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Abstract 20 

 21 

The ATP synthase which provides aerobic eukaryotes with ATP, organizes into a 22 

membrane-extrinsic catalytic domain, where ATP is generated, and a membrane-23 

embedded FO domain that shuttles protons across the membrane. We previously 24 

identified a mutation in the mitochondrial MT-ATP6 gene (m.8969G>A) in a 14-year-25 

old Chinese female who developed an isolated nephropathy followed by brain and 26 

muscle problems. This mutation replaces a highly conserved serine residue into 27 

asparagine at amino acid position 148 of the membrane-embedded subunit a of ATP 28 

synthase. We showed that an equivalent of this mutation in yeast (aS175N) prevents 29 

FO-mediated proton translocation. Herein we identified four first-site intragenic 30 

suppressors (aN175D, aN175K, aN175I, and aN175T), which, in light of a recently 31 

published atomic structure of yeast FO, indicating that the detrimental consequences 32 

of the original mutation result from the establishment of hydrogen bonds between 33 

aN175 and a nearby glutamate residue (aE172) that was proposed to be critical for the 34 

exit of protons from the ATP synthase towards the mitochondrial matrix. Interestingly 35 

also, we found that the aS175N mutation can be suppressed by second-site 36 

suppressors (aP12S, aI171F, aI171N, aI239F, and aI200M), of which some are very 37 

distantly located (by 20-30 Å) from the original mutation. The possibility to 38 

compensate through long-range effects the aS175N mutation is an interesting 39 

observation that holds promise for the development of therapeutic molecules.  40 

 41 

 42 
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 46 

1. Introduction 47 

The ATP synthase is found in the inner mitochondrial membrane and catalyzes the 48 

last step in oxidative phosphorylation (OXPHOS) by producing ATP from ADP and 49 

inorganic phosphate using the transmembrane proton gradient, also called the 50 

proton-motive force (pmf), generated during the transfer of electrons to oxygen by the 51 

respiratory chain (RC) complexes (I–IV) [1]. Cryo-EM structures of the bovine Bos 52 

taurus and yeasts Yarrowia lipolytica and Saccharomyces cerevisiae F1FO ATP 53 

synthases, that are basically of the same subunit composition and structural 54 

construction as the human enzyme, have been described recently [2-5]. The ATP 55 

synthase organizes into a membrane-extrinsic F1 catalytic and a membrane-56 

embedded FO domain that are connected by a peripheral and central stalk [4, 6]. ATP 57 

synthase exists as dimers [2, 6] that assemble into long ribbons important for cristae 58 

formation [7, 8], which is crucial with respect to accommodation within the 59 

mitochondrial inner membrane of the OXPHOS respiratory chain complexes and the 60 

ATP synthase in most efficient and native way. 61 

Within the FO, protons are shuttled across the membrane by subunit a and a 62 

ring of identical subunits c (8 in mammals, 10 in yeast). Hydrophilic amino acids of 63 

subunit a allow protons to enter the FO from the IMS. Approximately in the middle of 64 

the membrane the proton can bind to a highly conserved acidic residue of subunit c 65 

helix 2 (cH2) (cE59 in H. sapiens) located at the outer surface of the c-ring. The 66 

binding of a proton on this carboxylate residue disrupts a previously established 67 

electrostatic interaction of cE59 with a highly conserved positively charged arginine 68 

residue in subunit a membrane helix 5 (aH5) (aR159 in H. sapiens) [5, 9, 10]. This 69 

arginine acts as an electrostatic separator between the proton pathway from the IMS 70 

to the middle of the membrane and a second, spatially separated pathway that allow 71 
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incoming protons still bound on the c-ring glutamate to be released into the matrix 72 

[11]. The operation direction of this process is primarily driven by the ion gradient that 73 

causes a ratchet type mechanism of the neutralized c-ring glutamate in the 74 

hydrophobic membrane, which does energetically not allow the back stepping without 75 

externally applied force [9, 10]. After an almost complete revolution of the c-ring, the 76 

glutamate is deprotonated in the aqueous exit channel [12] and the proton is moved 77 

towards the mitochondrial matrix [2, 4-6, 13]. The c-ring is tightly bound to the central 78 

stalk, a three subunit subcomplex of F1 ), which induces upon rotation cyclic 79 

conformational changes in the (αβ)3 catalytic head of F1 that favor synthesis and 80 

release of ATP [14], according to the binding change mechanism [1].  81 

Devastating human neuromuscular disorders (e.g. Neuropathy, Ataxia, and 82 

Retinitis Pigmentosa (NARP) and Maternally Inherited Leigh Syndrome (MILS)) have 83 

been associated to numerous mutations in subunit a [15]. This protein is encoded by 84 

the mitochondrial MT-ATP6 gene. Human cells contain up to thousands copies of 85 

mtDNA [16]. Mutations in this DNA are highly recessive and usually co-exist in 86 

patient’s cells and tissues with wild type mtDNA molecules, a situation referred to as 87 

heteroplasmy. These features make it difficult to precisely know how specific 88 

pathogenic mtDNA mutations influence oxidative phosphorylation. To better 89 

characterize the effects of disease-causing subunit a mutations, we exploited unique 90 

features of Saccharomyces cerevisiae. Mitochondria from this single-celled fungus 91 

and humans show many similarities [17-21], and mitochondrial genetic transformation 92 

can be achieved in this yeast in a highly controlled fashion, by the biolistic delivery 93 

into mitochondria of in-vitro-made mutated mtDNA fragments, followed by their 94 

integration into wild type mtDNA by homologous DNA recombination [22]. Being 95 

unable to stably maintain heteroplasmy [23], it is easy to obtain yeast homoplasmic 96 
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populations where all mtDNA molecules carry a mutation of interest. Owing to its 97 

good fermenting capacity, yeast models of human mitochondrial diseases can be 98 

kept alive when provided with sugars like glucose even when oxidative 99 

phosphorylation is completely inactivated [24, 25].  100 

We used this yeast-based approach to investigate the impact on ATP 101 

synthase of nine subunit a missense mutations identified in patients [15, 25-33]. 102 

Some of these mutations were found to compromise incorporation of subunit a into 103 

ATP synthase, whereas others prevent the functioning of FO without minor or any 104 

assembly defect. While these observations are interesting, it is often difficult to 105 

understand why the mutations are detrimental. Further information may be obtained 106 

by the isolation of intragenic suppressor mutations. In doing so, it is possible to 107 

identify novel amino acids at the original mutation site that are compatible with 108 

subunit a function as well as second-site suppressors that make the primary mutation 109 

no longer or less detrimental.  110 

 We here applied this suppressor genetics approach to a mutation in subunit a 111 

(m.8969G>A, aS148N) that we previously identified in a 14-year-old Chinese female 112 

who initially developed an isolated nephropathy followed by a complex clinical 113 

presentation with brain and muscle problems [33]. With an equivalent of this mutation 114 

(aS175N), yeast fails to grow on non-fermentable carbon sources due to a lack of FO-115 

mediated proton transfer [33]. The isolation of respiratory sufficient revertants from 116 

the mutant aS175N led us to identify four first-site (aN175D, aN175K, aN175I, and aN175T) 117 

and five second-site (aP12S, aI171F, aI171N, aI239F, and aI200M) suppressor mutations 118 

restoring to varying degree ATP synthase function. The results, in the light of a 119 

recently published atomic structure of yeast FO [5, 34], indicate that the detrimental 120 

consequences of the aS175N mutation may result from the establishment of hydrogen 121 
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bonds between aN175 and aE172, a residue that was proposed to be critical for the exit 122 

of protons from ATP synthase towards the mitochondrial matrix [5]. 123 

 124 

 125 

 126 

  127 
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2. Materials and Methods 128 

2.1. Growth media and genotypes  129 

The media used for growing yeast were: YPGA (1% Bacto yeast extract, 1% Bacto 130 

Peptone, 2% or 10% glucose, 40 mg/L adenine), YPGalA (1% Bacto yeast extract, 131 

1% Bacto Peptone, 2% galactose, 40 mg/L adenine), YPEGA (1% Bacto yeast 132 

extract, 1% Bacto Peptone, 3% ethanol, 2% glycerol, 40 mg/L adenine), W0 (2% 133 

glucose, 0.67% Nitrogen base with ammonium sulfate from Difco). SP1: 0.1% 134 

glucose, 0.25% yeast extract, 50 mM potassium acetate. Solid media were obtained 135 

by adding 2% Bacto Agar (Difco, Becton Dickinson). The genotypes of the strains 136 

used in this study are listed in Table 1. Growth curves were established with the 137 

Bioscreen CTM system. 138 

2.2. Selection of respiratory-sufficient revertants from the yeast aS175N mutant 139 

The aS175N mutant (strain RKY105) was subcloned on rich 2% glucose plates. Forty 140 

single colonies were picked up and individually grown in 10% glucose. Glucose was 141 

removed from the cultures by two washings with water and 108 cells from each 142 

culture were spread on rich glycerol/ethanol (YPEGA) plates. The plates were 143 

incubated at 28°C for 25 days. Maximum 3 revertants per plate were retained for 144 

further analysis. The revertants were purified by subcloning on glucose plates. They 145 

were crossed on W0 minimal medium to strain D273-10B/60 devoid of mtDNA (o), 146 

and the diploid cells were tested for their ability to grow on glycerol. The ATP6 gene 147 

was amplified by PCR with primers oATP6-1 148 

5’TAATATACGGGGGTGGGTCCCTCAC and oATP6-10 149 

5’GGGCCGAACTCCGAAGGAGTAAG, and sequenced entirely. 150 

 151 

2.3. Bioenergetics analyses 152 
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Mitochondrial enzyme assays and membrane potential analyses were performed on 153 

mitochondria isolated from yeast cells grown in rich galactose (YPGalA) at 28°C. 154 

Mitochondria were prepared by the enzymatic method, as described [35]. Oxygen 155 

consumption rates were measured with a Clark electrode in 0.65 M mannitol, 0.36 156 

mM EGTA, 5 mM Tris/phosphate, 10 mM Tris/maleate pH 6.8 (respiration buffer), as 157 

described [36]. For ATP synthesis rate measurements, the mitochondria (0.15 mg/ml) 158 

were placed in a 1 ml thermostatically controlled chamber at 28°C in respiration 159 

buffer. The reaction was started by adding 4 mM NADH and 750 µM ADP; 100 µl 160 

aliquots were taken every 15 seconds (30 seconds for strains with a slow oxygen 161 

consumption rate) and the reaction was stopped by adding 3.5% perchloric acid and 162 

12.5 mM EDTA. Samples were neutralized to pH 6.5 by KOH and 0.3 M MOPS. ATP 163 

was quantified using the Kinase-Glo Max Luminescence Kinase Assay (Promega) 164 

and a Beckman Coulter's Paradigm Plate Reader. Part of the ATP produced by the 165 

F1FO-ATP synthase was assessed using oligomycin (20 μg/mg of proteins). 166 

Variations in transmembrane potential (ΔΨ) were evaluated in the respiration buffer 167 

using Rhodamine 123 (0.5 μg/ml), with λexc of 485 nm and λem of 533 nm under 168 

constant stirring with a Cary Eclipse Fluorescence Spectrophotometer (Agilent 169 

Technologies, Santa Clara, CA, USA) [37]. 170 

2.4. BN-PAGE analyses 171 

Blue native-PAGE experiments were carried out as described [38]. 200 µg of 172 

mitochondrial proteins suspended in 100 µl extraction buffer (30 mM HEPES pH=6,8, 173 

150 mM potassium acetate, 12% glycerol, 2 mM 6-aminocaproic acid, 1 mM EGTA, 174 

1.5% digitonin (Sigma)), supplemented with one protease inhibitor cocktail tablet from 175 

Roche. After 30 min incubation on ice, the extracts were cleared by centrifugation 176 

(14,000 rpm, 4°C, 30 min), supplemented with 4.5 µl of loading dye (5% Serva Blue 177 
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G-250, 750 mM 6-aminocaproic acid) and run on NativePAGETM 3-12% Bis-Tris Gels 178 

(Invitrogen). After transfer onto a PVDF membrane, ATP synthase complexes were 179 

detected using polyclonal antibodies raised against α-F1 subunit (Atp1p) or subunit a 180 

(Atp6) of yeast ATP synthase, at 1:10000 dilution. 181 

2.5. Amino-acid alignments and topology of subunit a mutations. 182 

Multiple sequence alignment of ATP synthase a-subunits of various origins was 183 

performed using COBALT [39]. The topology of the mutations within FO structure is 184 

based on the atomic structure of FO recently published [5]. The shown figures were 185 

built using PyMOL molecular graphic system. 186 

2.6. Statistical analysis 187 

At least three biological and three technical replicates for performed for all  188 

experiments. The t-test was used for all data sets. Significance and confidence level 189 

was set at 0.05. 190 

 191 

  192 
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3. Results 193 

Yeast subunit a (also referred to as subunit 6 or Atp6p) is synthesized as a pre-194 

protein of which the first ten residues are removed during assembly [33]. The serine 195 

residue at position 148 of human subunit a that is changed into asparagine by the 196 

m.8969G>A mutation corresponds to aS175 in the non-processed yeast protein (Fig. 197 

1). As we have shown, a yeast model of the m.8969G>A mutation (aS175N) fails to 198 

grow on non-fermentable substrates like glycerol owing to a lack in FO-mediated 199 

proton transport [33]. Compared to wild type (WT) yeast, fully assembled F1FO 200 

complexes accumulate slightly less in the aS175N mutant and free F1 particles are 201 

detectable in BN-gels ([33], see also below). This effect may be in part or mostly due 202 

to a higher propensity of the aS175N mutant to produce -/0 cells issued from large 203 

deletions in mtDNA (30% vs <5% in the WT). A decreased mtDNA stability was 204 

observed in many other yeast mutants in which ATP synthase function is severely 205 

compromised [40]. Thus, rather than a wide impact on ATP synthase structure, the 206 

aS175N mutation most likely locally disturbs this structure.  207 

 3.1. Isolation of revertants from the mutant aS175N 208 

We isolated revertants from the aS175N mutant, using a previously described 209 

procedure [41]. To ensure genetic independence, they were isolated from different 210 

aS175N subclones grown in liquid glucose. The cells were spread on glycerol medium 211 

(108 cells/plate). Revertants appeared at a 10-7 frequency. 73 isolates were retained 212 

for analysis. After crossing with a strain (D273-10B/60) having a wild type nucleus 213 

and totally devoid of mitochondrial DNA (o), the revertants were still able to grow on 214 

glycerol indicating that the suppressor mutations were nuclear dominant or located in 215 

mitochondrial DNA. Most (>95%) of the spores from at least 6 complete tetrads 216 

issued from the diploid revertants were able to grow on glycerol (not shown) 217 
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indicating that the suppressor mutations had a mitochondrial origin, otherwise they 218 

would have displayed a mendelian (2:2) segregation. The gene ATP6 was entirely 219 

sequenced in each revertant. In 60 revertants, a novel mutation in ATP6 (intragenic 220 

suppressor) was identified (Table 2). Two nucleotide changes were introduced at 221 

codon 175 to replace serine by asparagine (TCT175AAT). Not surprisingly, none of 222 

the sequenced revertants had recovered a wild type ATP6 gene because the 223 

frequency of a specific double nucleotide change is far below 10-10. However six 224 

clones had again a serine codon at position 175 that was derived from a single 225 

nucleotide change (AAT175AGT); they all grew on glycerol like wild type yeast (not 226 

shown) and were not analyzed further. Four other first-site mutations introduced 227 

novel amino acid residues at position 175: AAT175GAT (aN175D) in two clones, 228 

AAT175AAA (aN175K) in one clone, AAT175ATT (aN175I) in two clones, and AAT175ACT 229 

(aN175T) in one clone. Henceforth, the four different pseudo first-site reversions will 230 

be designated as aS175D (instead of aN175D), aS175K, aS175I, and aS175T to indicate 231 

the amino-acid changes relative to the wild type protein sequence. 232 

In 48 revertants, respiration-dependent growth recovery resulted from a single 233 

nucleotide change in ATP6 not located at codon 175 (second-site intragenic 234 

suppressor): CCA12TCA (aP12S) in 3 clones, ATT171TTT (aI171F) in 8 clones, 235 

ATT171AAT (aI171N) in 1 clone, ATT239TTT (aI239F) in 35 clones, and ATT200ATA 236 

(aI200M) in 1 clone (Fig. 1, Table 2). 237 

Finally, the remaining 13 revertants had no other mutation in ATP6 than the 238 

original one, aS175N. We considered the possibility that these revertants were issued 239 

from an extragenic suppressor in one of the two other mitochondrial ATP synthase 240 

genes, ATP8 and ATP9, but no mutation was detected in these genes. These 241 

revertants were not analyzed further. 242 
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Figure 1. Sequence alignments of subunits a from various sources and 243 

conservation of the residues modified by the suppressors of S175N. The aligned 244 

subunits a are from Homo sapiens (H.s.), Bos taurus (B.t.), Saccharomyces 245 

cerevisiae (S.c.), Schizosaccharomyces pombe (S.p.), Yarrowia lipolytica (Y.l.) and 246 

Escherichia coli (E.c.). The magenta and green arrows mark the locations of the 247 

pseudo first-site and the second-site intragenic mutations found in this study, 248 

respectively. The maroon arrow marks the original S175N mutation. At the top and 249 

bottom, the residues are numbered according to the unprocessed S.c. protein (the 250 

first 10 residues are cleaved during assembly of the protein [42] and to E.c. protein, 251 

respectively. Leader peptide sequences in the subunits a of S.c., S.p. and Y.l. [43] 252 

are marked in yellow. Strictly conserved residues are in white characters on a red 253 

background while similar residues are in red on a white background with blue frames. 254 
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α-helices in the S.c. and E.c. proteins, marked above and below amino the 255 

alignment, are according to Y.l. and E.c. structures, respectively [2, 5, 44]. The 256 

essential arginine is on a blue background. 257 

 258 

3.2. Properties of the revertants. 259 

3.2.1. Respiratory growth and mtDNA stability 260 

Of the nine different intragenic suppressors we isolated from the aS175N mutant, four 261 

(aS175I, aS175T, aI171F, and I200M) conferred a good growth on glycerol whereas the 262 

others (aS175D, aS175K, aP12S, aI239F, and aI171N) resulted in a slow respiratory 263 

growth phenotype, at all temperatures tested (20°C, 28°C, 36°C) (shown for 28°C in 264 

Fig. 2A,B)). All the revertants had a much better genetic stability than the aS175N 265 

mutant as evidenced by a reduced accumulation of -/o cells in cultures (10% or less 266 

vs 35%) (Table 3). 267 

 268 

Figure 2. Growth of mutant strains. (A) Fresh liquid glucose cultures of wild type 269 

yeast, mutant aS175N and its revertants were serially diluted and spotted on rich 270 

glucose and rich glycerol/ethanol plates. The glucose and glycerol plates were 271 

photographed after 3 and 7 days of incubation at 28°C, respectively. (B) Growth 272 

curves in liquid rich glycerol/ethanol at 28°C. 273 
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 274 

  3.2.2. Respiration and ATP synthesis 275 

Improvement of ATP synthase function by the suppressors was evaluated first by 276 

measuring oxygen consumption and ATP synthesis rates in isolated mitochondria. As 277 

shown previously, yeast atp6 mutations including aS175N that compromise ATP 278 

synthase activity usually result in a diminished respiration rate mainly because of a 279 

lower content in complex IV ([15, 29, 33, 45] Table 3). Thus, decreased ATP 280 

synthesis rate in atp6 mutants is not primarily due to a reduced rate of electron 281 

transfer to oxygen but to some defect in the ATP synthase that secondarily impacts 282 

respiration. Oxygen consumption was assessed with NADH as an electron donor, 283 

alone (basal, state 4 respiration), after further addition (75 µM) of ADP (state 3, 284 

phosphorylating conditions) or in the presence of the membrane proton ionophore 285 

CCCP (carbonyl cyanide m-chlorophenylhydrazone) (uncoupled respiration). Under 286 

state 4, respiration is controlled by the passive permeability to protons of the inner 287 

membrane. Under state 3, most of the protons return to the matrix through the ATP 288 

synthase so that the contribution to respiration of passive proton leaks becomes very 289 

small. In the presence of CCCP, the maintenance of an electrical potential (ΔΨ) 290 

across the inner membrane is impossible and respiration becomes maximal. We also 291 

measured complex IV activity using ascorbate/TMPD (N,N,N′,N′-tetramethyl-292 

phenylenediamine) in the presence of CCCP. Mitochondrial ATP synthesis rate was 293 

measured using NADH as a respiratory substrate in the presence of a large excess 294 

(750 µM) of external ADP, conditions under which ATP is synthesized exclusively by 295 

ATP synthase using the proton-motive force generated by complexes III and IV (there 296 

is no complex I in S. cerevisiae). 297 
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 Consistent with their good growth on glycerol, mitochondria from strains 298 

aS175I, aS175T, aS175N+aI171F and aS175N+aI200M efficiently respired and produced 299 

ATP almost like those from wild type yeast (Table 3). Accordingly, in all the slowly 300 

growing revertants ATP synthesis rate was diminished by 80-90% compared to the 301 

WT. ATP synthase assembled and accumulated quite efficiently in all the revertants 302 

(Fig. 3). Regarding the Westerns with Atp6 antibodies, it apparently seems that there 303 

is much less ATP synthase in the aP12S revertant whereas the Atp1 antibodies did 304 

not reveal a lack of this enzyme in this strain. The most likely explanation is that the 305 

aP12S mutation is within the sequence of subunit a (a.a. 11-23) that we used to raise 306 

the Atp6 antibodies, and that because of this these antibodies reacted less efficiently 307 

with the aP12S subunit. 308 
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Figure 3. Levels of ATP synthase in the revertants. Proteins were extracted from 309 

the mitochondrial samples used in the bioenergetics experiments described in Table 310 

3 with 1.5 gr digitonin per gr of proteins and separated by BN-PAGE (200 μg per 311 

lane). The proteins were transferred onto PVDF membrane and probed with 312 

antibodies against subunit a (Atp6) or F1-subunit Atp1 of ATP synthase, revealing 313 

dimeric (V2) and monomeric (V1) F1FO complexes. The shown Westerns are 314 

representative of three independent experiments. 315 

 316 

3.2.3. Membrane potential  317 

The influence of the suppressor mutations was investigated further using Rhodamine 318 

123, a fluorescent cationic dye that can be used to monitor changes in mitochondrial 319 

membrane potential (ΔΨ) [37]. Increasing ΔΨ is followed by the uptake of the dye 320 

inside the matrix and concomitant fluorescence quenching. In a first set of 321 

experiments (Fig. 4A), we tested the capacity of externally added ADP to induce ΔΨ  322 

consumption. To this end, mitochondria were first fed with electrons from ethanol. 323 

Due to their strongly reduced capacity to respire, those from the mutant aS175N were 324 

poorly energized in comparison to WT mitochondria whereas ethanol induced a much 325 

larger ΔΨ variation in all the revertants. Normally, further adding a small amount of 326 

ADP induces a transient fluorescence increase due to ΔΨ consumption by the ATP 327 

synthase during phosphorylation of the added ADP. This was indeed observed in 328 

mitochondria from the WT and the revertants, whereas those from the aS175N mutant 329 

were virtually insensitive to ADP consistent with their very poor capacity to produce 330 

ATP (Table 3). However, in those revertants growing slowly on glycerol (aS175D, 331 

aS175K, aS175N+aP12S, aS175N+aI239F, and aS175N+aI171N) a much longer time was 332 

needed to recover the ethanol-induced ΔΨ compared to the WT and the revertants 333 



17 
 

with a good growth on glycerol (aS175I, aS175T, aS175N+aI171F, and aS175N+aI200M), 334 

reflecting the large differences in ATP synthesis rate between these strains. KCN 335 

was then added to inhibit complex IV, which, in mitochondria from the WT and the 336 

revertants resulted in a partial ΔΨ collapse. The remaining potential was due to FO-337 

mediated proton pumping coupled to hydrolysis of the ATP that accumulated in the 338 

mitochondrial matrix during phosphorylation of the added ADP, as evidenced by the 339 

loss of this potential by inhibiting ATP synthase with oligomycin. By contrast, no 340 

oligomycin-sensitive ΔΨ was observed in the aS175N mitochondria owing to their 341 

incapacity to produce ATP. 342 

In a second set of experiments (Fig. 4B), we directly tested the proton-343 

pumping activity of ATP synthase using externally added ATP independently of the 344 

respiratory chain. To this end, mitochondria were first energized with ethanol to 345 

remove the natural inhibitory peptide (IF1) of F1-ATPase. ΔΨ was then collapsed with 346 

KCN, and less than one minute later, thus well before IF1 rebinding [46], ATP was 347 

added. External ATP is counter-exchanged against ADP present in the matrix by the 348 

ADP/ATP translocase, which does not require any ΔΨ, and the ATP can then be 349 

hydrolyzed by F1 coupled to FO-mediated proton transport. Adding ATP promoted in 350 

mitochondria from the WT and the revertants a large and stable fluorescence 351 

quenching of the dye that was reversed upon inhibition with oligomycin, whereas 352 

aS175N mitochondria were mostly insensitive to ATP due to their inability to move 353 

protons through the FO. 354 
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Figure 4. Mitochondrial membrane potential. Variations in mitochondrial ΔΨ were 355 

monitored by fluorescence quenching of Rhodamine 123 in the mitochondria used for 356 

the bioenergetics experiments described in Table 3. The tracings in panel A show 357 

how the mitochondria respond to the addition of ADP, those in panel B reflect the 358 

proton-pumping activity of ATP synthase. The additions were 75 μM ADP, 0.5 μg/ml 359 

Rhodamine 123, 75 μg/mL mitochondrial proteins (Mito), 10 μL ethanol (EtOH), 2 mM 360 

potassium cyanide (KCN), 4 μg/mL oligomycin (oligo), and 4 μM carbonyl cyanide-m-361 

chlorophenyl hydrazone (CCCP). The shown tracings are representative of three 362 

experiments. 363 

 364 

3.3. Topological location of the mutations 365 

 The locations in the recently published atomic structure of yeast FO [5] of the 366 

mutations here described (aS175N, aS175D, aS175K, aS175I, aS175N, aP12S, aI171F, 367 

aI171N, aI239F, and aI200M) are shown in Fig. 5. The amino acid alignments in Fig. 1 368 

establish the correspondences with human subunit a residues. The six membrane-369 

associated helices of subunit a and the two transmembrane helices of subunit c are 370 

referred to as aH1-6 and cTM1-2 respectively (Fig. 5A). At the interface between the 371 

a-subunit and the c-ring, near the middle of the membrane, are two electrically 372 

charged residues (aR186 and cE59) directly involved in proton translocation. Being 373 

kinked, aH5 (residues 162-209) can follow the curvature of the c-ring and seal the 374 

two hydrophilic pockets that connect the a/c-ring interface to the intermembrane and 375 

matrix spaces. The N-term part of aH5 (residues 162-180, 31 Å long) is shorter than 376 

its C-term part (residues 184-209, 43 Å long), and aH6 (residues 219-257, 55 Å) is 377 

shorter and more straight than aH5, which creates a funnel-shaped cleft between 378 

subunit a and the c-ring accessible from the matrix (Fig. 5B). The mouth of this cleft 379 
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is surrounded by a short helix aHβ (residues 137-147) that connects aH4 and aH5, 380 

the C-terminal extremity of subunit a, and a five amino acid long loop (residues 85-381 

89) between aH2 and aH3. The cleft, into which points the essential aR186 residue, is 382 

15 Å long (from aR186 to aD254 or E172), 8 Å wide (from aD254 to aE172) and 16 Å deep 383 

(from aS175 to the C-terminus of the protein). It is bordered by polar or electrically 384 

charged residues on aH5 (aS250, aY251, aK253, aD254, aH259) and aH6 (aE172, aS175, 385 

aR179, aS182), two of which, aE172 and aD254, would be essential for moving protons 386 

out of the cleft [5, 34] (Fig. 5B,D). Since the others, as well as those surrounding cE59 387 

(cF48, cP49, cI52, cL53, cF55, cA56, cL57), cannot engage in hydrogen bonding, it is 388 

possible that water molecules inside the cleft help proton conduction towards the 389 

matrix.  390 

Although aS175 is highly conserved (Fig. 1), has a hydroxyl group that can 391 

exchange protons and is located in the n-side cleft, this residue is clearly not required 392 

for FO-mediated proton translocation. Indeed, as shown in this study, ATP synthase 393 

function was fully preserved with the presence at position 175 of an aliphatic side 394 

chain residue (aI175). These findings are in line with a previous study showing that 395 

replacing the equivalent serine in subunit a of E. coli by alanine had no detrimental 396 

consequences [47]. aI175 can orient towards the c-ring without any steric hindrance 397 

on E172 and preserve with aL164, aL167 and aI171 a non-polar environment around the 398 

c-ring (Fig. 5D). The absence of major functional defects with a threonine residue at 399 

position 175 (aT175) further supports a non-essential role for aS175. 400 

 Disruption of FO-mediated proton transport induced by aN175 possibly results 401 

from the establishment of two hydrogen bonds between aN175 amide and aE172 402 

carboxylate groups that are distant by 3.1 and 3.3 Å (Fig. 5B,C). As a result the 403 

glutamate would become unable to conduct protons out of the n-side cleft. 404 
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Alternatively, aN175 can orient towards the c-ring without making a direct hydrogen 405 

bond with the catalytic cE59 residue (because of a too long distance, 4 Å) (Fig. 5D). 406 

However, it will then impair rotation of the c-ring by clashing cA56 and cL57. Like 407 

aN175, aD175 can adopt the same two orientations towards either aE172 or the c-ring. 408 

However the electrostatic repulsion between aD175 and aE172 most likely favors the 409 

second one, which may explain the recovery of ATP synthase function when aN175 is 410 

replaced by aspartate. The poor suppressor activity of aD175 is possibly due to 411 

clashes with the c-ring and/or unproductive proton transfers. The suppressor activity 412 

of aK175 probably also result from the recovery of aE172 to conduct protons. Owing to 413 

its flexibility and hydrophobic alkyl moiety, the lysine side chain may easily adopt a 414 

conformation that preserves c-ring rotation. However due to its positive charge, a 415 

reduced strength of attraction for protons towards the matrix may be responsible for 416 

the slow and inefficient functioning of ATP synthase with aK175. 417 

The five-second site suppressors that make the aS175N mutation no longer or 418 

less detrimental all localize close to the a/c interface (Fig. 5E,F). Two are in proximity 419 

to the original mutation, at position 171 (aI171F and aI171N). ATP synthase function 420 

was fully restored with aF171. Replacement of aI171 by a rigid and bulkier 421 

phenylalanine group may structurally shift the position of aN175 towards the c-ring so 422 

as it can no longer interact with aE172 without affecting the sealing of the two 423 

hydrophilic pockets by aH5. Furthermore, as a highly hydrophobic residue, 424 

phenylalanine preserves the non-polar surface that aH5 (aL164, aL167, aL168, aI171, 425 

aL174, aA178, aA193, aL197, aI200, aL201, and aL204) and aH6 (aM225, aI229, aL232, aI236, 426 

aI239) provide in front of the c-ring so as to ease its rotation. The suppressor activity of 427 

aN171 is much less efficient compared to aF171, indicating that aN175 remains mostly 428 
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bound to aE172 and that the proton exchanging capacity of aN171 helps somehow the 429 

protons to quit the c-ring. 430 

 The three other second-site suppressors are remotely located from the original 431 

aS175N mutation, by 35 Å (aP12S, aI200M) or 23 Å (aI239F) on the p-side of the 432 

membrane (Fig. 5E). They are quite close to conserved residues presumably 433 

involved in the transport of protons from the intermembrane space (aE233 (H in E. 434 

coli), aN190, aQ240 and aH195 (E in E. coli)) to aR186. Interestingly, the aP12S 435 

suppressor belongs to a region of subunit a that does not exist in bovine and humans 436 

(Fig. 1). That it can upon mutation compensate for the aS175N change indicates that 437 

this region has an important function in yeast ATP synthase. Consistently, this region 438 

shows a rather good amino acid sequence conservation in those mitochondria where 439 

it is present. While it is difficult to provide a mechanistic explanation for these long-440 

distance interactions that improve FO-mediated proton transfer in the aS175N mutant 441 

this is, as discussed below, an interesting observation.  442 
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 443 

Figure 5. Topological locations of the mutations. (A) View of the entire c-ring and 444 

subunit a from the matrix and of the pathway along which protons are transported 445 

from the intermembrane space to the mitochondrial matrix. The side chains of the two 446 

residues essential to this transfer (aR186 and cE59) are drawn as stick with their 447 

carbon atoms in white. The p-side and n-side clefts are shown as grey surface. (B) 448 

The original aS175N mutation prevents by hydrogen bonding the nearby glutamate 449 

aE172 to move protons out the n-side cleft. (C) Zoom on the hydrogen bonds that 450 
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aN175 can potentially form with aE172 (D) View from the matrix showing the two 451 

possible orientations of aN175 towards either the c-ring (yellow) or aE172 (magenta). 452 

aF171 (yellow) is supposed to orient aN175 towards the c-ring, thus restoring the proton 453 

conducting activity of aE172, whereas aN175 remains oriented towards aE172 with aN171 454 

(magenta). (E) Enlargement of the region showing the five mutated residues (aS175, 455 

aP12, aI171, aI200, and aI239); their side chains are drawn as stick with their carbon 456 

atoms in yellow. Residues presumed to be important for proton transfer (aE172, aD234, 457 

aH195 and aD254) are represented as stick with their carbon atoms in white color. (F) 458 

Enlargement around the aP12S, aI200M and aI239F second-site suppressors. 459 

 460 

4. Conclusion 461 

With the recently described cryo-EM structures of F1FO ATP synthase from various 462 

mitochondrial origins it has become feasible to map at a molecular level discrete 463 

structural changes of this enzyme found to be responsible for human diseases. 464 

Although this is a major step towards a better comprehension of these diseases, it is 465 

generally difficult to understand how loss-of-function mutations act. The suppressor 466 

genetics approach used in this study help to understand how a pathogenic mutation 467 

in subunit a (aS148N in humans, aS175N in yeast) disrupts FO-mediated proton 468 

conduction. Our results reveal that despite its very strong evolutionary conservation 469 

and its capacity to exchange protons thanks to the presence of a hydroxyl group on 470 

its side chain, the mutated serine is by itself not directly involved in this activity. 471 

Indeed, consistent with a previous study in E. coli [47], ATP synthase function was 472 

fully regained by replacing the mutant asparagine with aliphatic residues that do not 473 

have the capacity to conduct protons. Thus, losing the serine is by itself not 474 

problematic, it is its replacement by asparagine that leads to the loss of FO function. 475 
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The most likely explanation that emerges from our suppressor genetic analysis and 476 

the atomic structure of yeast FO, is that the mutant asparagine neutralizes by 477 

hydrogen bonding the nearby glutamate (aE172) presumed to be critical for the exit of 478 

protons from the n-side hydrophilic cleft. 479 

 Very interestingly also, we show that the serine-to-asparagine change can be 480 

somewhat efficiently suppressed by mutations in other positions of subunit a 481 

(second-site suppressors). Thus, while being still present, the mutant asparagine 482 

ceases to be or is much less detrimental. Surprisingly, some of the second-site 483 

suppressors are within the p-side cleft that provides a pathway for protons from the 484 

intermembrane space. These suppressors must thus be responsible for long (20-30 485 

Å)-range effects that somehow disrupt the detrimental hydrogen bound between 486 

aE172 and aN175 or help the protons to find another route to reach the mitochondrial 487 

matrix. It is not unreasonable to imagine that drugs could as well undo an 488 

undesirable hydrogen bond by hitting the regions of subunit a modified by the 489 

suppressors. The approach used in this study is not only helpful to better understand 490 

how mutations of ATP synthase induce diseases, but may also open the door to 491 

drug-design therapeutic developments.  492 

 493 

494 
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 Table 1. Genotypes and origins of yeast strains. 657 

Strain Nuclear genotype mtDNA Source 

MR6 MATa ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-

1 CAN1 arg8::HIS3 


+
  

[48] 

D273-10B/60 Matα met6 
o
 [49] 

DFS160 MATα leu2∆ ura3-52 ade2-101 arg8::URA3 

kar1-1 


o
 [50] 

NB40-3C MATa lys2 leu2-3,112 ura3-52 his3∆HindIII 

arg8::hisG 


+
 cox2-62 [49] 

MR10 MATa ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-

1 CAN1 arg8::hisG 


+ 

atp6::ARG8
m
 [48] 

RKY105 MATa ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-
1 CAN1 arg8::HIS3 


+ 

atp6-S175N This study 

RKY105-R1/3 MATa ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-
1 CAN1 arg8::HIS3 


+
atp6-I171F+S175N This study 

RKY105-R1/4 MATa ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-
1 CAN1 arg8::HIS3 


+
atp6-I239F+S175N This study 

RKY105-R2/3 MATa ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-
1 CAN1 arg8::HIS3 


+
atp6-I200M+S175N This study 

RKY105-R2/5 MATa ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-
1 CAN1 arg8::HIS3 


+
atp6-P12S+S175N This study 

RKY105-R6/5 MATa ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-
1 CAN1 arg8::HIS3 


+
atp6-S175K This study 

RKY105-R9/2 MATa ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-
1 CAN1 arg8::HIS3 


+
atp6-S175I This study 
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RKY105-

R31/5 
MATa ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-
1 CAN1 arg8::HIS3 


+
atp6-S175D This study 

RKY105-

R33/1 
MATa ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-
1 CAN1 arg8::HIS3 


+
atp6-S175T This study 

RKY105-

R33/4 
MATa ade2-1 his3-11,15 trp1-1 leu2-3,112 ura3-
1 CAN1 arg8::HIS3 


+
atp6-I171N+S175N This study 

 658 

 659 

  660 
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Table 2. Intragenic suppressors of the atp6-S175N mutation. 661 

 662 
Codon 
change 

Amino acid 
change 

Number 

Original mutant 

TCT175AAT S175N - 

Intragenic suppressors 

ATT171TTT I171F 8 

ATT171AAT I171N 1 

ATT239TTT I239F 35 

ATT200ATA I200M 1 

CCA12TCA P12S 3 

AAT175GAT N175D 2 

AAT175AAA N175K 1 

AAT175ATT N175I 2 

AAT175ACT N175T 1 

AAT175AGT N175S 6 

 663 

Table 3. Mitochondrial respiration ATP synthesis rates 664 

 665 

Strain 

Respiration rates 
nmol O.min

-1
.mg

-1
 

ATP synthesis rate 
nmol Pi.min

-1
.mg

-1
 

P/O 
% 

-

/
0
 

NADH 
NADH 
+ ADP 

NADH 
+ CCCP 

Asc/TMPD 
+ CCCP 

- oligo + oligo   

WT 410 ± 46 770 ± 40 1400 ± 195 2450 ± 283 828 ± 67 125 ± 21 1.08±0.03 <5% 

S175N 60 ± 5 60 ± 5 86 ± 5 1064 ± 620 82 ± 9 30 ± 10 1.37±0.04 <35% 

S175N+I200M 263 ± 58 572 ± 89 763 ± 152 2163 ± 144 729 ± 139 198 ± 64 1.27±0.16 <2% 

S175N+I171F 368 ± 81 781 ± 94 1422 ± 325 2886 ± 623 796 ± 26 429 ± 29 1.02±0.09 <3% 

S175N+I171N 122 ± 36 181 ± 74 332 ± 163 1549 ± 284 131 ± 7 74 ± 4 0.72±0.26 <4% 

S175N+P12S 254 ± 74 424 ± 97 910 ± 308 2603 ± 276 417 ± 34 146 ± 13 0.98±0.14 <6% 

S175N+I239F 195 ± 51 330 ± 57 660 ± 107 1854 ± 213 347 ± 77 146 ± 30 1.05±0.05 <7% 

S175D 385 ± 87 674 ± 123 1206 ± 263 2567 ± 186 410 ± 20 197 ± 22 0.61±0.08 <12% 

S175K 303 ± 49 488 ± 93 745 ± 232 1861 ± 137 360 ± 9 118 ± 11 0.74±0.12 <4% 

S175I 340 ± 33 738 ± 13 1104 ± 90 2863 ± 142 934 ± 51 184 ± 9 1.27±0.05 <4% 

S175T 249 ± 62 693 ± 186 772 ± 95 2278 ± 224 965 ± 16 397 ± 28 1.39±0.35 <6% 

 666 

Mitochondria were isolated from cells grown for 5-6 generations in rich galactose medium 667 

(YPGalA) at 28°C. Reaction mixes for assays contained 0.15 mg/mL protein, 4 mM NADH, 668 

150 (for respiration assays) or 750 (for ATP synthesis) µM ADP, 12.5 mM ascorbate (Asc), 669 
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1.4 mM N,N,N,N,-tetramethyl-p-phenylenediamine (TMPD), 4 µM carbonyl cyanide-m-670 

chlorophenyl hydrazone (CCCP), 3 µg/mL oligomycin (oligo). The values reported are 671 

averages of triplicate assays ± standard errors. The percentages of % 
-/o

 in cultures are 672 

indicated. 673 

 674 

 675 

 676 

 677 


