mating locus 

that is common to other mucoralean fungi.   



Our data suggest that the structure of the mating locus is flexible, even within a single 

genus, and that the arrangement of the gene triplet tptA – sexP/sexM – rnhA is not 

universally conserved among Mucorales species. We did not identify a tptA gene in R. 

stolonifer (+) strains, but rather a predicted protein-coding gene (arbA) containing a 

BTB domain. The same gene configuration has been found in both R. arrhizus and R. 

delemar (Gryganskyi et al. 2010). In addition, the intermediate regions between the 

genes in this cluster in R. stolonifer are much larger than in sex loci of other 

mucoralean fungi, and the arbA gene is reversed in orientation compared to R. 

arrhizus (+) strains. The finding of the unusual mating locus structure in R. stolonifer 

(+) could be an artifact of the genome assembly process.  

The R. microsporus var. azygosporus strain CBS 357.93 had low sequence coverage 

and resulted in a poor genome assembly of just 16 Mb. Nonetheless, sufficient 

information was gained to characterize the sex genes in this strain and to show that it 

carries homologs of both sexM and sexP. Rhizopus azygosporus was described as a 

new species based on its formation of azygospores, a zygospore-like cell that forms in 

a parthenogenic manner without the fusion between two “gametes” (Yuan and Jong 

1984). Subsequent analyses revealed strong similarities to R. microsporus, and hence 

its reduction to a varietal status (Schwertz et al. 1997, Zheng et al. 2007). The 

presence of both transcriptional regulators (which distinguish the two mating types or 

sexes in heterothallic species) within a single strain is one mechanism that leads to 

homothallism in fungi. Whether CBS 357.93 represents an unreduced fusion event 

between (+) and (-) strains of R. microsporus or a true example of homothallism is not 

yet clear. Improved genome sequencing of CBS 357.93 and other R. azygosporus 

strains may help to clarify. Although more data are needed, evidence from this strain 



suggests that one mechanism by which genome duplication could occur in the 

Mucorales is through the fusion of strains of opposite sex. 

 

A new understanding of the evolution of Rhizopus 

Rhizopus is an enigmatic genus comprising species that are ubiquitously found in 

nature and that play important roles in agriculture, industry, and human health. 

Despite the widespread prevalence of Rhizopus, understanding the evolution of 

species within the genus has remained challenging. Our study used a genome-wide 

phylogenomic approach to provide robust resolution of species within Rhizopus. The 

included Rhizopus genomes separated into three major clades with significant 

bootstrap support: R. microsporus, R. stolonifer, and a clade containing the closely 

related species R. arrhizus and R. delemar. Strains from the R. microsporus clade 

have both the smallest and the largest genomes, ranging from 26 to 75 Mb, possibly 

caused by recurrent whole-genome duplication events and/or hybridization. 

Additional duplication events have given rise to two morphologically distinct yet 

closely related clades of R. stolonifer and R. arrhizus (including R. delemar or R. 

arrhizus var. delemar), the genomes of which underwent incomplete duplication, with 

an average size ranging from 38 to 48 Mb. However, in addition to duplication events, 

the number of transposable elements is also positively correlated with a larger 

genome size and can lead to genome inflation. A comparison of the mating type loci 

in these species showed a flexible architecture in which only two genes—sex and 

rnhA—are consistently adjacent to one another. A comprehensive sampling of all 

known species of the genus Rhizopus and two closely related genera, Syzygites and 

Sporodiniella, will further resolve lineage relationships and establish a comparative 



framework to continue studying the evolution of genome size and gene content in 

mucoralean fungi.  
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Morphology of Rhizopus species. (A) R. delemar CBS 390.34 colony on MEA after 

three days of cultivation at 30 °C. (B) Intact and germinating sporangiospores of R. 

delemar CBS 390.34. Arrows indicate spores of different sizes. Scale bar = 10 μm. 

(C) Zygospores with unequal suspensors. C1, C2, and C3 show R. microsporus CBS 

344.29 azygospores; these were formed in the absence of a mating partner and are 

morphologically different from typical zygospores because they are smaller in size 

and have a single suspensor. Scale bar = 10 μm. (D) R. microsporus CBS 700.68 

sporangiophore with columella. Scale bar = 10 μm. (E) R. arrhizus var. arrhizus CBS 

330.53 sporangiospore release and columella. Scale bar = 10 μm. (F) Sporangiophore, 

rhizoids, and pigmented hyphae of R. arrhizus var. arrhizus CBS 330.53. Scale bar = 

10 μm, (G) R. stolonifer CBS 926.87 stolons. Scale bar = 50 μm. (H) R. stolonifer 

CBS 926.87 empty sporangiophore. Scale bar = 50 μm.  

 

Figure 2  

Genome-based maximum likelihood phylogeny and parsimony phylogeny based on 

non-molecular characters. (A) Rooted maximum likelihood tree of the genus Rhizopus 

based on 192 orthologous genes. Misidentified strains are indicated in quotes: “Mucor 

racemosus” B9645 = R. microsporus B9645 and “Mucor ramosissimus” 97-1192 = R. 

arrhizus 97-1192. Genome size is indicated in bold after the strain name. (B) 

Unrooted parsimony tree of 16 non-molecular (14 micromorphological and two 

ecological) characters. Morphological and physiological data for different strains of 

the same species are consolidated in the tree except for those strains that differ in at 

least one character. Thick branches denote statistically significant bootstrap values. 

 

 



Figure 3 

Genome size and repeat content in Rhizopus genomes. Colored boxes are used to 

highlight the species identity of each strain.  

 

Figure 4 

Number of transposons with ORFs typical of LTR/LINE/DNA/Helitron elements. 

Colored boxes are used to highlight the species identity of each strain. 

 

Figure 5 

The structure of the mating type (sex) loci in representative strains of the four 

Rhizopus species and in the outgroup Mucor circinelloides (NCBI sequence accession 

numbers are HQ450311-12, HQ450315-16 (R. arrhizus), HQ450313 (R. delemar), 

MG967658 (R. stolonifer), MG967659-60 (R. microsporus var. azygosporus), 

HM565940-41 (M. circinelloides). Note that the structure of the mating type locus is 

shown for R. arrhizus and R. delmar together; these two closely related species share 

a similar arrangement in the mating type locus. The color-coding for each gene is 

listed above the M. circinelloides homologs, except for arbA (which is listed above 

the R. stolonifer graphic). Red arrows indicate sexP and orange arrows indicate sexM 

genes. Genes depicted in white are genes that were not previously found physically 

linked with the sex loci in Mucorales species. The grey bars above the diagrams 

indicate the idiomorphic regions that differ between (+) and (–) strains. Genome 

sequence is available for only a (+) strain of R. stolonifer, so the extent of the 

idiomorphic region, and the nature of the (–) form are unknown. There is a remnant of 

a transposable element (ψTn) between the arbA and sexP genes in R. stolonifer. For 



R. azygosporus, both sexM and sexP idiomorphic sequences are found in the same 

strain. Dashes indicate spacing of 1 kb. 

 

Figure S1 

Maximum Likelihood phylogeny of the genus Rhizopus based on putative RNA 

helicase (rnhA), flanking gene that is adjacent to the sex gene within the mating locus 

of mucoralean fungi. Mucor circinelloides was used as the outgroup (NCBI sequences 

accession numbers MG97275-98). 

 

Figure S2 

Maximum Likelihood phylogeny of the genus Rhizopus based on 4-dihydrotrisporin-

dehydrogenase (tsp2) of genus Rhizopus, an enzyme of the sex hormone pathway in 

mucoralean fungi. Mucor mucedo was used as the outgroup (NCBI sequences 

accession numbers MG97299-324). 



Table 1.  

Census of Rhizopus taxa in three major culture collections and the NCBI databases (as of May 5, 

2017). The four species with the greatest number of identified isolates are shown in bold. 

Species ATCC Westerdijk 

Institute (CBS-

KNAW) 

CABI GenBank 

records
a 

PubMed 

records 

R. arrhizus 137 76
b 39

b
 7,451

b 2133
b 

R. caespitosus - 1 - 14 15 

R. circinans 7 - - 12 11 

R. delemar -
c 12 - 2,824 155 

R. homothallicus 2 2 6 23 34 

R. lyococcus - 3 - 8 4 

R. microsporus
d 70 48 29 3,645 527  

R. niveus 1 - - 72 127 

R. schipperae 2 1 - 27 14 

R. sexualis 3 3 4 39 19 

R. stolonifer 30 18
e 14 299 413 

Rhizopus sp.f 1 3  - 269 4182 

 

a - Including all genes 

b - Including R. arrhizus and R. arrhizus var. delemar 

c - Together with R. arrhizus 

d - Including R. azygosporus and R. oligosporus 

e - Including R. stolonifer var. reflexus 

f – Not identified to the species level 

 



Table 2.  

Origin of the genome data  

Species 

 

Collection and 

strain 

BioProject Size, 

Mb 

Gene 

number 

GC% Sequencing 

method 

Coverage  Assembly Isolated from 

Rhizopus arrhizus         

 NRRL 13440 PRJNA186013 43.351 11,871 35.2 Illumina HiSeq 86.09× MaSuRCA 

v.1.9.2 

tracheal biopsy 

 NRRL 18148 PRJNA186014 47.535 12,599 35.0 -//- 22.51× -//- sinus 

 NRRL 21396 PRJNA186017 42.783 11,715 35.2 -//- 64.45× -//- sinus 

 UCLA 99-113 PRJNA186016 41.453 11,995 35.4 -//- 18.30× -//- bone marrow 

 UCLA 99-892 PRJNA186020 37.464 11,675 35.2 -//- 85.45× 

 

Velvet v.1.2.07 lung transplant 

(Mucor 

ramosissimusa) 

UCLA 97-1182  

 

PRJNA186024 42.900 12,951 35.3 -//- 73.11× 

 

MaSuRCA 

v.1.9.2 

bronchial wash 

 CDC B7407 PRJNA184879 43.272 11,664 34.9 -//- 47.77× -//- nasal cavity 

 UCLA HUMC 02 PRJNA186018 39.011 11,785 34.6 -//- 103.09× Velvet v.1.2.07 sinus 

R. delemar         

 NRRL 21446 PRJNA186022 36.999 11,402 35.5 -//- 75.13× -//- face biopsy 

 NRRL 21447 PRJNA186021 37.254 11,387 35.5 -//- 80.49× -//- brain, ear 

 NRRL 21477 PRJNA186019 38.882 11,523 34.8 -//- 80.75× -//- face biopsy 

http://www.ncbi.nlm.nih.gov/bioproject/PRJNA186013
http://www.ncbi.nlm.nih.gov/bioproject/PRJNA186014
http://www.ncbi.nlm.nih.gov/bioproject/PRJNA186017
http://www.ncbi.nlm.nih.gov/bioproject/PRJNA186016
http://www.ncbi.nlm.nih.gov/bioproject/PRJNA186020
http://www.ncbi.nlm.nih.gov/bioproject/PRJNA186024
http://www.ncbi.nlm.nih.gov/bioproject/PRJNA184879
http://www.ncbi.nlm.nih.gov/bioproject/PRJNA186018
http://www.ncbi.nlm.nih.gov/bioproject/PRJNA186022
http://www.ncbi.nlm.nih.gov/bioproject/PRJNA186021
http://www.ncbi.nlm.nih.gov/bioproject/PRJNA186019


 NRRL 21789  

(R. oryzaeb) 

PRJNA186015 42.018 11,414 35.4 -//- 41.53× MaSuRCA 

v.1.9.2 

sinus 

 UCLA 99-880  

(R. oryzaeb) 

PRJNA13066 45.263 12,384 

(17,467)  

35.6 Sanger ABI 14.00× Arachne v.1.0 brain abscess 

R. microsporus         

(R. azygo-

sporusc) 

CBS-KNAW 357.93  PRJNA418064 15.920 4,430 36.8 Illumina HiSeq unknown Celera v.8.2 tempeh 

 ATCC 52813 PRJNA205957 25.348 8,847 

(10,905) 

37.5 -//- 143.6× AllPathsLG  

v. R41043 

soil 

 CDC B9738 PRJNA211903 75.133 21,091 33.3 -//- 37.36× MaSuRCA 

v.1.9.2 

abdomen 

 CCTCC M201021 PRJNA179339 45.700 15,773 

(20,087)  

36.9 -//- 100.00× SOAPdenovo 

v.1.12 

liquor leaven 

 CDC B7455 PRJNA211913 48.730 16,729 37.2 -//- 37.36× -//- abdomen 

(M.racemosusd) UMSoM B9645  PRJNA211902 65.533 17,671 32.5 -//- 49.38× -//- floor 

R. stolonifer         

 LSU 92-RS-03 PRJNA418064 29.733 11,621 37 -//- unknown Celera v.8.2. sweet potato 

 CDC B9770 PRJNA184886 38.026 11,778 35.5 -//- 42.23× MaSuRCA 

v.1.9.2 

contaminated 

product 

M. circinelloides (outgroup)         

http://www.ncbi.nlm.nih.gov/bioproject/PRJNA186015
http://www.ncbi.nlm.nih.gov/bioproject/PRJNA13066
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA418064
http://www.ncbi.nlm.nih.gov/bioproject/205957
http://www.ncbi.nlm.nih.gov/bioproject/PRJNA211903
http://www.ncbi.nlm.nih.gov/bioproject/PRJNA179339
http://www.ncbi.nlm.nih.gov/bioproject/PRJNA211913
http://www.ncbi.nlm.nih.gov/bioproject/PRJNA211902
https://www.ncbi.nlm.nih.gov/bioproject/PRJNA418064
http://www.ncbi.nlm.nih.gov/bioproject/PRJNA184886


 DUSoM 1006PhL PRJNA172437 34.135 12,693 39.5 -//- 45.00× ALLPATHS 

v.R43527 

unknown 

 CDC B8987 PRJNA184880 36.701 13,407 39.5 -//- 100.43× -//- BL line 

Incorrectly identified strains are shown in parentheses: a - R. arrhizus, b - R. delemar, c and d - R. microsporus, 

-//-  = same as above, 

Culture collections: ATCC – American Type Culture Collection; CBS-KNAW - The Centraalbureau voor Schimmelcultures, Westerdijk Fungal 

Biodiversiry Centre at institute of the Royal Netherlands Academy of Arts and Sciences; CCTCC - China Center for Type Culture Collection; CDC - 

Center for Disease Control and Prevention; DUSoM – Duke University, School of Medicine, LSU – Louisiana State University; NRRL - Northern 

Regional Research Lab, ARS Culture Collection of USDA; UCLA – University of California, Los Angeles; UMSoM - University of Maryland, School 

of Medicine. 

http://www.ncbi.nlm.nih.gov/bioproject/PRJNA172437
http://www.ncbi.nlm.nih.gov/bioproject/PRJNA184880
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192 orthologs 
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