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ABSTRACT Apoptotic cell death is a type of eukaryotic cell death. In animals, it regulates development, is
involved in cancer suppression, and causes cell death during pathological aging of neuronal cells in
neurodegenerative diseases such as Alzheimer’s. Mitochondrial apoptotic-like cell death, a form of primor-
dial apoptosis, also occurs in unicellular organisms. Here, we ask the question why the apoptosis machinery
has been acquired and maintained in unicellular organisms and attempt to answer it by performing ancestral
state reconstruction. We found indications of an ancient evolutionary arms race between protomitochondria
and host cells, leading to the establishment of the currently existing apoptotic pathways. According to this
reconstruction, the ancestral protomitochondrial apoptosis machinery contained both caspases and meta-
caspases, four types of apoptosis induction factors (AIFs), both fungal and animal OMI/HTR proteases, and
various apoptotic DNases. This leads to the prediction that in extant unicellular eukaryotes, the apoptotic
factors are involved in mitochondrial respiration and their activity is needed exclusively in aerobic condi-
tions. We test this prediction experimentally using yeast and find that a loss of the main apoptotic factors is
beneficial under anaerobic conditions yet deleterious under aerobic conditions in the absence of lethal
stimuli. We also point out potential medical implications of these findings.
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Eukaryotic apoptotic cell death is a fundamental mechanism regulating
multicellular development, and its origin is a fundamental question in
biology.

Apoptosis was first described in animals. Its morphological and
biochemical hallmarks allow one to easily distinguish it from other types
of cell death (Kerr et al., 1972). Apoptosis is usually initiated by mito-
chondrialmembrane permeability transition reflected by the breakdown
of the inner mitochondrial transmembrane potential. The next stage is
characterized by chromatin condensation and nuclear fragmentation.
Eventually the cell breaks down into membrane-surrounded fragments

that are ingested by macrophages, which prevents induction of inflam-
mation. Classical studies of Horvitz and Sulston showed that animal
apoptosis is a form of programmed cell death (Sulston andHorvitz 1977;
Hedgecock et al., 1983). Apoptosis plays a key role in development, and
homeostasis, and in preventing carcinogenesis (Kaczanowski et al.,
2016). Interestingly, regulated necrosis of animals cells is usually also
initiated by a mitochondrial membrane permeability transition. How-
ever, during regulated necrosis the cell does not break into fragments but
undergoes cellular leakage instead (Vanden Berghe et al., 2014).

For a long time apoptosis was believed to occur only in animals.
However, cell death similar to apoptosis has been described both in
unicellular andmulticellular non-animal eukaryotes. In older papers, this
phenomenon was described as apoptosis-like cell death. Currently, it is
referred to as mitochondrial apoptosis, or simply apoptosis (Carmona-
Gutierrez et al., 2018). Regulated cell death similar to animal apoptosis
has been described in plants, slime molds and even in unicellular ciliates
like Tetrahymena and even in yeast (a focus of this paper) (Kaczanowski
2016). Yeasts were used as a model organism in studies of primordial
form of apoptosis (see as a review(Carmona-Gutierrez et al., 2010).

There are also other types of programmed cell death not initiated by
mitochondria, including programmed cell death of bacteria and
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amitochondrial protozoans such asTrichomonas vaginalis (Chose et al.,
2003; Chose et al., 2002; Kaczanowski 2016).

It remains unclear why the apoptosis machinery has been acquired
and maintained in unicellular organisms (Proto et al., 2013; Taylor-
Brown and Hurd 2013; Durand et al., 2016; Carmona-Gutierrez et al.,
2012; Madeo et al., 2004; Rockenfeller andMadeo 2008). Some hypoth-
esize that apoptosis is an altruistic suicide maintained by kin selection
(Carmona-Gutierrez et al., 2010; Duszenko et al., 2006; Kaczanowski
2016; Taylor-Brown and Hurd 2013) whereas others consider it an
antagonistic pleiotropy. Garrido and Kroemer (Garrido and Kroemer
2004) pointed out that apoptotic proteins also have non-apoptotic vital
functions. In yeasts mitochondrial apoptotic factors are required for
proper function of this organelle. NDI1 encodes the protein that oxi-
dizes NADH and passes electrons on to ubiquinone (Marres et al.,
1991), NUC1 is involved in recombination of mitochondrial DNA
(Zassenhaus and Denniger 1994). Main cytoplasmic apoptotic factors
MCA1 and OMI/HTRA are involved in proteolysis quality control
(Clausen et al., 2011; Lee et al., 2010).

The apoptosis mechanisms found in different clades are similar to
one another; they all involve the mitochondrion as the central player
(Kroemer and Reed 2000; Büttner et al., 2007; Arambage et al., 2009;
Kaczanowski 2016; Reape andMcCabe 2010). The release ofmitochon-
drial apoptotic factors induces self-destruction of nuclear DNA by
DNases (e.g., ENDOG, ZEN1, and NUC1) and cell death. Cell death
can also be induced by apoptotic proteases, which include metacas-
pases, caspases, and OMI protease (OMI)/high temperature require-
ment A (HTRA) (Kaczanowski 2016).

Although the overall mechanisms of apoptosis are nearly universal,
the apoptotic proteins of different taxonomic groups are often only
remotely evolutionarily related, and some are not related at all. For
example, the plant apoptotic DNase ZEN1 is not related to any animal
apoptotic DNase, while the animal apoptotic caspases are remotely
related toananalogousproteases ofplants and fungi calledmetacaspases
(Uren et al., 2000; Aravind et al., 2001). These observations prompt the
following question: What is the evolutionary origin of apoptosis mech-
anisms – convergent evolution, divergent evolution, or a combination
of the two? Earlier phylogenetic analyses of animal apoptosis supported
the endosymbiotic theory of the origin of apoptosis, which is based on
the endosymbiotic hypothesis of mitochondrial origin first postulated
by Margulis (Margulis et al., 2006). The endosymbiotic theory of a
mitochondrial origin for apoptosis was first proposed by Kroemer
(Kroemer 1997), who suggested that extant apoptotic factors are mod-
ified bacterial toxins used by the protomitochondrion before and/or
during the establishment of symbiosis with protoeukaryotes. In the case
of animals the endosymbiotic theory of a mitochondrial origin of ap-
optosis was tested in phylogenetic studies performed by Aravind, Dixit,
and Koonin (Aravind et al., 2001; Koonin and Aravind 2002), who
concluded that pro-apoptotic factors often have eubacterial origins.

In this paper we ask if this theory is more general and could also be
applied to non-animal eukaryotes. To answer this question we focus on
the mentioned basic mechanisms of apoptosis shared by different
taxonomic groups and restrict our analysis to the ancient cytoplasmic
and mitochondrial factors involved directly in apoptosis activation.
Therefore, we exclude from the analysis proteins involved in perme-
ability transition and mitochondrial stability. Such proteins do not
induce apoptosis directly, but rather cause the release of apoptotic
factors from mitochondria.

We take advantage of the recent advances in systematics that have
revealed that the six to eight major eukaryotic branches appeared very
early in evolutionary history (Adl et al., 2012; del Campo et al., 2014).
Our results are based on genomic data from the following major

eukaryotic groups: Opisthokonta (fungi and animals); Amoebozoa
(Dictyostelium); SAR–Stramenopiles, Alveolates, and Rhizaria –
(ciliates, apicomplexan parasites and Reticulomyxa); Excavata
(kinetoplastids, Trichomonas, Naegleria); and Archaeplastida (plants
and green algae such as Volvox). Using a parsimony assumption, we
reason that an apoptosis factor was part of the ancestral machinery if
it has homologs in organisms belonging to several of these ancient
taxonomic groups, or in non-eukaryotic organisms. A phylogenetic
analysis of the relationship with eubacterial factors was used for the
identification of putative ancient duplications predating the domes-
tication of mitochondria. Using this approach, we identified the an-
cestral apoptotic factors.

Our analysis also confirmed that apoptosis evolved during the
domestication of mitochondria. Indeed, we found indications of an
ancient evolutionary arms race between protomitochondria and host
cells, leading to the establishmentof the extant apoptotic pathways.That
observation led to an experimentally testable hypothesis that the ancient
apoptotic factors originated from protomitochondrial proteins with
other functions. We assumed that mitochondrial domestication was
an adaptation to aerobic conditions and was beneficial exclusively in
such conditions. We also posited that the apoptosis machinery was
required for proper mitochondrial function and therefore was involved
in adaptation to aerobic conditions. Thismechanismhas therefore been
maintained since mitochondrial domestication until present.We tested
this hypothesis experimentally using the yeast Saccharomyces cerevisiae
and found that expression of apoptotic inducers is beneficial exclusively
in aerobic conditions.

MATERIALS AND METHODS
NinePfamdomainswere studied (see details inTable 1) using anour own
pipeline. Using this pipeline, we identified members of the families from
different genomic databases, which were not present in the Uniprot
database. Using BLAST software, we removed redundant sequences,
which were present in both the Uniprot and genomic databases. It was
also used to prepare alignments that are used for phylogenetics. Using
this approach, we obtained confident alignments that contain thousands
of sequences. Detailed description is presented below.

For each domain, full alignments were fetched from the Pfam
database. The Sreformat tool was used to convert the Stockholm format
to the FASTA alignment format. As a part of the quality control
procedure, for each alignment, sequences from species absent in the
UniProt taxonomy were filtered out. Then, HMM profiles (Eddy 2011)
and BLAST (Altschul et al., 1990) databases were created from each
preprocessed alignment.

The HMM profiles obtained in the previous step were used to find
all the proteins (with the use of the hmmsearch tool from HMMER3
package) containing a given Pfam domain in the predicted proteomes
of the selected species: Arabidopsis thaliana, Caenorhabditis elegans,
Chlamydomonas reinchardtii, Dictyostelium discoideum, Drosophila
melanogaster, Homo sapiens, Leishmania major, Naegleria gruberi,
Plasmodium falciparum, Reticulomyxa filose, Saccharomyces cerevisiae,
Schizosaccharomyces pombe, Toxoplasma gondii, Trichomonas vagina-
lis, Trypanosoma brucei, Trypanosoma cruzi, Volvox carteri, Parame-
cium tetraurelia and Tetrahymena thermophila, retrieved from the
NCBI except for N. gruberi and P. falciparum, where the data were
from JGI and PlasmoDB, respectively.

The sequences found comprised the input for subsequent BLAST
searches, whereas the original but preprocessed, as described above
sequences containing a given Pfam family comprised the BLAST
database.With such an approach, novel sequences containing the given
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Pfamdomainwere founddefinedasquery sequenceswith identity toany
sequence from the BLAST database below 90% and with at least 50%
coverage.

The final alignment representing each domain was created by
merging the novel sequences with the original (preprocessed) ones from
the Pfam alignments of a given domain. As a part of quality control, all
positions with at least one insertion were removed from the alignments.
Moreover, positions assigned to insertion states (represented by small
letters), aswell as thoseassigned to theNandCstates,were also removed.

Finally, the modified alignments were used to create phylogenetic
trees with FastTree (Price et al., 2009). Both final alignments and final
trees are available in Additional file 1. Alignments of representative
sequences were made using MSAProbs software (Liu and Schmidt
2014), and phylogenetic trees of representative sequences were calcu-
lated using MEGA software (Tamura et al., 2013).

Description of BLAST Searches
BLAST searches were performed with the NCBI BLAST server. Two
different search strategies were applied. In the first strategy, one
proteome of the following 14 eukaryotic organisms was searched:
A. thaliana, V. carteri, D. discoideum, S. cerevisiae, H. sapiens,
D. melanogaster, C. elegans, T. gondii, P. tetraurelia, T. thermophila,
R. filose, T. brucei, T. cruzi, and T. vaginalis. We called this approach
the eukaryotic strategy. The second, extended strategy, along with the
proteomes from the first search strategy, included all archaeal and
eubacterial proteomes. The applied strategies are stored in the direc-
tory search strategies (Additional file 2).

Nomenclature
Since the present study considers proteins fromdiverse clades the short-
form abbreviations of protein nomenclature following the Pfam data-
base style are used throughout the text, with the exception of the yeast
experiments section. Standardgenetic nomenclature is used todesignate
S. cerevisiae wild-type alleles (e.g., HIS3), recessive mutant alleles (e.g.,
ade2–1) and deletions (e.g., ndi1D::KANMX4),which means that the
NDI1ORF has been replaced by KANMX4, a gene conferring G418
resistance.

Yeast Growth Experiments
The MR6 reference strain (MATaade2-1 his3-1,15 trp1-1 leu2-3,112
ura3-1 CAN1 arg8::HIS3) and its derivatives ndi1D::KANMX4,
nuc1D::KANMX4, mca1D::KANMX4, and nma111D::KANMX4, and
r0 (devoid of mitochondrial DNA) MR6/b-3 (Godard et al. 2011) were
used. Standard YPD medium (2% glucose, 1% Bacto yeast extract, 2%
Bacto peptone) enriched with 40 mg/L of adenine was used. Under
anaerobic conditions, the medium was supplemented with 0.5%
ergosterol and Tween80 solution (1 g of ergosterol was dissolved in a

mixture of ethanol and Tween80 (volume ratio 5:1)). Growth was
monitored via optical density (OD600) measurements and viability
of cells was tested by plate assays. Competition tests were per-
formed as follows: yeast were grown overnight at 28� with shaking,
adjusted to identical optical density, and then mixed at a 1:1 ratio
in fresh N2-saturated medium or O2-containing medium, respec-
tively. Co-cultures were placed in an anaerobic chamber or in
aerobic conditions, accordingly and incubated at 28�. A new round
of subculturings were begun by transferring proper co-culture vol-
umes into fresh medium to obtain OD600 = 0.1 and then growth was
continued under the described above conditions. The procedures
were repeated every 24 hr, during which an average of two or three
cell divisions occurred in anaerobic cultures and five to six in aerobic
ones. Aliquots of appropriate dilutions of each passage were plated in
triplicate on YPD plates, and 100 colonies were tested for geneticin re-
sistance (deletionmutants) or incapability of growth on non-fermentable
carbon source (r0 strain) by replicating them onto selective plates
(YPD supplemented with 200mg/ml of geneticin G418) or YPG plates
(2% glycerol, 1% Bacto yeast extract, 2% Bacto peptone).

For the yeast growth curves, single colonies were grown overnight
in biological duplicates in liquid YPD medium at 28� with agitation.
Aliquots of the overnight cultures were inoculated to acquire OD600 = 0.1,
into fresh medium prepared accordingly to O2-free or O2-containing
experiment conditions. Growth curves were obtained at 28� in anaer-
obic or aerobic conditions, and optical density (OD600) was measured
(NanoPhotometer NP80) at appropriate time intervals for about
150 h. Aliquots of appropriate dilutions of each measurement were
plated in triplicate on YPD plates, and colonies were counted to
estimate the number of live cells (CFU).

Data availability
The authors state that all data necessary for confirming the conclusions
presented in the article are represented fully within the article. Supple-
mental material available at Figshare https://doi.org/10.6084/m9.
figshare.5548519.

RESULTS

Core of Yeast Apoptosis Machinery Is Reduced to
Five Proteins
Weexplored the SaccharomycesGenomeDatabase (SGD) to identify the
core apoptosis machinery. There are 31 known proteins a lack of which
decreases apoptotic activity and 13 proteins whose overexpression
induces apoptosis in diverse experimental conditions. Four proteins
are shared by these two sets: apoptotic protease metacaspase MCA1,
apoptotic nuclease NUC1, and apoptotic induction factors NDI1 and
AIF1. Three of these proteins, NDI1, AIF1 and NUC1, have mitochon-
drial localization, andMCA1is cytosolic.We includedadditionally to this
coreHTRA/Omiprotease,becauseaccording to literatureoverexpression
of HTRA-encoding gene induces apoptosis and its deletion suppresses
apoptosis (Fahrenkrog et al., 2004). All these proteins are involved in
apoptosis induced by H2O2 and occurring in chronological aging
(Büttner et al., 2007; Herker et al., 2004; Madeo et al., 2004; Madeo
et al., 2002; Fahrenkrog et al., 2004;Walter et al., 2006; Li et al., 2006; Cui
et al., 2012). Interestingly, it was shown that mitochondrial metabolism
has an impact on apoptotic activity of NUC1 factor. Deletion of NUC1
suppress apoptotic cell death when yeasts are cultured on non-
fermentable sources of carbon sources and in result mitochondrial
respiration is stimulated. In contrast deletion of NUC1 strongly stim-
ulate necrotic cell death when oxidative phosphorylation is repressed.
(Büttner et al., 2007). Investigated apoptotic factors are involved in

n Table 1 Pfam domains selected for study

Domain ID
Name of primary
orthologous group

Number of protein
sequences (in the final tree

and alignment)

PF07992 AIF 48731 (smaller set 12420)
PF02037 API5 177
PF01027 BI 5378
PF00653 BIR 1748
PF00656 Caspase/Metacaspase 3521
PF01223 ENDOG 2027
PF03265 NUC1 396
PF13180 OMI 11284
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different apoptotic pathways. It has been shown that apoptosis in-
duced by NUC1 and NDI1-encoded factors are metacaspase inde-
pendent (Cui et al., 2012; Büttner et al., 2007).

This analysis confirmed our recently published model of an evolu-
tionarily conserved ‘core apoptosis machinery’ reduced to three groups
of apoptotic inducers: proteases, nucleases and apoptotic factors involved
in respiration (Kaczanowski 2016). Additionally, it shows that the apo-
ptosis mechanisms used by extant unicellular organisms are much sim-
pler than the animal ones and are reduced to this conserved core. Further
we focus on the evolution of proteins from these three groups.

Ancient Apoptotic DNases
There appear to be three ancient DNases related to apoptosis: ENDOG,
ZEN1 and NUC1 (Kaczanowski 2016; Kaczanowski et al., 2011). The
apoptotic function of ENDOG, amitochondrial DNase, has been dem-
onstrated in organisms belonging to two ancient eukaryotic phyloge-
netic branches, the Opisthokonta comprising yeast (Büttner et al.,
2007) and animals (Li et al., 2001), and the Excavata (trypanosomes)
(Gannavaram et al., 2008). The fact that these three proteins evolved
very early, as the data for ENDOG suggests, was confirmed by analysis
based on the eukaryotic evolutionary tree shown in Figure 1.

ENDOG proteins contain the Protein Families Database (Pfam)
Endonuclease_NS (ID PF01223) domain (DNA/RNA non-specific
domain), which ismainly present in eukaryotic and eubacterial proteins
(some archaeal and viral proteins contain this domain as well). Max-
imum likelihood phylogenetic trees revealed that ENDOG proteins
belong to a monophyletic branch that includes eubacterial (but not
archaeal) proteins, suggesting that the ENDOG protein has a mito-
chondrial/eubacterial origin. This hypothesis is supported by the fact
that ENDOG is a mitochondrial protein. This branch also contains
ENDOG homologs encoded in the genomes of organisms belonging to
major eukaryotic taxonomic groups, besides two mentioned earlier,
namely SAR (Toxoplasma and Reticulomyxa) and Archaeplastida (Vol-
vox and Chlamydomonas). Thus we conclude that ENDOGwas part of
the protomitochondrial apoptosis system.

Similar analyses were performed for the ZEN1 and NUC1 proteins
using examples indicated in Figure 1. The apoptotic function of ZEN1
DNase has been described in plants (Ito and Fukuda 2002). ZEN1
contains the S1-P1 nuclease domain (ID PF00265), which is present
almost exclusively in eukaryotes and eubacteria (there are also exam-
ples in eukaryotic viruses). An inspection of the phylogenetic tree in-
dicated that the branch containing plant ZEN1 proteins contains

Figure 1 Evolutionary tree of eukaryotes and of apoptotic DNases. The phylogenetic tree is based on a recently published analysis of the
evolution of 37 proteins and shows organisms with described apoptosis. The authors obtained bootstrap values of 100% for the presented
branches downloaded from Wikipedia (https://commons.wikimedia.org/wiki/File:Budding_yeast_(Saccharomyces_cerevisiae).png https://
commons.wikimedia.org/wiki/Category:Caenorhabditis_elegans#/media/File:201108_nematode.png https://en.wikipedia.org/wiki/Trypano-
soma_brucei#/media/File:TrypanosomaBrucei_ProcyclicTrypomastigote_SEM.jpg https://commons.wikimedia.org/wiki/File:Homosapiens.
svg https://commons.wikimedia.org/wiki/File:Arabidopsis_thaliana_rosette_transparent_background.png https://commons.wikimedia.
org/wiki/Category:Leishmania_mexicana#/media/File:LeishmaniaMexicana_Promastigote_SEM.jpg https://commons.wikimedia.org/wiki/File:
Plasmodium_malariae_01.png https://creativecommons.org/))license.
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Figure 2 Phylogenetic tree of metacaspases/caspases. Three comma-separated bootstrap values (100 replicates) for the most significant
branches were calculated with maximum likelihood estimation (MLE), neighbor-joining (NJ), and minimal evolution (ME). Red indicates bacterial
proteins, black-Archaea, dark blue-Opisthokonta/Amoebozoa, green-Archaeplastida, purple-SAR, pink-Excavata, and brown-viral
proteins.
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eubacterial homologs and proteins from Opisthokonta (fungi, e.g.,
Moniliophthora) and SAR (Apicomplexa, e.g., Plasmodium).

The NUC1 protein is one of the animal apoptotic DNases (Lyon
et al., 2000). It contains the Pfam domain DNase II ID PF03265 which
is also present in the proteins of eubacteria and viruses but not in those
of Archaea. As with ENDOG and ZEN1, homologs of the NUC1 occur
in several major eukaryotic groups, including SAR (ciliates and
Reticulomyxa), Excavata (Trichomonas) and Amoebozoa (Dictyostelium).
We conclude that the ancestral protomitochondrion probably had
all these three apoptotic DNases, some of which were subsequently
lost in various lineages.

In conclusion, the results presented above suggest that the proto-
mitochondrion encoded all three ancient DNases: ENDOG, ZEN1 and
NUC1.

Ancient Apoptotic Proteases – Metacaspase
and Caspase
In animals, apoptosis is induced by proteases called caspases (cysteine
and aspartic proteases). In fungi and plants, a similar function is played
by arginine and lysine-specific proteases called metacaspases. Both
proteases inactivate Tudor nuclease to induce apoptosis (Sundström
et al., 2009). Because plants and fungi are remotely related (plants
belong to Archaeplastida and fungi to Opisthokonta), we can assume
that metacaspase was a part of the ancestral apoptosis machinery. Our
sequence analysis suggests that caspases and metacaspases diverged at
or even before the first eukaryotic cells emerged. This hypothesis is
supported by three pieces of evidence. The first comes from a phylo-
genetic analysis of all 3521 sequences containing the peptidase C14
domain (Pfam ID PF00656), which is shared by caspases and metacas-
pases (see Additional file 1). The maximum likelihood tree (FastTree)
has a branch containing caspases and proteases of Reticulomyxa, a
unicellular organism and member of the SAR clade. The second piece
of evidence is provided by a phylogenetic analysis based on alignment
of a small number of representative sequences (Figure 2). This analysis
was performed because it has been shown that errors in protein align-
mentmay lead to errors in phylogenetic tree. The proteins were aligned
using MSAProbs, a new-generation alignment algorithm. This align-
ment was used to calculate of maximum-likelihood, neighbor-joining,
and minimal-evolution phylogenetic trees. The common branch of
animal and Reticulomyxa caspases was supported by 92–95% bootstrap
values in different trees when viral and archaeal proteins were included
in the analysis (Figure 2). These trees also indicated that the viral
peptidases are closely related to the branch of animal caspases (with
bootstrap values of 90–97%), suggesting that viruses hijacked caspase.

The third piece of evidence is provided by BLAST searches which
revealed a close homology between caspases and the caspase-like
proteins of Reticulomyxa (see Additional file 2). The close relationship
between the animal and Reticulomyxa caspases suggests that there was
a horizontal transfer of caspase genes. We tested this hypothesis using
the chronology of phylogenetic events predicted by the RelTime
method. Contrary to expectation, the splitting of animals and Reticu-
lomyxa was the first event in the phylogenetic tree, it is therefore un-
likely that an ancient horizontal transfer of caspase genes took places.

In conclusion, the results presented above suggest that the proto-
mitochondrion encoded both caspases and metacaspases.

Ancient Apoptotic Proteases – OMI/HTRA
HTRA proteases are involved in regulated proteolysis and quality
control in both eubacterial and eukaryotic organisms (Clausen et al.,
2011). Some have an apoptotic function in Opisthokonta where they

inhibit caspase apoptosis inhibitors containing BIR domains, the
so-called inhibitor of apoptosis proteins, or IAPs (Suzuki et al., 2001;
Walter et al., 2006). This inhibition of inhibitors activates apoptosis.

Our sequence analysis revealed that these seemingly typical orthol-
ogous proteins diverged before the appearance of eukaryotes. This
unexpected conclusion is based on different pieces of evidence. The
first derives from an analysis of the phylogenetic tree of all 11,248
proteases belonging to the trypsin_2 family (those containing the
Trypsin 2 IDPfamdomain PF13665; seeAdditionalfile 1). This domain
is present in proteins from all branches of life: viruses, eubacteria, and
archaea. The maximum likelihood tree (FastTree) revealed that human
and yeast OMI/HTRA proteins are more closely related to eubacterial
proteins than to each other or to any archaeal homologs. We further
tested this hypothesis using different alignments of representative
sequences, including archaeal and viral proteins, to which various
tree-construction algorithms were applied (Figure 3). We found two
independent ancient branches. The first unites yeast OMI/HTRA with
putative chloroplast proteases of Arabidopsis and Chlamydomonas,
with a bootstrap value of 100%. The second unites humanOMI/HTRA
proteins with putative bacterial serine proteases and a putative protease
of Arabidopsis, with bootstrap values of 93–99%. Indeed, the human
branch of OMI/HTRA is part of a larger branch with bootstrap values
of 86–93%. This larger branch unites the human OMI/HTRA branch
with other bacterial proteases and proteases from various major eukaryotic
clades, namely SAR (Paramecium), Archaeplastida (Arabidopsis),
Amoebozoa (Dictyostelium) and Opisthokonta (human TYSND1 prote-
ase). According to RelTime, this branch diverged at the beginning of the
evolutionary history of OMI/HTRA proteases. Still, there are bacterial
proteins that are more closely related to yeast OMI protease than to
humanHTRAprotease. This hypothesiswas additionally confirmedusing
BLAST searches (see Additional file 2). The fungal HTRA/OMI proteases
contain additionally Pfam domain PDZ1, which is absent in the mam-
malian branch.

In conclusion, the results presented above suggest that fungal and
animal HTRA/OMI proteases diverged before mitochondrial
domestication.

Components of Electron Transport Chain
The apoptotic function of cytochrome c, which is component of the
respiratory chain, has been well demonstrated in Opisthokonta: ani-
mals (Zou et al., 1999) and fungi (Silva et al., 2005). When released
frommitochondria, cytochrome c induces apoptosis. It is an evolution-
arily conserved protein found in all branches of life.

Apoptosis-inducing factors (AIFs) are mitochondrial flavoproteins
involved in oxidative respiration. Their apoptotic function has been
shown in organisms belonging to different ancient eukaryotic phylo-
genetic branches including Opisthokonta (e.g., human factors AIM1
(Susin et al., 1999), AIM2 (Ohiro et al., 2002), and AIM3 (Xie et al.,
2005), yeast factors NDI1 (Li et al., 2006) and AIF1 (Wissing et al.,
2004) as well as SAR (AIF of Tetrahymena (Akematsu and Endoh
2010). All these proteins carry an oxidoreductase domain (Pyr_redox_2
domain, Pfam ID PF07992; see Additional file 1).

A detailed sequence analysis revealed that AIFs have a eubacterial
origin and that many types of AIFs diverged before the origin of
eukaryotes. Several pieces of evidence support this conclusion. Because
the phylogenetic tree based on all 48,731 sequences in the Pfamdatabase
contained nomonophyletic AIF branch, we calculated a tree using only
12,420 sequences belonging to branches containing different AIFs. The
differentAIFswereoftenmoreclosely related to their bacterialhomologs
than to other eukaryotic AIFs. We identified five putative ancient
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branches of AIFs represented by human AIFs AIM1, AIM2, and
AIM3 and two oxidoreductase domains of yeast NDI1 protein. We
further tested this hypothesis using phylogenetic analyses of repre-
sentative sequences from each of the three branches of human AIFs
and the NDI branch. In each case and sequences belonging to each
branch were included. The phylogenetic tree calculated for this
subset is shown in Figure 4. There are two old branches, supported
by strong bootstrap values (94–99%), each containing both eukary-
otic and bacterial proteins branches. The chronology of evolution-
ary events predicted by RelTime places the root between these
branches. The AIFM1/AIFM3 branch contains a clear AIFM1
sub-branch containing protein sequences from various ancient
eukaryotic taxonomic clades: Excavata (Naegleria), Amoebozoa
(Dictyostelium), and Opisthokonta (Metazoa) and supported by
strong bootstrap values (97–99%). The NDI1 branch is supported
by strong bootstrap values (93–99%) and contains both eubacterial
proteins and sequences from the five major ancient eukaryotic
groups (Opisthokonta, SAR, Archaeplastida, Excavata, and Amoe-
bozoa). The AIFM2 branch, with lower bootstrap values of 76–89%,
also contains both eubacterial proteins and proteins from the five
ancient eukaryotic taxonomic groups.

Inconclusion, thephylogenetic treebasedon thealignmentof a small
number of representative sequences indicates that the divergence of the
AIFM1, AIFM2, AIFM3, and NDI sequences occurred before the di-
vergence of eukaryotes. This conclusion is supported by domain archi-
tecture of these proteins. Both eukaryotic and eubacterial AIFM1
proteins contain additional domain AIF_C, and AIFM3 contains the
additional Rieskie domain. We also confirmed this conclusion using
BLAST searches (see Additional file 2).

Inhibitors of Apoptotic Proteases
We posit that protoeukaryotes developed inhibitors of bacterial toxins,
which later evolved into apoptotic factors. We therefore asked which of
the exclusively eukaryotic proteins could interfere with the apoptosis
induced by the protomitochondrion. As mentioned above, proteins
from the OMI/HTRA family induce apoptosis through degradation of
the apoptosis inhibitors survivin/BIR1p in both animals and fungi
(Verhagen et al., 2002; Walter et al., 2006). Given that our results
suggested that fungal and animal OMI/HTRA proteases diverged be-
fore the origin of eukaryotes, a survivin-like anti-apoptotic protein was
probably present in the ancestral state. We used sequence analysis to
test this possibility.

Survivin proteins contain the BIR domain (Pfam ID PF00653)
and belong to the IAP family (Verhagen et al., 2001). We studied
the evolutionary history of the BIR domain. Homology searches
indicated that this domain is present almost exclusively in pro-
teins of the Opisthokonta and viruses, but there are homologous
proteins in other eukaryotic groups as well, namely SAR, Exca-
vata and Archaeplastida (N. gruberi protein D2UXF5, P. tetraurelia
A0CYG7, and Guillardia theta L1JDG1, respectively). We obtained
more information about the evolutionary history of the BIR domain
using an analysis of the clans (remotely related protein families). The
BIR domain belongs to the BIR-like clan (Pfam ID CL0417), com-
prising remotely evolutionarily related protein domains RSM1 and
zf-CH3. Proteins belonging to this clan are exclusively viral and
eukaryotic and all the main eukaryotic taxonomic groups are
represented.

The second group of putative ancient inhibitors of apoptosis is
proteins similar to the extant AAC11 protein. AAC11 is an

Figure 3 Phylogenetic tree of OMI/HTRA proteases. Three comma-separated bootstrap values (100 replicates) for the most significant branches
were calculated with maximum likelihood estimation (MLE), neighbor-joining (NJ), and minimal evolution (ME). Red indicates bacterial proteins,
black- Archaea, dark blue-Opisthokonta/Amoebozoa, green-Archaeplastida, purple-SAR, pink-Excavata, and brown-viral proteins.
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inhibitor of apoptosis overexpressed in several cancer lines and its
down-regulation increases the sensitivity of cancer cells to various
anticancer drugs. It has been shown that AAC11 interacts with the
acinus (apoptotic chromatin condensation inducer) protein and
prevents its caspase3-mediated cleavage (Rigou et al., 2009) and,
as a result, apoptosis. AAC11 contains the API5 domain (Pfam ID
PF05918). Proteins containing this domain are absent in eubac-
teria, archaea and viruses, but they are encoded by genomes from
several ancient eukaryotic taxonomic groups.

We conclude that the API5 inhibitor of caspase likely appeared
before the divergence of the main eukaryotic taxonomic groups.

Experimental Evolution
The results presented above suggest the following plausible scenario for
the evolution of apoptosis. The eubacterial ancestors of mitochondria
produced toxins that killed protoeukaryotes, therefore there was an
antagonistic interaction between the protomitochondria and protoeu-
karyotes of a predator-prey or a host-parasite nature. It is not apparent,

Figure 4 Phylogenetic tree of AIFs. Three comma-separated bootstrap values (100 replicates) for the most significant branches were calculated
with maximum likelihood estimation (MLE), neighbor-joining (NJ), and minimal evolution (ME). Red indicates bacterial proteins, black-Archaea,
dark blue-Opisthokonta/Amoebozoa, green-Archaeplastida, purple-SAR, pink-Excavata, and brown-viral proteins.
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why the apoptosis machinery was not lost after the mitochondrial
domestication and establishing of symbiosis.We postulate that because
mitochondrial domestication was an adaptation to aerobic conditions
also the apoptosismachinerywas and still is involved in this adaptation.
Negative pleiotropy results show that the apoptosis factors are toxic to
eukaryotic cells and induce apoptotic cell death, but they are also
involved in the adaptation to aerobic conditions. This hypothesis
explainswhyapoptosiswasnot lostduringmitochondrialdomestication
and why it is maintained in unicellular organisms, where no function in
the regulation of developmental processes can be postulated. If this
hypothesis is correct then deletion of apoptosis factors should be
deleterious in aerobic conditions but beneficial in anaerobic conditions.

We tested this hypothesis experimentally using a yeast model
(S. cerevisiae). As we showed at the beginning of this paper, the core
apoptosis machinery in yeast comprises only five proteins belonging to
ancient groups. It is expected that the apoptosis machinery of this
ancient organism is still similar to the ancestral machinery which
appeared during the mitochondrial domestication. We investigated
proteins belonging to this core: NDI1, a mitochondrial apoptotic in-
duction factor (AIF), NUC1, a mitochondrial apoptotic DNase
ENDOG,MCA1, a cytoplasmic metacaspase and NMA111, a cytoplas-
mic apoptotic protease.

To characterize the effects of deletion of those genes, we performed a
simple competition experiment comparing the proliferation rates of
isogenic wild-type and respective deletion-mutant yeast and r0 strains
(incapable of mitochondrial respiration) co-cultivated in an anaerobic
or aerobic atmosphere. Equal numbers of cells of both strains (from
early exponential growth phase) were mixed and cultured in an O2-free
or O2-containing liquid medium. Aliquots of each co-culture passage
were plated on rich YPD medium and the numbers of colonies of the
wild-type andmutant strains were determined. As shown in Figure 5, in
anaerobic conditions the wild-type cells were gradually losing compe-
tition with ndi1D, mca1D and nma111D but not nuc1D. However,
predicted trend-lines revealed that wild type cells are losing competi-
tion also in the case of nuc1D, although the observed advantage of the
mutant was very weak.

In contrast, in aerobic conditions all the mutants studied were out-
performedbywild type cells (Figure 5) confirming the earlierobservation
that these genes are required for efficient aerobic growth. The same
behaviors were observed when a r0 derivative of MR6 strain served as
a control, in both experimental conditions. Similar results were obtained
when a pair of S. cerevisiae BY4741 (wt and ndi1D) strains were used in
competition experiments (see Additional Figure S1).

The growth of all strains in aerobic and anaerobic conditions was
also tested individually (see Supp. Figure S2). As expected from the
competition experiments, in anaerobic conditions the wild-type
strain grew slower and entered the stationary phase earlier than
the mutants.

The differences in fitness between the mutants and wild-type cells
found in the competition experiments could result from differences in
their proliferation rates and/or cell death rates. To differentiate between
thesepossibilitieswesimultaneouslymonitored theoptical density (OD)
of cultures, which measures the number of all cells, and the number of
colony forming units (CFU), which gives the number of live cells, for
each strain. As shown in Figure 6 and 7, during the exponential growth
phase the CFU and OD values were linearly proportional to each other
in both aerobic and anaerobic conditions for all the strains, indicating
identical death rates.

This experiment also explained, why the results obtained for the
nuc1D mutant contradicted the earlier study by Bűttner and col-
leagues (Büttner et al., 2007). Those authors found that deletion of

nuc1 stimulated necrosis in fermentative conditions. Apparently, under
conditions used in our competition assays cell death was not
stimulated.

In the stationary phase of growth (aging cultures) the curves differed
substantially between anaerobic and aerobic conditions. In the former,
the OD and CFU curves remained parallel, indicating no changes in the
death rate during chronological aging in any of the strains (Figure 6).
Thus, under anaerobic conditions deletion of the apoptotic genes does
not affect the cell survival in the aging cultures. In contrast, under
aerobic conditions the aging cultures of all the mutants studied, with
the exception of the r0 strain, showed a steadily decreasing proportion
of live cells (Figure 7). Thus, an absence of any of the apoptotic factors
studied increases the death rate of chronologically aging cells in aerobic
conditions.

To verify how the deletions studied affected the ability to perform
mitochondrial respiration, we studied the growth of the respective yeast
strains on a glycerol-containingmedium.Glycerol is a non-fermentative
carbon source, hence to use it as a sole source of energy yeast require
mitochondrial respiration. In accordance with the literature data on the
genes studied, deletion of any one of them precluded growth on the
glycerol medium. Only the wild type strain grew on such medium (See
Suppl. Figure S3.).

To conclude, these experiments confirmed our hypothesis that the
apoptosis machinery is involved in adaptation of cells to aerobic
conditions. In such conditions the activity of thismachinery is beneficial
both during exponential stage of culture growth and during chrono-
logical aging. Since the mitochondrial apoptotic factors (NDI1, NUC1)
are required for proper mitochondrial functioning this observation was
expected. Additionally, the results presented above suggest that apo-
ptotic cytoplasmic proteases (OMI/HTRA and metasacpase) are also
required for proper mitochondrial function.

DISCUSSION
Our analysis supports the endosymbiotic theory of the origin of apo-
ptosis (Figure 8). Using yeast as a model we found that the apoptosis
machinery of unicellular organisms is extremely simplified in compar-
ison to animal ones. We focused on the reconstruction of the ancestral
state of apoptosis mechanisms shared by eukaryotic unicellular and
multicellular organisms.

The apoptosis systemof the protoeukaryotes reconstructedusing the
parsimony assumption indicates that the putative ancestor had several
apoptotic factors with redundant apoptotic functions, including apo-
ptotic DNases (ZEN1, ENDOG, NUC1), caspase-type proteases (both
metacaspase and metacaspase), various HTRA/OMI proteases (both
fungal and mammalian types), and diverse AIFs. During subsequent
evolution, redundant factors were lost in various lineages (for example,
caspases and metacaspases, various DNases, or different HTRA/OMI
proteases). Our analysis indicates that both ancient cytoplasmic and
mitochondrial apoptotic factors have eubacterial origin. This supports
the hypothesis that originally the apoptotic factors were toxins used by
the ancestors of mitochondria against eukaryotic ancestors before mi-
tochondrial domestication. Similar interactions between extant bacteria
and eukaryotic cells are known, e.g., bacterial proteases (Rust et al.,
2016) and DNases (Faïs et al., 2016) are used as toxins inducing apo-
ptosis. The observation that numerous apoptotic factors have eubacte-
rial homologs and are found in different branches of the eukaryotic
tree indicates that these factors are ancient and likely diverged before
the origin of eukaryotes. Our analysis based on molecular clock ex-
cluded the possibility of horizontal transfer of the apoptotic factors
between protomitochondria during the early stages of mitochondrial
domestication.
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Figure 5 Competition of wild-type and mutant S. cere-
visiae strains under anaerobic and aerobic conditions.
Competition assays were performed between ndi1D,
nuc1D, mca1D, nma111D, r0 and wild-type S. cerevisiae
MR6 strains. The ratio of cells of the mutant and wild-
type strains was monitored by plating ca. 100 cells onto
YPD solid medium and replicating grown colonies onto
YPD medium supplemented with geneticin or onto YPG
to distinguish the mutant cells from the wild type. Data
for each graph represent the mean 6 SD of three inde-
pendent assays.
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In conclusion, apoptosis in its current complex form evolved by
divergent evolution, as all the main apoptotic factors were already
encoded in the protomitochondrion. However, the different apo-
ptotic factors usedby theprotomitochondrion evolvedby convergent
evolution, evolution in the sense that several groups of unrelated
factors become engaged in the same process (e.g., the apoptotic
DNases are not related to apoptotic proteases). Our study indicates
that animal apoptosis and apoptosis/apoptosis-like cell death of
plants and unicellular organisms are homologous processes. Indeed,
we found that caspases are present in common ancestor of Eukary-
otes. Such observation suggests that it is likely that the typical

animal apoptosis based on centrality of activation of caspases
evolved before animals.

A comparison with the phylogenetic studies performed by Koo-
nin and colleagues 15 years ago reveals both advantages and limi-
tations of the phylogenetic approach (Koonin and Aravind 2002;
Aravind et al., 2001). Our results support their hypothesis that
apoptosis originated in eubacteria. However, they proposed that
AIF originated in archaea because eubacterial homologs were not
known at that time.

Some elements of the oxidative chain behaved as toxins toward
protomitochondrion (such as various AIF oxidoreductases and

Figure 6 Effect of nuc1, ndi1, mca1 or nuc1 deletion on growth and viability of S. cerevisiae in prolonged cultures under anaerobic condition.
Optical density (OD600) and density of live cells (CFU) were determined in parallel during culture growth. Mean and standard deviation from
duplicate experiments are shown for each time point.

Figure 7 Effect of nuc1, ndi1, mca1 or nuc1 deletion on growth and viability of S. cerevisiae in prolonged cultures under aerobic conditions.
Experiment was performed as described in legend to Figure 6.
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cytochrome c). Interestingly, in different types of AIFs different
domains have apoptotic activity, indicating that the mechanisms
of apoptosis activation could also be divers (Kaczanowski 2016).
The surprising richness of redundant apoptotic factors present in
the protomitochondrion (for example, HTRA/OMI proteases) sug-
gests that “red queen” co-evolution may have shaped the protomi-
tochondrion to contain as many toxins as possible (van Valen
1973). This concept is nearly illustrated by extant parasites which
often evade the host defense system by recombining numerous
homologous pathogenic factors (e.g., malarial var genes (Su et al.,
1995. It is difficult for the host to evolve resistance against many
similar, but variable pathogenic factors. Our analysis suggests that a
similar co-evolutionary arms race between ancestral eubacterial
protomitochondrial and protoeukaryotic cells took place during
the domestication of mitochondria. As to the putative antitoxins
developed by the protoeukaryotic host of the protomitochondrion,
we identified two plausible factors: the API5 and the IAP apoptosis
inhibitors. Our phylogenetic analysis indicates that these factors
could be very old and may have appeared when the symbiosis be-
tween protomitochondrial and protoeukaryotic organisms was be-
ing established.

In conclusion a co-evolutionary arms race likely contributed to the
formation of the complex apoptotic regulatory pathways presented in
Figure 8.

The experiments carried out in yeast confirmed a major predictions
of the proposed model. They showed that perturbation of apoptosis
could be beneficial in extant organisms in anaerobic conditions. We
conclude that this result is a trace of the ancestral state andhighlights the
ancestral trade off. Mitochondrial domestication was beneficial in
adapting to emerging aerobic conditions, and apoptotic-like cell death
was the cost.

Conclusion
In conclusion, our study suggests that the apoptosismachinery canbean
ancient adaptation that evolved during mitochondrial domestication
and is involved in adaptation to aerobic conditions in different
eukaryotes.

Our results could have also medical implications. Since suppression
of apoptosis leads to perturbation of mitochondrial metabolism in
yeasts, one may expect that similar phenomenons exist in other eu-
karyotes. Actually, classical observations indicate that suppression of
apoptosis in cancer cells tends to occur together with perturbations in
cellular aerobic metabolism (theWa;Warburg 1956). In contrast, path-
ological apoptosis in aging occurs in neuron cells during the course of
Alzheimer’s (LaFerla et al., 1995) and Parkinson’s (Mochizuki et al.,
1996)diseases, where mitochondrial respiration is extremely active
(inverse Warburg hypothesis). Indeed, there is statistical important
inverse epidemiological co-morbidity between these neurological

Figure 8 Ancestral state and evolutionary arms race leading to establishment of modern apoptosis machinery. According to this reconstruction, the
parasitic protomitochondrion released the following toxins: DNases ZEN1, ENDOG and NUC1 (squares), diverse AIFs (marked as triangles), and
different proteases (caspases and metacaspases, scissors). Inhibitors of the proteases, (depicted as shields: BIRs in black, API5-AAC11 in blue)
represent the evolutionary response of the protoeukaryotic cell. The protomitochondrial proteases OMI/HTRA, which deactivate BIRs, are in turn an
evolutionary response to the BIRs. As a result, two similar complex mechanisms evolved comprising nuclease, metacaspases or caspases, BIRs, and
OMI/HTRA proteases. It is likely that the two systems diverged very early in evolution, before the divergence of the main eukaryotic groups. Image
imported from Wikipedia (https://fr.wikipedia.org/wiki/Bouclier_(arme)#/media/File:4165_-_Milano_-_Antiquarium_-_Replica_armatura_gladiatore_-_
Foto_Giovanni_Dall%27Orto_-_14-July-2007_-_1.jpg (Self-published work by G.dallorto).
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diseases and cancer (Demetrius et al., 2014; Demetrius and Simon,
2013, 2012).
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