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Abstract 

Pentatricopeptide repeat (PPR) proteins form the largest known RNA-binding protein 

family, and are found in all eukaryotes, being particularly abundant in higher plants. PPR 

proteins localize mostly to mitochondria and chloroplasts, and many were shown to modulate 

organellar genome expression on the posttranscriptional level. While the genomes of land 

plants encode hundreds of PPR proteins, only a few have been identified in Fungi and 

Metazoa. As the current PPR motif profiles are built mainly on the basis of the predominant 

plant sequences, they are unlikely to be optimal for detecting fungal and animal members of 

the family, and many putative PPR proteins in these genomes may remain undetected. In 

order to verify this hypothesis we designed a HMM-based bioinformatic tool called 

SCIPHER (Supervised Clustering-based Iterative Phylogenetic Hidden Markov Model 

algorithm for the Evaluation of tandem Repeat motif families) using sequence data from 

orthologous clusters from available yeast genomes. This approach allowed us to assign 

twelve new proteins in S. cerevisiae to the PPR family. Similarly, in other yeast species we 

obtained a five-fold increase in the detection of PPR motifs, compared to the previous tools. 

All the newly identified S. cerevisiae PPR proteins localize in the mitochondrion and are a 

part of the RNA processing interaction network. Furthermore, the yeast PPR proteins seem to 

undergo an accelerated divergent evolution. Analysis of single and double amino acid 

substitutions in the Dmr1 protein of S. cerevisiae suggests that cooperative interactions 

between motifs and pseudoreversion could be the force driving this rapid evolution. 
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Introduction 

The whole-genome sequencing project of the model land plant Arabidopsis thaliana 

revealed the existence of an unexpectedly large protein family with no ascribed functions for 

most of the hundreds of its members (Small and Peeters 2000; Lurin et al. 2004). The 

characteristic feature of all proteins grouped into this family is the presence of tandem repeats 

of a degenerated 35-amino-acid motif, usually containing the entire domain architecture 

(Small and Peeters 2000). The name pentatricopeptide repeat family (PPR) was given due to 

an obvious similarity to a previously known tetratricopeptide repeat protein family (TPR), 

bearing tandem repeats of a similar 34-residue motif. Based on the similarity of TPR and 

PPR motifs, it was postulated that a single PPR motif is comprised of a pair of anti-parallel !-

helices (A and B) forming in tandem arrays a superhelix that encloses a central groove – a 

putative ligand binding site (Small and Peeters 2000). While in TPR motifs the residues 

projecting into the groove vary considerably, the side chains lining the central groove in PPR 

motifs are clearly hydrophilic and form a positively charged bottom. Thus, unlike the TPR 

proteins – which provide a platform for protein-protein interactions – it was proposed that a 

multitude of PPR motifs in a single protein could constitute a novel sequence-specific RNA-

binding domain (Small and Peeters 2000; Lurin et al. 2004). In several cases direct binding of 

particular PPR proteins to their RNA targets has been demonstrated in vivo or in vitro in 

plants (reviewed in (Schmitz-Linneweber and Small 2008). In one recent study of the maize 

PPR10 protein, one PPR motif was postulated to recognize a single nucleotide in the RNA 

substrate (Prikryl et al. 2011). Specific RNA binding was also shown for the S. cerevisiae 

Dmr1p (Puchta et al. 2010) and human PTCD3 (Davies et al. 2009), which interact with the 

small subunit ribosomal RNA in mitochondria.  

Pentratricopeptide repeat proteins are present universally and exclusively in eukaryotic 

genomes, with an extreme abundance in terrestrial plants. While the genomes of Arabidopsis 
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thaliana and Oryza sativa encode about four to five hundred PPR proteins (O'Toole et al. 

2008), only 3 and 7 PPR proteins were known to be encoded by yeast and human genomes, 

respectively (Lurin et al. 2004; Lightowlers and Chrzanowska-Lightowlers 2008; Davies et 

al. 2009). Early predictions of subcellular localization suggested that the great majority of 

PPR proteins are targeted to organelles (Lurin et al. 2004). After nearly a decade of extensive 

genetic and biochemical studies it is now clear that PPR proteins mainly localize to 

chloroplasts and/or mitochondria, where they attach to diverse RNA species with target 

sequences located in UTRs, introns or intergenic spacers. At the molecular level, PPR 

proteins perform a variety of essential functions in many post-transcriptional steps of 

organellar genome expression in plants, animals and Fungi (Delannoy et al. 2007). These 

include regulation of processing, maturation and translation of organellar RNAs by direct or 

indirect involvement in mechanisms like splicing, RNA editing, modulation of transcript 

stability and translational control (Saha, Prasad, Srinivasan 2007; Schmitz-Linneweber and 

Small 2008). Therefore, PPR proteins – forming the largest known paralogous protein family 

in plants – seem to play a pivotal role in the expression of organellar genomes as either 

housekeeping factors or potential mediators in the nuclear control over the mitochondrial and 

chloroplast genomes in virtually all Eukaryotes. 

Given the abundance of PPR proteins encoded by the plant genomes, a dearth of these 

proteins in other clades may seem questionable. Also, while a typical plant pentatricopeptide 

repeat protein consists of a multitude of tandem PPR motif repeats, only two and three motifs 

can be detected using the current tools in the S. cerevisiae Dmr1p and Aep3 sequences, 

respectively. PPR (and TPR) motifs are identified using profiles based upon known 

sequences (Karpenahalli, Lupas, Soding 2007). As 88% of all known PPR proteins, 

containing 94% of all PPR motifs (as identified by the Pfam database (Finn et al. 2010)) are 

encoded by genomes of Viridiplantae, this could introduce a significant bias.  If the motif 
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signature is significantly different between various eukaryotic lineages, the plant model of a 

PPR motif will fail to detect many non-plant members of this family and the total number of 

PPR proteins in fungi or animals could be profoundly underestimated.  

In this study we readdressed the question of PPR proteins encoded by non-plant 

eukaryotic genomes. We designed a sensitive and reliable method to search for 

pentatricopeptide repeat proteins (and other divergent repetitive proteins) using an approach 

combining iterative HMM profile refinement and expert assesment of results, applied it to the 

PPR protein family in 14 yeast species for which a complete genome sequence was available, 

and detected nearly two hundred new putative members.  

As the PPR proteins prove to be among the most divergent in orthologous comparisons 

between different yeast species, we also decided to address one possible cause of this rapid 

divergent evolution experimentally, using the well-characterized S. cerevisiae Dmr1 protein 

as a model. Our results indicate the possible role of intragenic genetic interactions among 

different PPR motifs in accelerating the evolution of the pentatricopeptide-repeat proteins. 

 

Materials and Methods 

Yeast genomic data 

Genome sequences of 14 yeast species were used in this study: Saccharomyces 

cerevisiae, Saccharomyces castellii (Cliften et al. 2003), Candida glabrata (Koszul et al. 

2003), Vanderwaltozyma polyspora (Scannell et al. 2007), Kluyveromyces lactis (Zivanovic 

et al. 2005), Kluyvromyces waltii (Kellis, Birren, Lander 2004), Ashbya gossypii (Dietrich et 

al. 2004), Pichia guilliermondii, Candida albicans (Jones et al. 2004), Pichia stipitis (Jeffries 

et al. 2007), Debaryomyces hansenii (Dujon et al. 2004), Clavispora lusitaniae, Yarrowia 

lipolytica (Dujon et al. 2004) and Schizosaccharomyces pombe (Wood et al. 2002). The non-

redundant database of protein sequences contained a set of 67943 translated open reading 
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frames downloaded via SRS (EBI) from UniProtKB/TrEMBL databases. Genome sequences 

of S. castellii, K. waltii and C. lusitaniae are not annotated, thus open reading frames of 

particular homologous sequences were derived using tBLASTn (NCBI). In total, sequences 

of 41 translated ORFs from these species were gradually appended to the created protein 

database after each iteration of the SCIPHER search, when new orthologous group were 

defined.  

Building orthologous groups 

Homologous sequences for particular proteins were found using BLASTp (NCBI) with 

default parameters. Clustering of proteins into orthologous groups was manual according to 

several general rules:  

- Assessment of a direct orthology was based on the reciprocal BLAST hypothesis: 

sequence X from species A is considered as a direct ortholog of sequence Y from species B if 

a BLASTp search with X as a query hits Y in the first place and BLASTp search with Y as a 

query hits X in the first place. 

- Direct orthology relationships were propagated according to the following rule: if A is 

a direct ortholog of B and B is a direct ortholog of C then A is a direct ortholog of C (and all 

sequences belong to the same orthologous group). 

- Sequences were considered as in-paralogs if they fulfilled the following criterion: 

Sequence X and sequence Y from species A are in-paralogous if a direct ortholog of 

sequence X from species B is the same as a direct ortholog of sequence Y. 

Initial definition of yeast PPR motif signature 

The PPR model of the first iteration was constructed from an alignment of 194 motifs 

derived from direct orthologs of Pet309p (102 motifs), Dmr1p (66 motifs) and Aep3p (26 

motifs) from the analyzed genomes (34 sequences). Motifs were detected using TPRpred 

(Karpenahalli, Lupas, Soding 2007). A hidden Markov model was constructed using 
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hmmbuild program (Eddy 1998) from the EMBOSS package (Rice, Longden, Bleasby 2000). 

The search was performed with hmmsearch program with default parameters (combined e-

value threshold <10). 

True positivity criteria (TPC) 

When the results of HMM searches for PPR motifs using the SCIPHER procedure were 

analyzed, it was expected that previously unknown PPR proteins would be detected. A 

sequence was considered as a new PPR protein if the search results fulfilled three predefined 

true positivity criteria: 

- At least two statistically significant motifs must to be found within the sequence 

(combined e-value < 10). 

- At least two statistically significant motifs must be found in at least one other direct 

ortholog of this sequence (any other sequence in the orthologous group in the defined 

phylogenetic cluster). 

- Motif hits must not overlap with other previously annotated tandem repeat motifs 

(e.g. TPR, HAT). However, if statistical significance of the PPR hits is higher than the 

significance of other tandem repeat motif hits in the same region of the protein (as evaluated 

in proper control search), this condition may be omitted. 

Control searches 

Control models of TPR and HAT motifs were constructed using two sets of true positive 

TPR (2822 sequences) and HAT (957 sequences) hits derived from the Pfam database (Finn 

et al. 2006). Hidden Markov models were constructed as described previously and used in 

control searches of the same protein database as SCIPHER searches for PPR proteins and 

with the same search parameters.  
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Comparing rates of sequence divergence between proteins 

The dataset of TPR proteins contained 30 proteins being best hits in a control search for 

yeast TPR proteins using the list of Pfam true positive TPR motifs. The dataset of 

mitoribosomal proteins contained 37 and 12 proteins constituting small and large subunit of 

the yeast mitochondrial ribosomes, respectively. The dataset of RRM (RBD) sequences 

consisted of 22 proteins containing at least two RRM motifs per protein found in PROSITE 

(Sigrist et al. 2010). The dataset of PUF (Pumilio) sequences consisted of 6 proteins 

containing 5-8 PUF motifs each found in PROSITE. All sequences were derived from the 

UniprotKB/SwissProt database. Orthologous sequences were obtained by a series of 

BLASTp searches (NCBI). Sequence similarities between orthologous pairs were calculated 

as the percentage of identities in pairwise alignments. Data for PPR proteins were obtained 

by calculating sequence similarities between orthologs of Dmr1p, Pet309p, Aep3p, Rpm2p, 

Rmd9p, Cbp1p, Msc6p, Pet111p, Yer077cp, Atp22p, Aep2p, Sov1p and Aep1p. Whole-

genome interspecies distributions of sequence conservation between pairs of orthologs were 

obtained from (Dujon et al. 2004). 

Yeast strains, media and plasmids 

Standard yeast media and basic genetic methods were as described previously (Dujardin 

et al. 1980; Burke, Dawson, Stearns 2000). Yeasts were transformed using either the rapid or 

high-efficiency LiAc/SS-DNA/PEG protocol (Gietz and Woods 2002). The dmr1! strain 

DPPR1 (MAT !, ade2; trp1; ura3; leu2; his3; dmr1::kanMX4; [rho–/0]) (Puchta et al. 2010) 

was crossed to the isogenic wild-type strain W303/A/520  (MAT a, ade2; trp1; ura3; leu2; 

his3; [rho+]) (Rogowska et al. 2006) to create the DDPPR1 diploid, which was subsequently 

transformed with the pDMR1-2µ plasmid (Puchta et al. 2010) containing the entire DMR1 

genomic region cloned in YEplac195 (2", URA3) vector. This strain was then sporulated and 
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haploid spores carrying the dmr1::kanMX4 deletion were obtained yielding the HS-DPPR 

strain (MAT !, ade2; trp1; ura3; leu2; his3; dmr1::kanMX4; [rho+]; [pDMR1-2µ]).  

Error-prone PCR and construction of the mutated library 

Random mutagenesis of the DMR1 gene was performed by an error-prone PCR reaction 

using Diversify PCR Random Mutagenesis Kit (Clonetech, Cat.# 630703) with buffer 

condition 3, as described in the user’s manual and DMR1_LBam (5’- 

ATGGATCCTTCCTTGTCGCACATTATCTTACT) and DMR1_RPst (5’- 

ATCTGCAGTACCTACTATATCGACCACTACGGG) primers described previously 

(Puchta et al. 2010). PCR products were digested with BamHI and PstI and cloned into the 

YCplac111 (2", LEU2) vector (Gietz and Sugino 1988). The obtained plasmid library was 

amplified and transformed into the HS-DPPR strain. Counterselection to induce the loss of 

the URA3 pDMR1-2µ vector carrying the wild-type DMR1 gene was then performed by 

passaging transformed clones on media containing uracil (20 µg/ml) and 5-fluoroorotic acid 

(5-FOA, 1 mg/ml) twice. 

In vivo labeling of mitochondrial translation products 

The procedure was carried out as described previously (Funes and Herrmann 2007). 

Briefly, yeast strains were grown overnight at 30 °C in complete synthetic media without 

methionine, supplemented with 2% galactose. An amount of cells equivalent to 1 OD600 unit 

was taken from the o/n culture and incubated for 30 minutes at 30 °C in complete synthetic 

media without methionine, supplemented with 2% galactose, cycloheximide (0.375 mg/ml) 

and [35S]-methionine (50 µCi/ml). Labeling was stopped by chasing with unlabeled 

methionine and cells were chilled on ice and lyzed. Proteins were precipitated with 

trichloroacetic acid (TCA) and separated on a 15% SDS-PAGE gel. Gels were stained with 

Coomassie Blue and dried, and the labeled products of mitochondrial translation were 

visualized by autoradiography. The total amount of protein in each sample was estimated by 
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densitometry of the Coomassie Blue staining and the obtained values were used to normalize 

the results of autoradiography.   

Results 

Application of current methods used to identify PPR motifs (TPRpred, (Karpenahalli, 

Lupas, Soding 2007)) to S. cerevisiae proteins identifies only three such sequences: Pet309p, 

Aep3p and Dmr1p, which was the subject of our recent study (Puchta et al. 2010). Only two 

PPR motifs are detected in the entire 864 amino acid sequence of Dmr1p. Similarly, only 3 

motifs are identified in Aep3p. This appears questionable considering the expected 

architecture of all PPR proteins, where tandem arrays of motifs form a complex superhelical 

tertiary structure constituting a ligand-binding site. Also, dot-plot analysis of the Dmr1p 

sequence (not shown) reveals the presence of self-homology indicative of a repetitive 

character, and multiple alpha-helical regions covering nearly the entire sequence of the 

protein are predicted by psi-pred  (Jones 1999; Buchan et al. 2010). Additional PPR motifs 

were identified using TPRpred in sequences of Dmr1p orthologs from other fungi, including 

Ashbya gossypii and Kluyveromyces lactis, in regions showing significant sequence similarity 

to the S. cerevisiae sequence.  

These preliminary results strongly suggested that the Dmr1p sequence contained 

additional PPR motifs not detected by TPRpred, which uses a profile that is strongly biased 

towards plant motifs (94% of all known PPR motifs come from the 88% of the PPR proteins 

that are encoded by plant genomes). We have therefore decided to build profiles that could be 

used to specifically detect PPR motifs in yeast genomes. To this end we designed a new 

method, termed SCIPHER (Supervised Clustering-based Iterative Phylogenetic Hidden 

Markov Model algorithm for the Evaluation of tandem Repeat motif families), using 

sequence data from orthologous clusters from available yeast genomes 
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The SCIPHER search 

The SCIPHER algorithm combines the iterative application of hidden Markov models 

(HMM) with a simple phylogenetic analysis aimed at clustering proteins into orthologous 

groups (see: Materials and Methods). The initial set of PPR proteins used to define the first 

generation model consisted of all direct orthologs of known S. cerevisiae PPR proteins 

(Pet309p, Dmr1p and Aep3p) from 14 analyzed Saccharomycotina and Taphrinomycotina 

species (34 sequences total). The model was constructed on the basis of 194 ‘canonical’ PPR 

motifs derived from these sequences with the use of TPRpred, currently considered to be the 

most accurate bioinformatic tool for the tandem repeat motif detection (Karpenahalli, Lupas, 

Soding 2007).  

The analysis flowchart is shown in Figure 1. For each known PPR protein in each of the 

analyzed organisms a BLASTp (or tBLASTn) search was used to find direct orthologs in 

other species. As PPR proteins are coorthologous, accurate and rigorous distinction of direct 

orthology from out-paralogy is required. Currently, several automated tools for clustering of 

sequences into orthologous groups (OGs) are available (Remm, Storm, Sonnhammer 2001; 

Alexeyenko et al. 2006; Huerta-Cepas et al. 2008), but their accuracy is dependent on 

sequence similarity, thus these are prone to errors in distinguishing out-paralogs from direct 

orthologs in highly divergent multiple gene families. In this study the homology relationships 

between sequences were elucidated manually (see Materials and Methods). After finding and 

clustering the orthologous sequences each protein sequence in each orthologous group was 

subjected to search for canonical PPR motifs using TPRpred (Karpenahalli, Lupas, Soding 

2007). All motifs obtained this way were then used to create a hidden Markov model, which 

was subsequently used to search for PPR motifs in a protein database representing proteomes 

of all species is the analyzed dataset. New motifs found in already analyzed protein 

sequences were appended to the previously constructed model, while new protein sequences 
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in which motifs were detected were used to construct new orthologous groups, as described 

previously, if they matched predefined true positivity criteria (TPC, see Materials and 

Methods). About two thirds of sequences identified from the third iteration onwards were 

rejected as not fulfilling TPC, about 50% of those were TPR or HAT proteins. This shows 

that the PPR motif in yeasts is very divergent and closely related to TPR and HAT motifs, so 

that manual curation is needed to reliably tell them apart.  

The algorithm was iterated until saturation (no new true positives with subsequent 

iterations), which was reached at the fifth iteration, resulting in the detection of 953 motifs in 

150 protein sequences (Figure 2). Sequences of all the detected PPR motifs are available in 

Supplementary Data file S1.  

According to the data generated, the 14 analyzed yeast genomes encode from 9 to 15 

Pentatricopeptide Repeat Proteins each, representing at least 19 different orthologous groups 

(Supplementary Figure S1). In Saccharomyces cerevisiae, in addition to previously known 

PPR proteins (Pet309p, Dmr1p and Aep3p), in which new motifs were identified, the 

SCIPHER search unveiled the existence of 11 additional  family members. These are Rpm2p, 

Rmd9p, Rmd9Lp, Cbp1p, Yer077cp, Atp22p, Msc6p, Pet111p, Aep2, Sov1p, and Aep1p  

(Figure 3).  

In the case of S. cerevisiae we performed another extrapolation step, identifying motifs 

which, while failing to give significant hits with HMM profiles directly, share significant 

sequence similarity with regions identified as PPR motifs in orthologous sequences from 

other yeast genomes. These could represent very divergent, possibly degenerate PPR motifs. 

They were identified in 13 of the 14 identified PPR S. cerevisiae proteins (light gray boxes in 

Figure 3), additionally four such divergent PPR motifs were found in the sequence of 

Rpo41p, bringing the total number of putative S. cerevisiae PPR family members to 15. With 

the exception of Rpo41 (containing the RNA polymerase domain), no motifs other than PPR 
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were found in the identified proteins, which is in agreement with previous findings in non-

plant members of this family. 

 

PPR proteins in yeasts are involved in the expression of the mitochondrial genome 

Rpm2p encodes a protein component of mitochondrial RNase P – a widely known 

enzyme responsible for the removal of a 5’-leader from mitochondrial tRNAs, and thus for 

the maturation of all mitochondrial polycistronic transcripts that contain tRNAs 

(Hollingsworth and Martin 1986). Additionally, Rpm2p is also localized in the cytoplasmic 

mRNA processing bodies and in the nucleus, where it acts as a transcriptional activator 

(Stribinskis et al. 2005; Stribinskis and Ramos 2007). The number of motifs detected in 

Rpm2p orthologs ranges from 3 in C. albicans to 10 in D. hansenii, covering the whole 

domain architecture of the protein (Figure 3). Therefore, in the RNase P complex, PPR motifs 

present in Rpm2p may serve as an innate scaffold for binding of the 9S RNA and/or might 

form a platform for the recognition of target RNA species. The above is consistent with the 

observation that classical (P subfamily) PPR proteins do not exhibit any catalytical activities 

but rather perform structural functions, bridging the interactions between proteins and RNAs 

(Delannoy et al. 2007).  

Rmd9p, which is also localized in mitochondria, is an extrinsic membrane protein facing 

the matrix side of the mitochondrial inner membrane (Nouet et al. 2007). Rmd9p interacts 

physically with mitoribosomes (Williams et al. 2007) and it was proposed to play a role in the 

processing and stability of mitochondrial mRNAs, most probably by delivering mtRNAs to 

the translation machinery (Nouet et al. 2007). Yeast species that had undergone whole-

genome duplication (post-WGD species: S. cerevisiae, S. castellii, V. polyspora and K. 

glabrata) retained a paralog of Rmd1p (named Rmd9Lp), however its molecular function still 

remains unknown.  
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Cbp1p, another newly identified putative yeast PPR protein, is involved in the processing 

pathway of COB mRNA (Dieckmann, Pape, Tzagoloff 1982; Dieckmann, Koerner, Tzagoloff 

1984). This protein interacts with the 5’-UTR of COB mRNA and has a role in its stability 

and translation (Islas-Osuna et al. 2002). It was shown that at the inner mitochondrial 

membrane Cbp1p was associated with Pet127p – a putative 5’-3’ exoribonuclease (Krause et 

al. 2004). In S. cerevisiae Cbp1p 5 PPR motifs were found, while the highest number of 

motifs was detected in the V. polyspora ortholog (8 motifs). 

The product of YER077C ORF (Yer077cp) was suggested to be a member of PPR protein 

family in S. cerevisiae by previous bioinformatic studies (Lurin et al. 2004). This protein still 

remains uncharacterized, although it is known to localize to mitochondria, and null mutants 

exhibit a decrease in plasma membrane electron transport. The presence of PPR motifs in 

orthologs of Yer077cp allows to speculate that this protein may perform a function in the 

expression of the mitochondrial genome, possibly in the post-transcriptional processing of 

mitochondrial RNAs.  

Atp22p is a mitochondrial inner membrane protein required for the assembly of the F0 

sector of ATP synthase. It has been reported that levels of ATP9 and ATP6/8 transcripts in 

atp22 mutants remain unchanged, while the functionality of ATPase is defective (Helfenbein 

et al. 2003). Atp22p was found to act as a translational activator for the ATPase subunit-6 

mRNA, with genetic data suggesting its interaction with the 5’ UTR of the transcript (Zeng, 

Hourset, Tzagoloff 2007). The presence of PPR motifs in Atp22p also suggests that it should 

exhibit an RNA-binding activity. The number of motifs detected by SCIPHER varies from 0 

in P. stipitis and S. castellii to 6 in V. polyspora. 

Msc6p was previously identified in a whole-genome screen for mutants displaying 

unequal sister chromatid exchange during meiosis (Thompson and Stahl 1999). The exact 

molecular function of Msc6p remains unknown, although it is also localized in mitochondria 
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and null mutants exhibit a decreased respiratory growth rate. Direct orthologs of this protein 

are present only in yeast species from S. cerevisiae and K. lactis clades (Supplementary 

Figure S1). The maximum number of motifs was found in an ortholog from V. polyspora, 

where 6 motifs were detected. 

Pet111p is a well-known regulatory protein localized in the inner mitochondrial 

membrane where it plays the role of a translational activator specific for COX2 mRNA 

(Poutre and Fox 1987; Mulero and Fox 1993; Bonnefoy, Bsat, Fox 2001). At the same time 

Pet111p negatively regulates translation of COX3 mRNA, in opposition to Pet122p, Pet494p 

and Pet54p (Naithani et al. 2003). 6 PPR motifs were found in the sequence of Pet111p from 

S. cerevisiae during the SCIPHER analysis. 

Aep2p (Atp13p) was suggested to be involved in translation and stability of ATP9 

mRNA (Finnegan et al. 1991). This protein probably binds to the 5’-UTR of this transcript, 

as the phenotype of isolated thermosensitive mutants may be suppressed by a base 

substitution in this region of the target mRNA (Ellis et al. 1999). Species-specific interactions 

between Aep2p and ATP9 mRNA were found to cause nucleo-mitochondrial incompatibility 

between S. cerevisiae and the closely related species S. bayanus (Lee et al. 2008). Only a few 

PPR motifs were detected in orthologs of Aep2p in the analyzed yeast species. This includes 

4 motifs found in the S. cerevisiae protein as well as 3 motifs in V. polyspora, K. waltii, K. 

lactis and C. albicans and 2 in P. stipitis. YQ24 (SPCC11E10.04) from S. pombe also seems 

to be a direct ortholog of Aep2p, and 4 PPR motifs were detected in its sequence.  

Sov1p is a protein of unknown function that also localizes to mitochondria and the 

phenotypes of its mutants indicate an involvement in the expression or maintenance of the 

mitochondrial genome (Merz and Westermann 2009). Direct orthologs of Sov1p are found in 

S. cerevisiae and K. lactis clades as well as in the Y. lipolytica genome. The number of motifs 

detected varies from 2 in Y. lipolytica to 7 in A. gossypii. 
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Aep3p, a previously known PPR protein, is thought to be involved in the expression of 

ATP6/8 mRNA. Aep1p (Nca1p) – similarly to Aep2p – is implicated in the expression of the 

mitochondrial transcript encoding subunit 9 (Atp9p) of F1-F0 ATP synthase (Payne et al. 

1993; Ziaja, Michaelis, Lisowsky 1993). The phenotype of the previously isolated 

thermosensitive mutant indicate that Aep1p presumably plays a role is the translation of the 

ATP9 mRNA, as the levels of the cognate transcript are unchanged upon a temperature shift 

(Payne, Schweizer, Lukins 1991). Orthologs of Aep1p are present exclusively in S. cerevisiae 

and K. lactis clades and contain up to 4 PPR motifs.  

Finally, the SCIPHER search identified PPR motifs located in N-termini of several 

orthologs of Rpo41p – the catalytic subunit of the mitochondrial RNA polymerase 

(Greenleaf, Kelly, Lehman 1986). It is widely accepted that eukaryotic mtRNA polymerases 

are related to T-odd bacteriophage RNA polymerases, although many contain an additional 

N-terminal extension (ATD) crucial for the coupling of transcription and translation in the 

mitochondrial expression system (for review see: (Shadel 2004). This auxiliary domain is 

speculated to interact with the newly synthesized RNA species and a post-transcriptional 

factor Nam1p, therefore spatially and functionally bridging the RNA polymerase complex 

with RNA processing machinery and mitoribosomes at the inner mitochondrial membrane 

(Rodeheffer et al. 2001). The detection of PPR motifs in yeast ATDs is in line with previous 

observations of such motifs in the human mitochondrial RNA polymerase POLRMT (Shadel 

2004).  

In addition, several other PPR proteins were found to be encoded by genomes of species 

from the C. albicans clade. These proteins fall into three separate orthologous groups. 

Proteins from one group are related to Zea mays PPR protein CRP1 (Fisk, Walker, Barkan 

1999), while others exhibit similarity to KIN11 from Arabidopsis thaliana – an SNF1-related 

protein kinase involved in signal transduction (Bhalerao et al. 1999). The third group has not 
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been named as proteins constituting this cluster do not resemble any protein characterized up 

to date. Also, an ortholog of human PPR protein PTCD1 with 4 PPR motifs was found in the 

genome of Y. lipolytica. Human PTCD1 is a mitochondrial matrix protein which associates 

with leucine tRNAs and precursor RNAs that contain leucine tRNAs (Rackham et al. 2009), 

while its homolog in Neurospora crassa was shown to be involved in the assembly of 

respiratory complex I (NADH:ubiquinone oxidoreductase) (Lightowlers and Chrzanowska-

Lightowlers 2008). As Y. lipolytica retained mitochondrially encoded components of 

respiratory complex I (Matsuoka et al. 1994), this PPR protein might also play a role in their 

expression, although no data to support this hypothesis are currently available. 

The remaining detected PPR proteins were not assigned into any orthologous group, as 

many appear unique or do not exhibit significant similarity with other known proteins. 

This brief analysis indicates that both previously known and newly identified PPR 

proteins of S. cerevisiae localize to the mitochondrion, in agreement with whole-proteome 

localization studies (Huh et al. 2003) and single-gene analyses, and most of them are 

implicated in the expression of mitochondrial genome, which is expected for this family. 

Yeast PPR proteins undergo rapid evolution 

As the initial assessment of alignments suggested that PPR proteins show significant 

divergence even in closely related species, we compared pairwise sequence identities 

between direct orthologs in selected pairs of species to the values observed for other protein 

families. A metagenomic whole-genome dataset describing conservation of orthologous gene 

pairs for comparisons between S. cerevisiae and C. glabrata, S. cerevisiae and K. lactis, and 

S. cerevisiae and D. hansenii is available (Dujon et al. 2004). We plotted the mean identity 

values for PPR proteins and control data sets obtained for TPR proteins (sharing a similar 

repetitive structure), mitochondrial ribosomal proteins (sharing an involvement in 

mitochondrial gene expression) and RRM and Pumilio (PUF) proteins (containing RNA 
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binding motifs) in relation to the distribution of relative frequencies of pairs of orthologs 

exhibiting a particular level of sequence identity (derived from (Dujon et al. 2004)) (Figure 

4).  

The TPR and ribosomal proteins, as well as the control modular RNA binding proteins 

(RRM and PUF) exhibit divergence close to the typical (median) value obtained for the entire 

dataset of 1100 pairwise alignments (47.8-62.0% identity for S. cerevisiae – C. glabrata and 

S. cerevisiae – K. lactis pairs; 39.9-42.4% identity for S. cerevisiae – D. hansenii pairs).  

PPR proteins, on the other hand, were clearly subjected to accelerated divergent 

evolution, as the average sequence identity between PPR orthologs is about two-fold less 

than between orthologs from control data sets (31.7% and 28.7% for S. cerevisiae – C. 

glabrata and S. cerevisiae – K. lactis, respectively, and 23.7% for S. cerevisiae – D. 

hansenii). In the plot showing the distribution of percentage identity between orthologous 

pairs (Fig. 4) they are clearly among the most divergent and fastest evolving proteins. As 

TPR and ribosomal proteins evolve with much lower rates, close to the average, the observed 

accelerated divergent evolution of the PPR protein family cannot be explained neither by 

their structural nor functional properties alone. 

Pseudoreversion can contribute to the accelerated evolution of PPR proteins 

Several factors can contribute to the accelerated rate of sequence divergence observed for 

PPR proteins. As the organization and sequence of the mitochondrial genomes is very 

divergent among different yeast lineages (Tian et al. 1991; Groth, Petersen, Piskur 2000; 

Nosek et al. 2006), variation in the mitochondrial RNA transcripts (particularly in 

untranslated regions) could drive fast changes in their binding partners, including the PPR 

proteins. 

Another interesting possibility is related to the presumed mechanism of substrate binding 

by the PPR proteins. Repetitive character of these sequences and their substrates suggests a 
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cooperative mode of binding, demonstrated experimentally for the plant chloroplast protein 

HCF152 (Nakamura et al. 2003). One could speculate that proteins with such binding 

mechanism could tolerate hypomorphic mutations in a single motif better, as the remaining 

motifs would still provide sufficient activity. Also, if different repeats within a PPR protein 

sequence contribute to its RNA-binding activity in a cooperative manner, then mutations in 

one motif could drive compensatory mutations in the other motifs if the activity is to be 

retained. 

In order to test this possibility we performed a random mutagenesis study on the S. 

cerevisiae Dmr1p, which is an RNA-binding protein from the pentatricopeptide repeat 

family, required for the stability of the mitochondrial 15S ribosomal RNA (Puchta et al. 

2010). As a deletion of DMR1 results in destabilization of the mitochondrial genome and thus 

irreversible respiratory deficiency (Puchta et al. 2010), the wild-type allele of DMR1 must be 

present in the host strain before mutant alleles are introduced. This can be achieved by 

applying the plasmid shuffling technique. The wild-type DMR1 gene cloned in a URA3 

vector (pDMR1-2µ) was introduced into a diploid strain heterozygous for the dmr1! deletion 

and carrying the functional rho+ mitochondrial genome (DDPPR1 strain, all genotypes are 

given in Materials and Methods). After sporulation a haploid strain (HS-DPPR) was 

obtained, which carried the dmr1! deletion on the chromosome and the wild-type DMR1 

gene on the URA3 plasmid vector. Mitochondrial respiratory function in this strain is thus 

entirely dependent on the plasmid-borne copy of the gene. 

The host strain HS-DPPR was transformed with a library of random mutant alleles of the 

DMR1 gene obtained by error-prone PCR, cloned in a LEU2 vector (see Materials and 

Methods). The wild-type DMR1 gene was subsequently removed by counterselection on 5-

FOA, leaving only the mutagenized library DMR1 alleles. About 500 clones were screened 

for hypomorphic (partial loss-of-function) mutations in DMR1 by testing for respiratory 
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growth on YP-glycerol plates at permissive (30 °C) and restrictive (36.5 °C) temperatures. 

Three independent clones exhibiting slower growth at normal temperature and no growth at 

the restrictive temperature on respiratory medium were identified and analyzed by 

sequencing.  

One of the hypomorphic mutants, named dmr1-1, was found to carry a single 

nonconservative amino acid substitution (D785V) in one of the PPR motifs identified by 

SCIPHER analysis. This residue appears to be highly conserved, all the members of 

Saccharomycotina that retain homology in this region have aspartate in this position, and a 

conservative substitution to glutamate is found in S. pombe (Taphrinomycotina) (Figure 5A). 

The remaining two clones shared identical amino acid sequence of the DMR1 gene and 

were further treated as one mutant, named dmr1-2.  It was found to carry the same D785V 

substitution as dmr1-1 plus an additional substitution T351A. This latter residue is not 

conserved itself, but is located within a conserved PPR motif (Fig. 5A). 

The effect of the single D785V substitution (dmr1-1) and double T351A, D785V 

substitution (dmr1-2) on the function of Dmr1p was assessed by analyzing growth on 

respiratory media at permissive and restrictive temperature (Figure 5B) and the rate of 

mitochondrial translation (Figure 5C), measured by 35S labeling in vivo in the presence of 

cycloheximide (Materials and Methods). The host strain HS-DPPR carrying the wild-type 

DMR1 gene was used as a positive control, while the dmr1! DPPR1 strain was used as a 

negative control. 

Both mutant strains show no respiratory growth at the restrictive temperature. At the 

permissive temperature the respiratory growth of the single dmr1-1 mutant is visibly 

impaired, while that of the double mutant dmr1-2 is closer to the positive control (Fig. 5B). 

The second T351A mutation has, therefore, partially alleviated the strong hypomorphic 

phenotype of the D785V substitution. Similar conclusions can be drawn from the analysis of 
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mitochondrial translation, carried out at the permissive temperature (Fig. 5C) using galactose 

as a carbon source. While the single D785V substitution in the dmr1-1 mutant has a visible 

strong effect on mitochondrial protein synthesis (about two-fold reduction), the presence of 

the second T351A mutation in dmr1-2 restores nearly wild-type translation product levels. 

The effect of dmr1-1 and dmr1-2 alleles on the mitochondrial translation, was, however, 

much less evident when either glycerol or glucose were used as carbon sources (not shown).   

These results indicate that the phenotype of a mutation in one PPR motif can be partially 

alleviated by second-site mutations affecting another motif (pseudoreversion). Such 

intragenic genetic interactions can be expected if different motifs contribute to the same 

function (RNA-binding) in a cooperative fashion. These genetic interactions could also drive 

rapid divergence of protein sequences in evolution – when one of the motifs is changed by 

mutation, mutations in other motifs may be necessary to retain optimal function. This 

mechanism could therefore explain, at least in part, the observed divergence of PPR protein 

orthologs in yeasts revealed by our analyses. 

Discussion 

Previous bioinformatic whole-genome searches for members of PPR protein family 

uncovered only three bona fide PPR proteins in yeast S. cerevisiae (Small and Peeters 2000; 

Lurin et al. 2004; Puchta et al. 2010). However, as the motif signatures used were based 

mainly on plant sequences, they turned out to be not optimal for detection of non-plant PPR 

proteins. The presence of additional non-canonical motifs in some known non-plant proteins 

had already been reported e.g. in case of the PPR protein family from Trypanosoma brucei. 

The authors suggested that in virtually all cases sequence alignments as well as secondary 

structure predictions clearly implied that structurally similar regions adjoin known PPR 

motifs within particular protein sequences (Pusnik et al. 2007). 
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Iterative HMM models were proposed previously for structure prediction (Jones 1999; 

Karplus 2009) and, recently, homology searches (Johnson, Eddy, Portugaly 2010). Direct 

application of these tools to the PPR proteins is, however, prone to a significant number of 

false-positive hits, due to the repetitive nature of these proteins and general similarity to other 

motifs, such as TPR and HAT. Our approach was unique in providing extensive filtering to 

ensure that the identified proteins are indeed bona fide members of the PPR family. 

The SCIPHER algorithm, developed in this work, allowed us to find many more PPR 

proteins in S. cerevisiae, as well as in the other 13 yeast species analyzed in this study. The 

phylogenetic clustering-based approach also provided extensive data about the organization 

and evolution of the family in Saccharomycotina. The metagenomic approach used in the 

SCIPHER algorithm takes into account natural evolutionary divergence of the motif 

signature, thus making the in silico search more reliable. Secondly, it simultaneously 

characterizes a set of proteins in multiple species, thus enabling comparative phylogenetic 

analysis, which is required for the complete bioinformatic characterization of the analyzed 

protein family. Our results clearly demonstrate that the predominantly plant-derived motifs 

are suboptimal in other eukaryotic lineages, which illustrates a significant divergence of the 

PPR motif and presents a significant analytical challenge. Manual curation according to the 

arbitrarily assumed (but based on the current knowledge about the PPR family structure and 

function) True Positivity Criteria remains a critical step in the analysis. The established 

algorithm is suitable for developing a model aimed at detection of members of any protein 

family bearing repeats of a motif of choice, e.g. HAT, TPR, HEAT or Armadillo repeats. The 

notable limitation is, however, that the evolutionary distance between the analyzed species in 

the chosen clade must be long enough to assure significant sequence ambiguity and short 

enough to allow a definite assignment of homology interrelationships between protein 

sequences. For example, a similar SCIPHER search for PPR proteins in vertebrates failed to 
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yield a conclusive outcome due to insufficient sequence dissimilarity between pairs of 

orthologs, which resulted in excessively rigorous HMM models. 

In this work we found that the S. cerevisiae genome encodes at least 15 members of the 

PPR family, all of which localize to the mitochondrion. Moreover, data collected about their 

molecular functions or phenotypes of their mutants allow speculating that all these factors are 

involved in the expression of the mitochondrial genome. On the basis of literature data, 

integrated from high-throughput physical and genetic interaction studies (data from the 

BIOGRID database (Stark et al. 2006)), as well as single gene analyses, it is clear that the 

network of yeast PPR proteins forms a subnetwork of the yeast interactome, implicated in 

mitochondrial RNA processing (Supplementary Figure S2). The presence of PPR motifs 

within poorly characterized proteins like Yer077cp, Msc6p or Sov1p suggests that they 

should exhibit an RNA-binding activity. This result can guide further genetic and 

biochemical studies needed to verify this hypothesis and eventually identify their RNA 

targets. 

In yeast, expression and maintenance of a small mitochondrial genome is regulated by a 

large set of nuclear encoded factors that localize in the mitochondrion and modulate 

replication, transcription, post-transcriptional processing and translation (reviewed in 

(Contamine and Picard 2000) and (Lipinski, Kaniak-Golik, Golik 2010). PPR proteins in 

yeast, like their plant counterparts, seem to play essential nonredundant roles, as most of 

them are indispensable for respiration and mtDNA stability. 

The rate of amino acid substitution is widely used to measure functional constraints on 

gene products (Nei 2005). Comparison of sequence similarities between pairs of orthologs, 

derived from various yeast species, clearly indicates that the yeast PPR protein family is 

subjected to accelerated divergent evolution. Genes encoding these proteins fall into a 

relatively small group of yeast genes evolving so quickly that BLAST analysis encounters 
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problems with assessing homology relationships (Wolfe 2004). Previously, it was reported 

that functional categories of genes with increased evolutionary rates in post-WGD (whole 

genome duplication) species are enriched in factors involved in mitochondrial translation and 

their physical interaction partners (Jiang et al. 2008). The relaxed functional role of the 

mitochondrion in post-WGD species cannot, however, fully explain the phenomenon 

observed in the case of the PPR protein family, as the increased rate of evolution of its 

members is apparent also in pre-WGD species. Moreover, sequence similarities between 

orthologs of mitochondrial ribosomal proteins are higher than between orthologs of PPR 

proteins. On the other hand, accelerated rate of sequence divergence in this protein family 

seems not to be a feature simply resulting from structural properties, as structurally similar 

TPR proteins evolve much more slowly. 

The observed accelerated rate of sequence divergence might be explained by coevolution 

of a protein and its RNA target. The increased evolutionary rate of PPR proteins could be 

driven by divergence of, for example, UTRs of particular mitochondrial RNAs. 

Incompatibility of mitochondrial genomes and nuclear-encoded factors involved in their 

expression was shown to cause hybrid sterility and reproductive isolation in Saccharomyces 

yeasts (Herbert et al. 1992; Lee et al. 2008; Chou et al. 2010) and proposed as a general 

mechanism driving speciation (Chou and Leu 2010). Interestingly, one of the protein factors 

involved in cytonuclear incompatibility in two species belonging to the Saccharomyces sensu 

stricto complex (S. cerevisiae and S. bayanus) is a PPR protein – Aep2 (Lee et al. 2008). S. 

bayanus Aep2p fails to facilitate translation of the S. cerevisiae ATP9 mRNA and multiple 

mutations are critical for this functional diversification. The hypothesis of a nucleo-organellar 

genetic buffering has been already proposed to explain the rapid expansion of PPR proteins 

in terrestrial plants and the functional role of this family in general (Schmitz-Linneweber and 

Small 2008).  
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Analysis of single and double mutant alleles of a S. cerevisiae PPR protein Dmr1 

suggests another mechanism that can contribute to the rapid evolution of this protein family. 

Intragenic genetic interactions between amino acid substitutions located in different PPR 

motifs of this protein suggest that cooperative functional interactions between motifs could 

contribute to a high mutation rate by enforcing concerted changes in several motifs. In the 

case of S. bayanus and S. cerevisiae Aep2 sequences, discussed above, multiple concerted 

critical mutations were found to be involved in the functional change and their separation 

resulted in nonfunctional proteins (Lee et al. 2008). Both the coevolution of PPR proteins and 

their RNA targets and intragenic genetic interactions due to the cooperative binding 

mechanism can therefore act together in shaping the rapid divergent evolution of this protein 

family.  

In summary, by applying an iterative hidden Markov model and homolog-clustering 

approach we designed a sensitive motif-detection method and applied it to the analysis of the 

Pentatricopeptide Repeat (PPR) protein family in 14 yeast species. Our data indicate that the 

PPR family is much more abundant in these fungi than previously reported, varying from 9 to 

15 per genome. All newly identified members of this family in S. cerevisiae localize to 

mitochondria and seem to play a role in post-transcriptional steps of gene regulation, 

presumably as RNA-binding factors. Moreover, all display a highly accelerated rate of 

sequence divergence, which may reflect an evolutionary interdependence of nuclear encoded 

RNA-binding proteins and their organellar RNA targets, as well as a cooperative interaction 

between motifs. 

Supplementary Material 

Supplementary Figure S1 (pdf). Distribution of the PPR proteins discovered using 

SCIPHER analysis in genomes of 15 yeast species from Saccharomycotina and 

Taphrinomycotina (Ascomycota). 
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Supplementary Figure S2 (pdf). PPR proteins in the physical and genetic interactome of 

yeast mitochondria (data from the BIOGRID database (Stark et al. 2006)). Putative PPR 

proteins are in red boxes. Protein nodes (circles) are colored by localization as in the legend, 

RNA nodes are shown as rectangles, PPR proteins are in red. Green lines indicate genetic 

interactions, black lines indicate physical intreractions, red lines – both genetic and physical 

interactions. A Cytoscape (Shannon et al. 2003) source file for this network is provided in 

Supplementary data file S3. 

Supplementary Data S1 (txt file in FASTA format). PPR motifs identified in the last (5th) 

iteration of the SCIPHER search in genomes of 15 yeast species. The header line for each 

motif begins with a number indicating its position in the sequence. 

Supplementary data S2 (xls file). Coordinates and sequences of PPR motifs identified in 

S. cerevisiae proteins by SCIPHER profiles and by extrapolation from orthologous 

sequences. 

Supplementary data S3 (cys file). A Cytoscape (Shannon et al. 2003) file describing the 

interaction network shown in Supplementary Figure S2.  
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Figure legends 

Figure 1. The SCIPHER algorithm flow chart. The search starts by defining a target cluster 

of organisms, obtaining a current motif signature, and retrieving protein sequences already 

known to belong to the analyzed protein family. For each sequence BLAST analysis is 

performed in order to obtain direct orthologs and group proteins into orthologous groups 

(reciprocal BLAST criterion). The current motif signature is then used to locate motifs in 

each sequence and each orthologous group (OG). Next, all the found motifs are aligned and 

used to create a new motif signature (a HMM profile). New hits in already analyzed 

sequences are added directly to previous multiple sequence alignments (MSAs) (right). New 

sequences are analyzed on the basis of predefined true positivity criteria (TPC, see Materials 

and Methods for details) (left). If they fulfill TPC, new sequences are appended, orthologous 

groups are formed and analyzed as previously. The search is iterated until saturation. 

Figure 2. Evolution of the complexity of the yeast PPR SCIPHER model. The chart presents 

the increase in the number of PPR protein sequences (dark) and individual PPR motifs (light) 

with each iteration of the SCIPHER method. In this study, the model reached its saturation at 

the fifth iteration, when no new motifs or sequences were found. 

Figure 3. PPR proteins in Saccharomyces cerevisiae detected with the use of the SCIPHER 

algorithm. Systematic ORF names are given in parentheses. Dark gray boxes represent PPR 

motifs detected directly by the HMM profiles, while the light gray boxes are regions sharing 

significant sequence similarity with PPR motifs detected in orthologous sequences from other 

yeast species analyzed in this work. The empty box represents the DNA-dependent RNA-

polymerase domain of Rpo41p (inferred from the PFAM database). Coordinates and 

sequences of PPR motifs shown in the figure are provided in a Supplementary Data S2 file. 

Figure 4. Accelerated divergent evolution of the PPR protein family in yeast. Conservation 

of the PPR protein family in yeast genomes was estimated by calculating the mean sequence 
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identity between pairs of direct orthologs of 14 PPR  proteins (Dmr1p, Pet309p, Aep3p, 

Rpm2p, Rmd9p, Cbp1p, Msc6p, Pet111p, Yer077cp, Atp22p, Aep2p, Sov1p, Aep1p) in S. 

cerevisiae vs. K. lactis (A) S. cerevisiae vs. C. glabrata (B) and S. cerevisiae vs. D. hansenii 

(C) comparisons. The obtained mean percentages of identities were compared with control 

data sets derived from the analysis of 30 pairs of orthologs of TPR proteins (structural 

similarity), proteins constituting small (12 proteins) and large (37 proteins) subunits of 

mitochondrial ribosomes (functional relatedness). Other modular RNA binding proteins – 

RRM family (22 proteins) and Pumilio (PUF) family (6 proteins) were also included as 

controls. In order to relate the observed evolution rates to the genomic context, these mean 

percentage identities were shown in relation to the plots of distributions of percentage 

identity between pairs of homologous proteins from the four yeast species (data from (Dujon 

et al. 2004)), where the X-axis represents sequence similarity between pairs of orthologs (in 

5% intervals) while the Y-axis shows relative frequency of pairs exhibiting that similarity). 

Mean ortholog identities for PPR proteins, TPR proteins, mitochondrial ribosomal proteins 

(MRP), RRM proteins and Pumilio (PUF) are indicated relative to the distributions. In (C) 

the values for MRP, RRM and PUF are within 2% of each other and are indicated using a 

single arrow. 

Figure 5. A second-site intragenic mutation partially alleviates the phenotype of a point 

hypomorphic allele of S. cerevisiae DMR1 encoding a PPR protein. (A) Amino acid 

substitutions in a single (dmr1-1) and double (dmr1-2) mutant of DMR1. Gray boxes in the 

top diagram denote PPR motifs detected by SCIPHER analysis. Conservation of mutated 

residues in orthologs from 15 yeast species is indicated in the alignment. (B) A single 

substitution in dmr1-1 imparts a slow-growth phenotype on respiratory medium (glycerol) at 

a permissive temperature, while the growth of a double mutant (dmr1-2) is closer to that 

observed with a wild-type DMR1 allele. Neither dmr1-1 nor dmr1-2 grow on respiratory 
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medium at the restrictive temperature (36.5 °C). The dmr1! nullomorph results in a complete 

loss of respiratory growth at both temperatures. (C) Mitochondrial protein synthesis revealed 

by in vivo 35S incorporation with cytosolic translation inhibited by cycloheximide and SDS-

PAGE of labeled proteins. Incorporation in the single dmr1-1 mutant is about 50% of that 

observed in the wild-type DMR1 strain, while that of the double dmr1-2 mutant is close to 

wild-type. Cells were grown at permissive temperature using galactose as the carbon source. 
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