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Orchestrated control of filaggrin–actin
scaffolds underpins cornification
Danuta Gutowska-Owsiak 1,2, Jorge Bernardino de La Serna 1,3, Marco Fritzsche1,4, Aishath Naeem5,
Ewa I. Podobas1,6, Michael Leeming1, Huw Colin-York 1, Ryan O’Shaughnessy5,7, Christian Eggeling1,8,9 and
Graham S. Ogg1

Abstract
Epidermal stratification critically depends on keratinocyte differentiation and programmed death by cornification,
leading to formation of a protective skin barrier. Cornification is dynamically controlled by the protein filaggrin, rapidly
released from keratohyalin granules (KHGs). However, the mechanisms of cornification largely remain elusive, partly
due to limitations of the observation techniques employed to study filaggrin organization in keratinocytes. Moreover,
while the abundance of keratins within KHGs has been well described, it is not clear whether actin also contributes to
their formation or fate. We employed advanced (super-resolution) microscopy to examine filaggrin organization and
dynamics in skin and human keratinocytes during differentiation. We found that filaggrin organization depends on the
cytoplasmic actin cytoskeleton, including the role for α- and β-actin scaffolds. Filaggrin-containing KHGs displayed
high mobility and migrated toward the nucleus during differentiation. Pharmacological disruption targeting actin
networks resulted in granule disintegration and accelerated cornification. We identified the role of AKT serine/
threonine kinase 1 (AKT1), which controls binding preference and function of heat shock protein B1 (HspB1),
facilitating the switch from actin stabilization to filaggrin processing. Our results suggest an extended model of
cornification in which filaggrin utilizes actins to effectively control keratinocyte differentiation and death, promoting
epidermal stratification and formation of a fully functional skin barrier.

Introduction
Orchestrated keratinocyte differentiation and death are

indispensable for the formation of the stratum corneum,
the outermost layer of the epidermis which confers barrier
function to both physical insult and infection. During
differentiation, keratinocytes withdraw from the cell cycle
and move suprabasally throughout the layers up to the
stratum granulosum of the epidermis1, where they
undergo a modified form of programmed cell death

(cornification)2. Cornification involves sequential expres-
sion of epidermis-specific proteins such as keratins, lor-
icrin, involucrin and filaggrin, changes in the stiffness of
cellular membranes, aggregation of intermediate fila-
ments, release of lamellar bodies, removal of organelles,
and formation of an insoluble “cornified envelope”
(reviewed in ref.3). Aberration of cornification results in
clinical consequences, ranging from the propensity
toward infections, formation of a mechanically fragile
barrier, and skin dehydration to allergen sensitization and
inflammation4–8.
Filaggrin (filament-aggregating protein) is a key com-

ponent in epidermal cornification and barrier formation9.
Multiple filaggrin units are posttranslationally hydrolyzed
from a large precursor protein (profilaggrin) during ker-
atinocyte differentiation10. Profilaggrin is observed in a
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form of dense protein aggregates, “keratohyalin granules”
(KHGs)11,12; the main source of biologically active filag-
grin monomers. Filaggrin release from KHGs into the
cytoplasm leads to binding and collapse of intermediate
filaments initiating rapid cell death13; consequently, tight
control of the monomer release is critical to support skin
barrier function. Consistently, null mutations in the
filaggrin gene (FLG) strongly associate with moderate to
severe atopic dermatitis (AD)14,15. Dysregulation of
expression or profilaggrin processing leads to reduced
barrier integrity, observed in skin diseases, animal models,
and in vitro5,16–22. Moreover, the presence of FLG
mutation also predisposes to additional allergic manifes-
tations (asthma, rhinitis, food, and contact allergy)15,23–26.
Intracellular filaggrin is known to be involved in the

stimulation of keratinocyte differentiation via N-terminal
domain signaling27,28, having effects on the cortical
actin and associating keratin filaments, causing their
aggregation into bundles13,29–31. However, despite the
well-established role of filaggrin in skin physiology and
disease, little is known about the organization of the
protein within the cell, mechanisms governing its release
from the granules, and interactions with the cytoplasmic
skeleton during keratinocyte differentiation and progres-
sion of cornification. These aspects may provide answers
with potential for clinical applications and require
clarification.
One factor involved in keratinocyte differentiation and

progression of cornification might be the actin cytoske-
leton. Cortical actin networks are dynamic structures
comprising filaments undergoing continuous turnover
and growth at barbed ends and shrinkage at pointed
ends32. The filaments are cross-linked and redistributed
by the action of molecular motors such as myosin-II33.
Two filament subpopulations compose the cortex in
eukaryotic cells34,35: long formin-nucleated actin fila-
ments and short actin filaments nucleated by the Arp2/3
complex. Arp2/3-nucleated F-actin accounts for the
majority of the total F-actin in various cell types; the small
(10–20% of the total) fraction of formin-mediated F-actin
predominantly participates in force generation during
transport of molecular components and adjustment of
mechanical properties of the cells.
However, additional proteins can also be involved.

Specifically, the heat shock protein 27 (HspB1), a mole-
cular chaperone implicated in cellular stress resistance,
may play an important role. HspB1 is known to bind and
stabilize actin36–38; on the other hand, HspB1 is also
present in KHGs of terminally differentiated keratino-
cytes, where it is believed to facilitate filaggrin processing.
HspB1 interaction with filaggrin has been shown to spe-
cifically depend on the activity of AKT serine/threonine
kinase 1 (AKT1), a cellular signaling mediator expressed
late during epidermal terminal differentiation39. The

mechanism involving actin, HspB1, and AKT1 could
therefore provide an important link between KHGs and
the cytoskeleton, potentially critical during cornification.
However, it mostly remained elusive until now because of
a profound lack of imaging technology allowing to
monitor cytoskeleton dynamics and filaggrin.
Here, we overcome this limitation by employing

advanced imaging, including super-resolution STED
microscopy, and identified multiple events leading to
cornification of human keratinocytes. We collectively
describe these as “granule maturation”; they comprise
morphological changes in the shape, as alignment,
aggregation, and nucleus-directed migration of the KHGs.
We reveal the involvement of muscle α- and non-muscle
β-actin, forming a core and scaffold-like structures asso-
ciated with the granules, respectively. Functional experi-
ments with actin-specific inhibitors highlighted the role of
these structures in supporting granule shape and integrity,
and regulating important aspects of the cornification
process, i.e., membrane stiffness. We show an AKT1-
mediated switch of the binding preference of HspB1 from
actin to filaggrin, likely facilitating the dissolution of the
actin cytoskeleton and subsequent filaggrin processing.
Our results point to an extended model of keratinocyte
differentiation in which the “profilaggrin/filaggrin sys-
tem”, already known to include accessory proteins (e.g.,
processing enzymes), additionally employs actin micro-
filaments to effectively control KHG maturation and
integrity, thus preventing premature progression of cor-
nification and cell death.

Results
Maturation of filaggrin-containing KHGs during
keratinocyte differentiation
Since differentiation processes during stratification and

stratum corneum formation are complex and involve
multiple organellar modifications2, we hypothesized that
changes in filaggrin-containing KHGs are also inevitable.
To test this, we first immunolabeled filaggrin in epidermal
sheets from healthy donors (N= 8; ex vivo condition). In
order to visualize the stages of KHGs, from nascent to
terminal and to ensure we were not missing any of the
filaggrin+ signal due to inaccessibility of monoclonal
antibody epitopes (e.g., due to processing or 3D fold of
profilaggrin within the granules), we chose a polyclonal
anti-filaggrin antibody (G-20). We have validated the
reagent by colocalization studies with other anti-filaggrin
antibodies (monoclonal N-terminal-specific 15C10 and
polyclonal N-terminal site-specific H-300) and showed
the same staining pattern (Figure S1). We imaged KHGs
by confocal microscopy and carried out 3D reconstruc-
tion to spatially localize them with respect to their posi-
tion within the epidermis, and to quantify their geometric
properties (volume, surface area, and sphericity) (Fig. 1)
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and observed increased granule expression toward the
uppermost layers of the epidermal tissue (Fig. 1a), in line
with differentiation progression. We found a small pool of
granule aggregates, detected as structures more than 3 µm
in axial length (representing 4.5% of the total granules;
pooled data; red dots) and a large pool of smaller single
KHGs with lengths <3 µm (black dots; see also Figure S2).
While the larger aggregates maintained their geometrical

parameters across all epidermal layers, smaller KHGs
increased in number and elongated toward the outer layer
(Fig. 1b–d and Figure S2). Moreover, some of the KHGs
adapted a ring-like morphology in the uppermost layers
(Fig. 1e, f). The occurrence of large aggregates in the
adjacent epidermal locations (subjected to the same
staining conditions), as well as of “open” half-ring KHGs
(Fig. 1e, f) excluded the possibility that these structures

Fig. 1 Filaggrin-containing keratohyalin granules undergo shape alterations and aggregation during formation of stratified epidermis. a
3D scanning confocal images of fixed epidermal sheets from healthy donors harvested by dispase isolation and stained with anti-filaggrin antibody
(G-20 primary and Alexa Fluor 488 secondary antibody). The color scale from red to orange depicts the normalized height relative to the bottom of
the epidermis (the most upper epidermal layers at the microscope cover glass in green). Nuclei (blue and representative blue arrow) visualized by
Hoechst. The red arrow indicates a representative elongated granule in the mid-layer. The green arrow indicates a representative granule aggregate
in the uppermost layer. Scale bar 10 µm; microscope cover glass at the top. The data are representative of eight donors. b–d Geometric analysis of
granule distribution within the epidermis based on topological parameters: volume (b), surface area (c), and sphericity (1 marks round granules while
values <1 indicate elongated shapes) (d) relative to normalized height (relative to the bottom of the epidermis). Black dots indicate granules smaller
than 3 µm in axial length and red dots indicate granules larger than 3 µm in length; n= 9170 granules in 120 cells in N= 8 donors. e, f Magnifications
of 3D scanning confocal images of epidermal sheets (as in a) highlighting the morphology of ring-shaped keratohyalin granules (orange; arrows): e
scale bar 10 µm; f scale bar 5 µm and nuclei stain removed for clarity. The figure is representative of five donors

Gutowska-Owsiak et al. Cell Death and Disease  (2018) 9:412 Page 3 of 18

Official journal of the Cell Death Differentiation Association



are artifacts due to incomplete antibody penetration into
large structures. Moreover, the ring-like granules pre-
sented a striking similarity to the, largely overlooked, ring-
like KHGs detected previously by the (antibody-inde-
pendent) electron microscopy of the skin and oral
mucosa40–42, further validating our findings.

KHG single-cell dynamics in keratinocytes
We next switched to a controllable well-established

in vitro “calcium-switch” model to investigate changes in
KHG morphology within single cells, using cultured
NHEKs (normal human epidermal keratinocytes). In
these experiments, calcium concentrations corresponded
to the physiological gradient present in the epidermis,
known to stimulate keratinocyte differentiation43. We first
employed this model to visualize filaggrin within KHGs at
defined calcium levels [Ca2+]= (0.06–5.0 mM). Typically,
cells positive for filaggrin KHGs are scarce in cultures
under proliferative (low calcium) conditions. Still, a small
fraction of cells (~1–2%, depending on the donor and
passage) express KHGs due to contact-dependent signals
from the neighboring cells; these were analyzed further
(Figure S4A).
Confocal images of filaggrin-positive keratinocytes

revealed diversity in the shapes and positions of the
KHGs, both with respect to distance to the nucleus as well
as to calcium concentration (Fig. 2). With increasing
differentiation status, the primarily spherical or amor-
phous KHGs elongated and increasingly polarized,
showing parallel alignment along the basal–apical axis of
the cell (Fig. 2c, e, g, i). KHG size increased toward
proximity of the nucleus (Fig. 2i, inset) where they often
aggregated; this aggregation was the strongest at high
calcium concentrations. Additionally, with increasing
calcium levels, we noted the appearance of ring-like pre-
sentations of the larger KHGs and the formation of tube-
like morphologies (Fig. 2c–h and Movie 1). The ring-like
granules were primarily observed at the concentration of
[Ca2+]= 2.5 mM in the proximity of the nucleus or within
its limits (Fig. 2i and Figure S4B). Again, the coexistence
of large, fully stained granules and granule aggregates
(often in the same cell; Fig. 2i), the presence of tubular
morphologies regardless of the small granule size (Fig. 2e,
inset), and the presence of half-rings (Fig. 2e, inset in h
and Movie 1; white arrows) excluded artifacts due to the
incomplete antibody penetration during staining. The
features we observed mirrored our previous findings in
the uppermost epidermal layer. Finally, at the highest
calcium level tested ([Ca2+]= 5mM), KHGs disintegrated
leaving little morphological definition; we could not
detect tubular or ring-like formations. As a consequence,
filaggrin staining at this calcium level was speckled and
almost continuously distributed throughout the cyto-
plasm, i.e., the cell was completely filled with filaggrin+

material (Fig. 2k–l and Figure S4B), suggesting that the
last stage of KHG maturation is fragmentation and filag-
grin release. Since, as mentioned, the G-20 antibody is
polyclonal and could potentially give some off-target
staining, we have repeated these experiments with the N-
terminal-specific, well-characterized anti-filaggrin anti-
body (15C10) (Figure S4C). The staining showed the same
pattern, and we could observe the respective morphology
and location changes of the KHGs. This, again, assured us
that the antibody we used is, indeed, specific to the pro-
filaggrin/filaggrin-containing granules and does not stain
nonrelevant protein aggregates, such as aggregates of
filaggrin-processing products or nonrelevant proteins.
Detailed analysis of the granules’ position (distance to

the nucleus) and morphology (volume, surface area, and
sphericity) in the 3D reconstructed images confirmed
distinct correlations between both characteristics at dif-
ferent calcium levels (Figs. 2 and 3, and Figures S4B
and S5). At low calcium levels, granules were evenly
scattered within the cytoplasm. At higher calcium levels,
KHG volume and surface area decreased consistently
toward the periphery, leading to the accumulation of
larger and more elongated granules near the nucleus.
Further, we observed changes mirroring the findings in
the epidermis; the concentration of KHGs and their
geometric properties (length, surface area, volume, and
sphericity) increased monotonically with calcium con-
centration until [Ca2+]= 1.5 mM, then plateaued, or
decreased. To ensure that the changes in morphology and
localization were not artifactual and could be observed
in time and space, we carried out live imaging of
NHEKs undergoing differentiation (Supplementary
Text 1, Figure S6, and Movie 2–3).

Actins form structures associating with filaggrin-
containing KHGs
Since changes in the shape and location of organelles

likely involve mechanical forces, we next investigated the
actin cytoskeleton; the best known structure and the most
probable candidate for intracellular force generation. We
observed both natural collapse of F-actin during kerati-
nocyte differentiation and the coinciding filaggrin and
actin colocalizations (Supplementary Text 2 and Fig-
ures S7–S9); this prompted us to investigate the spatial
organization between actin- and filaggrin-containing
KHGs in more detail, by turning to super-resolution
3D-STED microscopy with increased axial (~300 nm) and
lateral (~80 nm) resolution compared to confocal micro-
scopes. Multicolor 3D-STED microscopy revealed the
existence of actin-based KHG-associated scaffold struc-
tures ([Ca2+]= 1.5 mM) (Fig. 4 and Figure S10). We
found differential roles for actin isoforms; α-actin shaped
a central core (Fig. 4a, b), while β-actin appeared to form a
cage-like structure surrounding the filaggrin+ material
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Fig. 2 (See legend on next page.)
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(Fig. 4c, d). Otherwise, abundantly expressed in kerati-
nocytes as a part of the cytoplasmic actin network, γ-
actin, appeared to be excluded from the scaffold struc-
tures (Figure S11); increased colocalization between this
isoform and filaggrin at higher calcium concentration, and
was therefore most likely due to increased γ-actin colo-
calization with material released to the cytoplasm and not
KHGs themselves.

Actin disruption increases filaggrin expression but disrupts
granule integrity
To investigate the role of the scaffolds in KHG matura-

tion, we next blocked actins pharmacologically with
latrunculin B (LatB). LatB sequesters actin monomers,
inhibiting F-actin polymerization in favor of F-actin depo-
lymerization. The treatment resulted in a profound dis-
ruption of the F-actin network within few minutes

(Figure S12). After 24 h, we observed changes in filaggrin
staining and KHG formation (Fig. 5, left and middle panels).
First, compared to untreated cells, both the abundance of
the protein and formation of the “mature” tubular forms
was dramatically increased already at low calcium con-
centrations [Ca2+]= 0.06mM, suggesting accelerated dif-
ferentiation in the presence of LatB. Higher calcium levels
([Ca2+]= 1.5mM) combined with LatB treatment resulted
in a dramatic increase in filaggrin expression and more
filaggrin+ cells. Here, granules were smaller and surrounded
by filaggrin+ material dispersed in the cytoplasm (Fig. 5d),
as in terminally differentiated keratinocytes at [Ca2+]= 5
mM described above, i.e., the final stages of granule
maturation (compare Fig. 2k and Figure S4B).
To further dissect this, we used cytochalasin D (CytD)

(Fig. 5, right panels), which selectively inhibits short Arp2/
3-complex nucleated filaments by blocking growing

(see figure on previous page)
Fig. 2 Filaggrin-containing granules undergo shape changes during calcium-induced keratinocyte differentiation in vitro. a–l 3D (left
panels, a, c, e, g, i, k) and 2D (selected X–Y planes; right panels, b, d, f, h, j, l) scanning confocal images of fixed normal human epidermal
keratinocytes (NHEKs) subjected to “calcium switch” at different calcium concentrations [Ca2+]= 0.06–0.5 mM (as labeled on the left) to promote
their differentiation (granules immunostained with G-20 anti-filaggrin antibody (green) and nuclei with Hoechst (blue)). Scale bar 5 µm. White-
bordered insets: magnifications of volumes or areas marked as white boxes in the respective overview images (in j, two additional insets are given as
the 2D images of the same area at different axial planes as indicated). Red-bordered insets in the right panels: x–z axial zoom-ins along red lines
marked in the 2D x–y overviews (white lines depict the axial extent of the marked granules with given values; white arrows in the 600 µm above and
below the equatorial plane represent points of material release). Red-bordered inset in i: zoom-in of volume marked by the red box in the overview
image with blue colors rendering the nucleus stain and blue-to-red depicting the granules with their respective color-coded normalized volume size
(see color map label). Table in e: geometrical parameter values of granules marked by the respective numbers in the overview image with Vol=
volume, Sur= surface, Len= longest axial length, and Wid= longest lateral axial width. Graph insets in the right panels: Intensity profiles along the
white lines marked in the images with values giving the lengths of the lines in the profiles. Data are representative of three separate experiments

Fig. 3 Filaggrin-containing granules undergo a shift in spatial distribution and locate in the proximity and within the limits of the cell
nucleus. a–c Characterization of KHG population from confocal scanning microscopy data of fixed NHEK cells at different calcium switches, i.e.,
differentiation stages of Fig. 2. a Granule volume, b surface area, and c sphericity as a function of the distance to the nuclear membrane. Color
coding: cold colors––low calcium= low differentiation state; warm colors––high calcium= high differentiation state (see also color bar). The dashed
vertical line represents the reference point of all granule locations (nuclear membrane). The distance |r| is the absolute value of the differences of
granule spatial coordinates; consequently, granules located within the nucleus had at least one negative spatial coordinate (x, y, or z). Insets:
dependence of the average value of the respective parameter on calcium concentration [Ca2+]; >50 cells analyzed; error bars= SDM; p < 0.01, n=
11152 in ~50 cells analyzed; data are representative of three separate experiments. Red and blue lines represent fitted polynomial trend curves to the
data. In c, average values are given for granules smaller than 3 µm in axial length (with red trend line) and for granules larger than 3 µm in length
(with blue trend line)
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barbed ends of actin filaments, while having less-
pronounced effects on long formin-mediated fila-
ments32,34. We observed less-severe disruption of the
cytoskeleton and differences in granule morphology
compared with LatB treatment; KHGs expressed under
CytD treatment were of the “intermediate” phenotype. At
a low calcium level, granules were increased in number
but relatively “immature” compared with the respective
tubular phenotypes in LatB-treated cells (Fig. 5a, b, mid-
dle and right panels). In contrast, multiple “mature”
tubular formations were present in CytD-treated kerati-
nocytes at 1.5 mM calcium. Unlike in the corresponding
LatB-treated cells, however, the integrity of these KHGs
was preserved; we did not observe cytoplasmic filaggrin+

material. Similarly, we observed an intermediate level of
phenotypic changes in cell morphology (Fig. 5).
Combined, these observations suggest that the shape

and integrity of the KHGs are maintained predominantly
by long formin-mediated actin filaments, while short

Arp2/3-mediated filaments are required to prevent the
escape of filaggrin+ material, resulting in N-terminal
domain signaling, leading to premature keratinocyte dif-
ferentiation and death.

AKT1 mediates a switch between actin stabilization and
filaggrin processing
Next, we investigated whether AKT1 and HspB1 played

a role in actin disruption during epidermal terminal dif-
ferentiation. As mentioned, HspB1 binds and stabilizes
actin36,37. It further specifically binds to filaggrin in an
AKT1-dependent manner during epidermal terminal
differentiation to facilitate filaggrin processing, and is
present in the KHGs of differentiated keratinocytes39. We
therefore treated rat epidermal keratinocytes with wort-
mannin, which is known to inhibit AKT1 in keratino-
cytes44; colocalization between filaggrin and HspB1 in
granules was prevented with wortmannin treatment
(Fig. 6a). In untreated cells, actin was predominantly

Fig. 4 Actins form granule-associated scaffold structures. a–d Two-color 3D-STED images of fixed NHEKs 24 h after “calcium switch” to (Ca2+)=
1.5 mM, immunostaining for filaggrin (green, left panels; G-20 primary antibody, Alexa Fluor 488 as secondary antibody), and different actins (red;
middle panels); right panels overlay of both. α-Actin (1A4 primary, secondary Alexa Fluor 568) and β-actin (4C2 primary, Alexa Fluor 568 secondary),
side view (a, c) and top view (b, d). Scale bar 1 µm. Deconvolved images. Data are representative of three separate experiments
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cortical, with only small amounts of actin colocalizing
with HspB1 in the cytosol, while it extensively colocalized
with HspB1 upon wortmannin treatment (Fig. 6b).
Expression of the processed form of filaggrin was also
altered, as was interaction between the two proteins
measured by immunoprecipitation (Fig. 6c). Immuno-
precipitation experiments highlighted an increased

interaction between HspB1 and β-actin upon conditions
reducing AKT1 function, i.e., both in wortmannin-treated
keratinocytes and those expressing AKT1 shRNA
(Fig. 6d). Wortmannin treatment was similar to shRNA
knockdown in that it reduced both expression of a dif-
ferentiation marker loricrin and phosphorylated AKT
(pSerAKT) (Fig. 6e).

Fig. 5 Actin inhibition increases filaggrin expression but disrupts granule integrity. Scanning confocal images of fixed NHEKs immunostained
for filaggrin (orange, G-20 antibody and Alexa Fluor 488 secondary antibody), F-actin (green, phalloidin-488), and nuclei (blue, Hoechst) without
treatment (left panels), with latrunculin B (LatB, middle panels), and with cytochalasin D (CytoD, right panels) treatment after 24 h of treatment with
(a, b) [Ca2+]= 0.06 mM and (c, d) [Ca2+]= 1.5 mM. a, c 3D deconvolved images and b, d 2D single X–Y plane images. Insets in d: close-ups and
arrows visualize intact granules (right panel) or filaggrin+ clouds (middle panel). Scale bars 10 µm. Data are representative of four separate
experiments
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Fig. 6 AKT1-dependent switch between HspB1 interaction with actin and HspB1 interaction with filaggrin and filaggrin processing. a, b
Confocal microscopy of fixed postconfluent rat epidermal keratinocytes treated with vehicle (DMSO) or 2 μm of wortmannin and stained for nucleus
(blue, DAPI) and a filaggrin (green, Alexa Fluor 488) and HspB1 (red, Alexa Fluor 594) or b HspB1 (green, Alexa Fluor 488) and actin (red,
TRITC–phalloidin). The graphs in each figure show pixel intensity for the red and green channels, respectively, along the line indicated in the
micrographs. Scale bar 10 μm. c, d Co-immunoprecipitation of c HspB1 and filaggrin and d HspB1 and β-actin in postconfluent rat epidermal
keratinocytes treated with DMSO or wortmannin (Wort); or expressing scrambled or Akt1 shRNA as labeled. 10% Input shows total c filaggrin or d
actin (data represent biological replicates: two separate IP experiments). IgH and IgL are IgG heavy and light chains which serve as a loading control
for the immunoprecipitation. Arrowheads show the processed filaggrin species altered by wortmannin treatment, and the filaggrin intermediates
that are immunoprecipitated by HspB1. e Western blot of keratin-10, loricrin pSer 473 Akt, and AKT1, in wortmannin treated or AKT1 shRNA
knockdown keratinocyte (Akt1 ShR, n= 3). GAPDH serves as a loading control
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Actin disruption leads to accelerated cornification
Finally, we explored how changes in actin affect corni-

fication. Cornification involves the formation of a rigid
“cornified envelope” and membrane bilayer remodel-
ing3,45–47, resulting in the increased stiffness of the plasma
membrane. While there are of course certain limitations
of the model when using an in vitro monolayer, terminal
differentiation of keratinocytes (including processes con-
sidered as a part of “cornification”) can be readily
observed in 2D cultures. Hence, we next quantified the
fluidity of the plasma membrane and thus stiffness in live
NHEKs using LAURDAN (6-dodecanoyl-2-dimethylami-
nonaphthalene), a polarity-sensitive lipid analog dye. In
LAURDAN imaging, membrane stiffness is reported as
“general polarization”48–50 (GP; higher values indicate
stiffer membranes). We have developed an approach to
study the advancement of differentiation in live kerati-
nocytes. With this, we found a positive correlation
between calcium concentration (0.06–5mM) and the
membrane stiffness. GP values increased more than
expected following treatment with actin inhibitors (Fig. 7),
mirroring our previous findings on KHGs and cell mor-
phology. Again, we observed differences between treat-
ments; LatB induced a more pronounced increase in GP
values (stiffer membranes) than CytD, with plasma
membranes stiff already at levels of 1.5 mM calcium,
corresponding to the phenotype of a cell progressing
through the cornification process.
Collectively, these findings show that actin disruption

accelerates programs of keratinocyte differentiation and
implicates both long and short F-actin filaments in pre-
venting premature cornification.

Discussion
While filaggrin insufficiency is strongly associated with

multiple inflammatory diseases, relatively little is known
about filaggrin homeostasis and function. Using advanced
microscopy on both human epidermal tissue and cultured
keratinocytes, we show novel details on the structural
organization and dynamics of filaggrin-containing KHGs
during epidermal differentiation and cornification. Our
study suggests an extended model of cornification where
the controlling mechanism for keratinocyte differentiation
and death involves actins, supporting both filaggrin sto-
rage integrity and initial sequestration within KHGs, and
rapid filaggrin release, enabling the formation of a fully
functional skin barrier (Fig. 8). The actin-based cytoske-
leton may offer additional advantages for the control of
KHG maturation, e.g., promoting perinuclear localization
for nuclear expulsion27 and/or filaggrin N-terminal effects
on gene expression28. Actin scaffolds may also help pre-
vent consequences of premature filaggrin escape51 from
the granules into the cytoplasm (Fig. 8a, stages 1–3 and b);
and the eventual cytoskeleton collapse52,53 (Fig. 8a, stages

4–5 and c). Therefore, it likely provides an “on-switch”
supporting cytoplasmic accumulation of filaggrin mono-
mers (Fig. 8a, stage 6), to trigger cell death and stratum
corneum formation. While there is substantial evidence of
the association of filaggrin and KHGs with keratin fila-
ments54, which participate in granule formation (reviewed
in ref.55), keratins do not offer such a mechanism to
control filaggrin release.
Possible scenarios to explain the effects of actin inhi-

bition on KHGs and cornification may include either
cytoskeleton disruption, granule disintegration, or the
interplay of both. Since the effects were not immediate,
they are unlikely to occur due to the disruption of actin
filaments per se, as disassembly signals affect F-actin
organization on a short time scale. Instead, these could be
a direct result of material release from KHGs and trans-
location of the N-terminal domain to the nucleus for
subsequent activation of pro-differentiation signals27,28.
Indeed, the observed unrestricted filaggrin expression and
consequent cornification acceleration following actin
inhibition would support this.
Mechanistically, it is likely that both containment of

granule material and shape/morphology change may
require participation of either short Arp2/3-nucleated
and/or long formin-mediated filaments. Therefore, we
used LatB and CytD, to either generally facilitate F-actin
depolymerization or to selectively inhibit the short Arp2/
3-nucleated filaments, respectively. Albeit with the lim-
itations of keratinocyte monolayers, while we also
observed morphological changes in KHGs, they were less
pronounced in the presence of CytD, indicating that the
actin scaffolds were to a large extent maintained by the
formin-mediated long actin filaments rather than Arp2/3-
mediated F-actin; while short filaments may prevent
excessive leakage of material from the granules.
In addition to constituting a core cytoskeleton, actins

have been implicated in multiple roles in the epidermis,
controlling motility, stratification, wound healing, and
stem cell maintenance53,56–58, as well as responses fol-
lowing barrier disruption59. The varied expression pattern
of actin isoforms in keratinocytes at subsequent differ-
entiation stages suggests their importance during corni-
fication. Currently, we do not yet understand the
abundance of γ1-actin, forming the majority of the cyto-
plasmic actin network in keratinocytes. However, invol-
vement of the actin skeleton in organelle movement has
been well established (reviewed by Cramer60), hence it
could potentially contribute to the observed KHG shift
toward the nucleus.
Multiple actin/actin family genes localize within or

near chromosomal regions identified in linkage and
genome-wide association studies (GWAS) of AD and
psoriasis, including shared loci61–65. Interestingly, defi-
ciency in the actin system results in skin abnormalities
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and linked allergic/atopic phenotypes. Specifically,
Wiskott–Aldrich syndrome patients, in whom a defect in
WASp (Wiskott–Aldrich syndrome protein) has been
identified, present with a severe and difficult-to-treat
dermatitis and allergic manifestations. However, X-
linked thrombocytopenia patients, carrying a different
mutation in WASp, tend to present with milder or no
dermatitis66. WASp and related proteins act as impor-
tant actin reorganization and polymerization activa-
tors67; it has been previously proposed that the mutation

in the WAS gene could contribute to AD73. The exact
role of α- and β-actins in the KHG scaffolds remains
unclear because they could not be selectively inhibited
with chemical inhibitors. However, we show that the
actin-stabilizing protein HspB1 is a potential mediator of
(β-)actin disruption and filaggrin processing during
keratinocyte differentiation by switching the binding
partner from actin to filaggrin, dependent on the
AKT1 status39. Future research should focus on sys-
tematic protein deletion to elucidate the molecular

Fig. 7 Actin disruption leads to accelerated cornification. a–d GP images (a, c) and histograms of GP values over all image pixels generated from
2D scanning confocal images of live NHEKs labeled with the polarity-sensitive lipid analog dye Laurdan; large GP values indicate increased stiffness of
the cellular membranes. Conditions without any treatment (left panels) and with cytochalasin D (CytD, middle panels) and latrunculin B (LatB, right
panels) treatment after treatment at low [Ca2+]= 0.6 mM (a, b) and high [Ca2+]= 1.5 mM (c, d) calcium levels. Scale bar 10 µm. Data are
representative of three separate experiments, at least n= 15 cells per condition. The left (lower values) and right (higher values) peaks in the GP
histograms indicate the cytosolic and membrane components, respectively, highlighting an increase in membrane stiffness for larger calcium levels,
i.e., increased differentiation, and after actin disruption
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interactions and dynamics of different actins with pro-
filaggrin/filaggrin at the molecular level.
In summary, we identified a novel, actin/HspB1/AKT1-

dependent mechanism of filaggrin release fromKHGs, acting
as a switch between differentiation and cell death during skin
barrier formation. Our results show that KHG morphology
and dynamics are more complex than those previously con-
sidered; the mechanism identified may sequentially support
both the development of fully functional stratified live epi-
dermis and drive events, leading to cell death during the
formation of stratum corneum. By addressing the structural
and functional relationships of filaggrin with accessory
molecules (including actins), our study suggests possible
directions for the development of diagnostics and persona-
lized treatment strategies for patients with filaggrin-
associated inflammatory diseases and allergy.

Materials and methods
Human keratinocyte culture and calcium switch
Normal human epidermal keratinocytes (NHEKs) were

purchased from Lonza (Lonza, Basel, Switzerland, neonatal,
pooled). The cells were cultured in KBM-2 media (Lonza,
Basel, Switzerland) at the calcium level of 0.06mM and
subcultured by Accutase (Sigma-Aldrich, Gillingham,
Dorset, UK). Calcium switch was conducted over a period
of 24 h by replacing the culture media with media adjusted
to the desired calcium concentration by CaCl2.

Rat keratinocyte culture
Aliquots of single-cell suspensions were transferred to

culture plates or flasks with modified DMEM (DMEM+)
and placed in the incubator. The media was replaced with
fresh DMEM (Sigma-Aldrich, Gillingham, Dorset, UK)

Fig. 8 Proposed model of filaggrin and actin dynamics during keratinocyte differentiation and cornification. a Different stages of
“keratohyalin granule (KHG) maturation” and actin organization within keratinocytes with plasma membrane (labeled “membrane” with lipid chains,
black, and headgroups, red dots), nucleus (blue), granules (green), actin (1–3 and b: white represents intact filaments; 4–6 and c: white and black
represent compromised filaments), cornified envelope (gray shaded area) vs. increased differentiation, and cornification from bottom to top (left gray
bar): 1) intense profilaggrin expression and local precipitation in the form of nascent KHGs; 2) granule association with the actin network; 3) granule
morphology changes—shape elongation and increase in surface area facilitating the access of processing enzymes for intensified monomer
generation; 4) localization shift toward the nucleus to further enhance pro-differentiation signaling and increase in the shape complexity; 5)
expression of profilaggrin processing enzymes and intensified generation of filaggrin monomers, interaction of monomers with the granule-
associated actin lattice, and actin cytoskeleton collapse; and 6) rapid intracellular release of filaggrin from KHGs, binding of the free filaggrin
monomers to keratin-based intermediate filaments, leading to the collapse of the IF network; stabilization of cornified envelope (CE). (b, c) AKT1-
mediated switch between HspB1/actin and HspB1/filaggrin binding. Zoom-ins into stages marked by black dotted boxes in a: granule elongation (b,
stage 3), and mature granules with disrupted actin scaffold (c, stage 4); light-green areas schematically mark the integrity of granule-associated actin
scaffold

Gutowska-Owsiak et al. Cell Death and Disease  (2018) 9:412 Page 12 of 18

Official journal of the Cell Death Differentiation Association



every 2 or 3 days, and cells were subcultured before they
reach 90% confluency. For transfected cell lines, the cells
were selected using DMEM supplemented with G418
(Sigma-Aldrich, Gillingham, Dorset, UK) at a concentra-
tion of 0.1 mg/ml as this is the concentration that pre-
vented REK cell growth in assays. Cells were collected
after washing the flasks or plates three times with PBS,
followed by trypsinization with 0.25% trypsin (Sigma-
Aldrich, Gillingham, Dorset, UK) for 5 min, and pelleted
after centrifugation at 1600 × g for 20 min at room
temperature.

Epidermal sheet isolation
Skin samples were obtained from healthy donors

undergoing surgery under ethical approval from the UK
National Research Ethics Service (14.NW.1153). Epi-
dermal sheets were isolated by overnight incubation in
dispase (5 U/ml; Sigma-Aldrich, Gillingham, Dorset, UK)
and separation of the epidermis from dermal tissues. For
fluorescent antibody staining, these epidermal sheets were
first incubated with 4% formaldehyde (Sigma-Aldrich,
Gillingham, Dorset, UK), followed by 0.1% Triton X-100
(Sigma-Aldrich, Gillingham, Dorset, UK). The procedure
followed the “Fluorescent antibody staining” protocol
given below from the blocking stage.

Fluorescent antibody staining
NHEKs were grown and subjected to the required

treatment in eight-well cell culture slides (Beckton Dick-
inson), fixed and permeabilized by neat acetone, and
incubated in blocking buffer (5% FCS, Sigma-Aldrich,
Gillingham, Dorset, UK; 2% BSA, Sigma-Aldrich, Gil-
lingham, Dorset, UK in PBS; or 0.4% fish skin gelatin
dissolved in TBS and 0.2% Triton X-100). Filaggrin anti-
body (mouse 15C10 from Leica, Milton Keynes, UK;
rabbit H-300, goat G-20 from Santa Cruz Biotechnology,
Dallas, TX, USA, or FLG01 monoclonal from Genetex,
Irvine, CA, USA in Fig. 6), keratin-10 (rabbit, Abcam,
Cambridge, UK), α-, β- and γ-actin (1A4, 4C2, and 2A3,
respectively; all mouse from Abcam, Cambridge, UK),
HspB1 (rabbit, Abcam, Cambridge, UK) fluorescent
phalloidin-Alexa 488 (Life Technologies/ThermoFisher
Scientific, Waltham, MA, USA), and TRITC–phalloidin
(Sigma-Aldrich, Gillingham, Dorset, UK) and the sec-
ondary antibodies (anti-mouse Alexa 488, anti-mouse
Alexa568, anti-goat Alexa 488, and anti-rabbit Alexa568;
all from Life Technologies/ThermoFisher Scientific,
Waltham, MA, USA) staining was carried out in PBS, and
nuclei were visualized by Hoechst (NucBlue, Life Tech-
nologies/ThermoFisher Scientific, Waltham, MA, USA)
or DAPI. The cells on microscope cover-slides were
mounted with Mowiol-488 (Sigma-Aldrich, Gillingham,
Dorset, UK) or in Prolong Gold anti-fade reagent (Life
Technologies/ThermoFisher Scientific, Waltham, MA,

USA). Data acquisition was carried out on the Zeiss 780,
Zeiss LSM 710 inverted confocal microscope (Zeiss, Jena,
Germany), Nikon Eclipse E600 (Nikon, Tokyo, Japan), or
Leica SP8 (Leica, Wetzlar, Germany) inverted confocal
microscope by recording 2D images in different axial (3D)
planes.

Western blot and immunoprecipitation
Isolated epidermal sheets were incubated in 8M urea

buffer (ReadyPrep Sequential Extraction kit, Reagent 2
plus reducing reagent; Bio-Rad, Hercules, CA, USA) and
sonicated in a water bath for 30 min. Lysates were spun at
4 °C (13,000 rpm, 15min) and run on 7% TA gels (Life
Technologies/ThermoFisher Scientific, Waltham, MA,
USA) in Xcell SureLock Mini-Cell Electrophoresis System
(Life Technologies/ThermoFisher Scientific, Waltham,
MA, USA). Proteins were transferred onto PVDF mem-
branes (iBlot Dry Blot system stacks and iBlot transfer
device; Life Technologies/ThermoFisher Scientific, Wal-
tham, MA, USA). Membranes were incubated in 5%
solution of nonfat milk powder (Sigma-Aldrich, Gilling-
ham, Dorset, UK) in PBS and then with the desired
antibodies overnight. Li-Cor secondary antibodies and Li-
Cor scanning system (Li-Cor Biosciences, Lincoln, NE,
USA) were used for detection.
Immunoprecipitation (IP) was performed in keratino-

cytes lysed with ice freshly made cold-
radioimmunoprecipitation buffer (RIPA) as previously
described39. Lysates were incubated for 4 h at 4 °C in 1/25
v/v agarose conjugated with goat anti-HspB1 antibody
(Santa Cruz Biotechnology, Dallas, Texas, USA). The
following antibodies were used at the following con-
centrations: mouse anti-beta-actin 1:2000 (clone AC13;
Sigma-Aldrich, Gillingham, Dorset, UK), and rabbit anti-
filaggrin 1:500 (sc-30230 (M-290), Santa Cruz Bio-
technology Biotechnology, Dallas, TX, USA).

Live cell staining and observation of keratinocyte
differentiation in live cells
In order to stain live cells intracellularly while main-

taining plasma membrane integrity, we adapted a cationic
lipid-aided intracellular staining protocol described by
Weill et al.68. A mix of either primary anti-filaggrin (G-20;
Santa Cruz Biotechnology, Dallas, TX, USA) or isotype
control (goat; BD, Franklin Lakes, NJ, USA) antibody and
secondary antibody (anti-goat Alexa 488; Life Technolo-
gies/ThermoFisher Scientific, Waltham, MA, USA) was
prepared in low calcium ([Ca2+]= 0.06 mM) keratinocyte
medium (KBM-2; Lonza) at 1:200 dilution. Lipofectamine
2000 cationic lipid reagent (Life Technologies/Thermo-
Fisher Scientific, Waltham, MA, USA) was added at 0.5
µl/ml and incubated for 15min. The cell culture medium
was replaced by Lipofectamine 2000 containing a mix for
2–4 h and then washed off multiple times. The cell nuclei
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were stained using Hoechst (NucBlue Live Ready Probes,
Life Technologies/ThermoFisher Scientific, Waltham,
MA, USA). Calcium-supplemented KBM-2 medium
(Lonza, Basel, Switzerland) ([Ca2+]= 1.5 mM or 5mM)
was added, and imaging (one Z-stack every hour; distance
between each axial layer with a Z-stack: 300 nm) was
carried out on the Leica SP8 confocal microscope (Leica
Microsystems, Wetzlar, Germany) over a period of 24–48
h following the first calcium switch, with temperature and
humidity control.

AKT1 knockdown
Four SureSilencing shRNA plasmids (Qiagen, Paisley,

UK) were used to knock down Akt1 expression in REKs;
shRNA1-GCA CCG CTT CTT TGC CAA CAT,
shRNA2-AAG GCA CAG GTC GCT ACT AT, shRNA3-
GAG GCC CAA CAC CTT CAT CAT, and shRNA4-
GCT GTT CGA GCT CAT CCT AAT, and of these, 1
and 3 were used for further experiments.

AKT1 inhibition and actin perturbation experiments
Wortmannin (Sigma-Aldrich, Gillingham, Dorset, UK),

a PI3 kinase inhibitor, was introduced into REK cells at 2
μM 24 hS1 prior to lysate collection. CytD and LatB were
purchased from either Merck Biosciences, Darmstadt,
Germany, or Abcam, Cambridge, UK. Drugs were added
to the culture medium at the concentration of 5 µM and 2
µM, respectively, and the cells were incubated for variable
amounts of time (between 1min and 24 h); the inhibitors
were washed out from the cultures at the end of culturing
time and cells were fixed.

3D super-resolution STED imaging
The structural role of the different actin monomers and

the tight connection with the filaggrin granules was stu-
died employing 3D super-resolution STED microscopy.
For this purpose, the NHEK cell monolayers at [Ca2+]=
1.5 mM were immunolabeled and fixed in a similar
manner as described before with filaggrin (goat G-20 and
anti-goat Alexa Fluor 488 secondary antibody, Life
Technologies/ThermoFisher Scientific, Waltham, MA,
USA) and α-, β-, and γ-actin (1A4, 4C2, and 2A3,
respectively, and anti-mouse Alexa Fluor 568, Life Tech-
nologies/ThermoFisher Scientific, Waltham, MA, USA).
STED microscopy was carried out on a Leica TCS SP8 3×
gated STED (Leica, Wetzlar, Germany), equipped with a
pulsed supercontinuum white-light excitation laser at 80
MHz (NKT, Copenhagen, Denmark), and two
continuous-wavelength STED lasers at 592 nm and 660
nm. Experiments with filaggrin_488 and actin_568 were
excited at 488 nm, their emission was depleted at 592 and
660 nm detected (employing Leica HyD detectors in gat-
ing mode, time gate for detection was 1.5–6 ns) around
530 nm and 600 nm, respectively. For 3D-STED imaging,

the depletion lasers were split into two different optical
paths, each one with an independent phase plate to form
the doughnut-shaped pattern along the lateral (xy) and
axial (z) direction. By means of a variable beam splitter, a
relative percentage of STED laser power was sent either
into the beam paths for lateral or axial confinement (in
our case 50:50), making possible the increase of resolution
in the three dimensions. A sequential imaging mode was
set to obtain in the first instance the super-resolved
images of each actin monomer employing the 660-nm
STED laser, and later the 592-nm STED laser for the
filaggrin. The 3D obtained images were surface rendered
employing the 3D imaging Leica software. The raw ima-
ges shown in Figure S10 were imported into ImageJ, and
subsequently exported as tiff; a set of a minimum of three
images were taken from three different cellular batches.

Granule data analysis, plotting, and image representation
We employed a multistage data-processing protocol.

Specifically, we implemented several steps of image ana-
lysis for accurate granule localization, quantification and
characterization, plotting, and image representation, using
several image acquisition, analysis, and graphing software.
Briefly, unless stated otherwise; (1) every single confocal
plane of a 3D imaging stack was first deconvolved
employing the Huygens Professional software package
(Huygens; Scientific Volume Imaging, Hilversum, the
Netherlands); (2) the resulting 3D image was surface
rendered (Huygens), and the 3D isosurface was used for
quantitative analysis; (3) a custom-built macro within the
advanced object analysis module of Huygens was used to
localize, quantify, and characterize the geometry of each
individual granule; and (4) the resulting data matrices
were exported into graphing and statistics software, such
as Origin Pro (OriginLab Corporation, Northampton,
MA, USA), MATLAB (Mathworks, Natick, MA, USA),
and Prism 6.04 (GraphPad Software, La Jolla, CA, USA)
for plotting.
The representation of the 2D or 3D images of the epi-

dermis, cells, and granules isosurfaces was realized using
Huygens Professional. The LAX software (Leica SP8,
Leica, Wetzlar, Germany) was employed to generate the
surface-rendered 3D-STED images, the granule 3D video
reconstruction, and the 3D raw images. Fiji (ImageJ; NIH,
US) was used to present the raw 2D confocal images.

Image deconvolution
Reduction of image artifacts due to noise and optical

aberrations (possibly resulting in a reduced accuracy to
localize and geometrically characterize the granules) was
minimized by deconvolution (Huygens Professional; for
details, see https://svi.nl/HuygensDeconvolution). For
deconvolution of the 2D images, we generated a custom
point-spread function by imaging fluorescent beads
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(Figure S3). A theoretical point-spread function defined
by the software (adjusted as a function of the penetration
height/depth) was employed for deconvolution of the 3D
images.

Granule localization and quantitative analysis of geometrical
parameters
To accurately assess the single-cell individual localiza-

tion of the granules in 3D, we used the advanced object
characterization module of the Huygens software package
to identify the center of mass of each granule within the
3D reconstructed images. The resulting x, y, and z coor-
dinates were used to obtain the relative distances of the
KHGs to the nucleus surface and their geometric values.
For the latter, an isosurface was defined as the 3D surface
representation of points with equal fluorescence intensity
values; the geometric parameter “granule volume” mea-
sured the total volume of the isosurface of granules; the
geometric parameter “surface area” measured the total
area of the isosurface of granules; and the parameter
granule “length” measured the largest distance along the
three principal axes of a box enclosing the 3D isovolume
granule. Finally, the sphericity (Sph) parameter, defined as
the roughness of the 3D isosurface of the granules, is a
measure of how close the volume-to-surface ratio was to
that of an ideal sphere

Sph ¼ π1=3 6 � Viso

Aiso

� �2=3
;

where Viso is the 3D isovolume and Aiso is the 3D iso-
surface of the segmented object. For graphical repre-
sentation of the distribution of the geometrical granule
parameters, a custom-written MATLAB batch mode was
designed to read the parameter values along with the
granule’s axial z localization, normalize the latter to the
total height of the respective epidermal sample (sample
number n= 3), and then concatenate the parameter
matrices for all the individual epidermal sample files. The
distributions of parameter values were represented in
scatter-plots (e.g., Figure 1 and E2). Note, Huygens
employs a minimum sampling limit accounting for the
lateral x, y, and axial z spatial resolution of the confocal
microscope which is limited to about 200 nm and 800 nm,
respectively, due to diffraction. Consequently, structures
with vertical spacing below these values cannot be
resolved accurately, and the scatter plot of the geometric
parameter “length” shows discrete patterning. We can
exclude optical aberrations due to imaging depth as a
reason of the geometrical changes, since the deepest lay-
ers were closest to the microscope cover glass (Fig. 1a).
The same analysis procedure was also used to define the
position of the granules with respect to the nucleus in
keratinocytes. Custom-built software algorithm was

designed to determine the distance of each granule to the
nucleus in the same cell. For this, the x, y, and z locali-
zation of each granule was related to the isosurface of the
nucleus. The isosurface of the nucleus was defined as the
3D surface representation of points with equal fluores-
cence intensity with coordinates (x,y,z). Granules resulting
in a negative distance in x and/or y coordinate were
considered to be inside and those with positive distances
along x and y outside of the nucleus. In addition to the
previously defined four geometric parameters, in the
keratinocytes, we also evaluated the axial and lateral width
of the granules, since these parameters provided a more
sensitive analysis with respect to changes in granule shape
upon keratinocyte differentiation. The axial aspect ratio
“AxRatio” is the ratio of the object length to its axial
width, and the lateral aspect ratio “LaRatio” is the ratio of
the object length to its axial width. The values of these
parameters were calculated using a custom-built macro
within the advanced object characterization module of the
Huygens software package, and further transferred to a
custom-written MATLAB batch routine that con-
catenated and translated them into parameter matrices at
each calcium concentration. A scatter plot was generated
depicting the granule geometric parameters as a function
of their distance to the nucleus surface, with cold to warm
colors according to low and high calcium concentrations,
respectively (Fig. 3 and Figure S5). Here, the surface area
of the nucleus is presented at distance r= 1 µm. The
insets of Fig. 3 and Figure S5 depict the average values of
the geometric parameters as a function of the calcium
concentration. Trend curves (red) were fitted to these
data with standard statistically relevant distributions using
a first to third smoothening spline function.

Image controls. Analysis of deconvolved fluorescent beads in
a gel
We employed a control sample consisting of 1-μm-

diameter fluorescent beads (Life Technologies, Waltham,
MA, USA) embedded into a 4% polyacrylamide gel for
testing our imaging system for optical aberrations and for
quantification of the point-spread function in the
deconvolution procedure of the 2D images. The bead
sample was imaged in the same way (e.g., imaging depth)
as for the keratinocytes and the full epidermis. The same
image analysis strategy as for the granules was used to
determine the localization and geometrical parameters of
the beads.

Colocalization analysis in NHEK cells
Colocalization image analysis in rat keratinocytes was

performed using ImageJ software colocalization plug-in.
Otherwise, colocalization analyses were performed on
deconvolved and surface-rendered images employing the
Pearson coefficient in Huygens. Values of close to 0 depict
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no and close to 1 full colocalization. Data retrieved were
plotted in Prism as above; unpaired t-test was used for
comparisons.

Quantification of cornification by Laurdan imaging
Measurements of the plasma membrane stiffness were

carried out on live NHEK monolayers, employing optical
microscopy (assessment of spectral imaging on a Zeiss
780 inverted microscope, Zeiss, Jena, Germany), using 6-
dodecanoyl-2-dimethylaminonaphthalene (LAURDAN;
Sigma Aldrich, Gillingham, Dorset, UK). Fluorescence
emission of Laurdan was excited at 374 nm and recorded
over its whole spectrum from 405 to 600 nm. The inten-
sity of emission wavelengths at 440 ± 10 nm and 490 ± 10
nm was used to obtain the generalized polarization (GP)
value.
Values of GP vary from 1 to –1, where higher numbers

reflect lower fluidity or higher stiffness, while lower
numbers indicate an increase in fluidity. The images were
then analyzed using a custom plug-in compatible with
Fiji/ImageJ, and frequency histograms of the GP values
were generated in Origin Pro (Northampton, MA, USA).
A fit of a double Gaussian distribution to the distribution
allowed determining average GP values, as well as stan-
dard deviations of both populations. The detailed tech-
nical description and its application have been gathered as
a separate manuscript.
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