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Global pentapeptide statistics 
are far away from expected 
distributions
Jarosław Poznański1, Jan Topiński2, Anna Muszewska   1, Konrad J. Dębski5,  
Marta Hoffman-Sommer4, Krzysztof Pawłowski   3,6 & Marcin Grynberg1

The relationships between polypeptide composition, sequence, structure and function have been 
puzzling biologists ever since first protein sequences were determined. Here, we study the statistics 
of occurrence of all possible pentapeptide sequences in known proteins. To compensate for the non-
uniform distribution of individual amino acid residues in protein sequences, we investigate separately all 
possible permutations of every given amino acid composition. For the majority of permutation groups 
we find that pentapeptide occurrences deviate strongly from the expected binomial distributions, and 
that the observed distributions are also characterized by high numbers of outlier sequences. An analysis 
of identified outliers shows they often contain known motifs and rare amino acids, suggesting that they 
represent important functional elements. We further compare the pentapeptide composition of regions 
known to correspond to protein domains with that of non-domain regions. We find that a substantial 
number of pentapeptides is clearly strongly favored in protein domains. Finally, we show that over-
represented pentapeptides are significantly related to known functional motifs and to predicted ancient 
structural peptides.

The oligopeptide composition of known protein sequences is believed to reflect important physico-chemical and 
biological factors of evolution and has been studied for a long time. From the beginning it was expected that the 
observed and hypothetical oligopeptide spaces would differ. An early study from 1995, limited by the modest con-
tent of sequence databases available at the time and conducted with data from only three organisms, concluded 
that only 18% of all possible pentapeptides are found in protein sequences1.

With the appearance of full proteomes more accurate studies became possible. In 2004 an analysis encompass-
ing 72 full proteomes belonging to three Superkingdoms (Eukaryota, Archaea and Eubacteria) showed differences 
in the average amino acid and short peptide composition of proteins2. Statistically significant preferences were 
observed even towards particular di- and tripeptides. The relative abundance of specific peptides varied sub-
stantially across the superkingdoms, and a detailed analysis showed that even for single organisms the observed 
occurrences of many di- and tripeptides deviated from the expected values, which were estimated based on the 
probabilities of organism-specific amino acid usage in the total proteomes.

This result was independently supported by analyses performed for all protein sequences from the 
non-redundant database3,4, where substantial deviations from random distributions were found for tri-, tetra- 
and pentapeptide sequences. Also the segregation of species by amino acid usage has been confirmed for larger 
databases: for a collection of 208 proteomes5 or 386 proteomes6, and for the whole Uniprot database7.

In the first study mentioned above1, the vast majority of all possible pentapeptides was absent from the data-
bases. This has of course changed with the growing body of sequence data. Only approximately 0.4% possible 
pentapeptides were absent from the protein sequences of all 72 proteomes studied by Pe’er2. The same missing 
pentapeptides were also identified in another study, encompassing 386 proteomes8. Six of these zero-abundance 
peptides were then synthesized using a Fmoc approach and expressed in an E. coli system as parts of soluble 
proteins, demonstrating that neither steric clashes nor toxicity precluded them from natural proteins2. It was 
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observed that some non-existent pentapeptides displayed anticancer activity9, and that rare pentapeptides 
induced a stronger immune response than highly represented pentapeptides10, and that in general the informa-
tion content of an amino acid motif correlates with the motif rarity11. On the other hand, a later study, using four 
different models for the calculation of expected random peptide abundances, showed that for most oligopep-
tides their frequencies are random and argued that the frequencies of tetra- and pentapeptides are subject to few 
constraints12.

Here, as in many of the studies cited above, we aim to establish if there are any general rules governing the 
usage of particular pentapeptides in known proteins. In particular, we were interested to see if domain and 
non-domain protein regions are somehow different in their pentapeptide composition. To investigate this we use 
pentapeptide permutation groups, i.e. we compare the abundances of individual peptides with the abundances 
of other peptides that have identical amino acid composition. This allows us to leave out effects connected with 
different amino acid usage in different organisms. Using this methodology we show that certain pentapeptides are 
actively favored in the process of evolution, and in particular, a significant group of pentapeptides are favored in 
regions corresponding to structural protein domains, whereas a separate small group of pentapeptides is favored 
in non-domain regions.

The reasons why some pentapeptides are more common than others and why there are differences in the pen-
tapeptide composition between domain and non-domain regions, are yet unknown, but they touch the most basic 
questions in biophysics, with implications for biochemistry and systems biology. In the postgenomic era, with 
increasing sequencing coverage of the Tree of Life, it is possible to gain a systematic overview of common features 
of protein sequences found in living organisms, and to formulate universal rules determining protein structures.

Results
Determining the abundances of all possible pentapeptides in known protein sequences.  We 
were interested to see if the peptide composition of naturally occurring proteins is random or if it displays any 
regularities. To test this, we created a dataset of protein sequences by taking the non-redundant NCBI protein 
database and clearing it of redundancy caused by duplicated entries from different strains of well-studied organ-
isms (throughout this paper, we refer to this dataset as the SQ dataset; see Methods). Then, we counted the num-
ber of occurrences Nobs of all possible peptides of length 5 that can be built of the 20 standard naturally occurring 
amino acids (for aggregated results see Table 1). It is important to note that with the current content of sequence 
databases all possible pentapeptides are represented - none are forbidden.

Testing occurrences of individual pentapeptides using permutation groups and z-scores.  The 
representation of individual amino acids in the sequence database varies substantially. This means that differences 
in oligopeptide occurrences in the database result in part directly from the different availability of specific amino 
acids. But in this work, we were interested to analyze differences resulting from other factors. For this purpose, 
our statistical analysis that compares observed occurrences of oligopeptides should be corrected for their amino 
acid composition. The correction allowed us to separate the two phenomena: differences in peptide occurrences 
resulting from variation in amino acid abundance and differences resulting from other factors.

To achieve this kind of correction, we used an approach based on the analysis of the distribution of occur-
rences of all pentapeptides that share the same amino acid composition. Instead of analyzing individually each 
peptide from the space of all possible pentapeptides, we clustered them into permutation groups (see Methods). 
Each group contained all possible permutations of a given amino acid composition. In our analysis, we assume 
that the expected pentapeptide occurrences should be uniform within each permutation group. This is because in 
the absence of any evolutionary pressure, all possible permutations should be equally represented in every group. 
This means that for a pentapeptide abcde the number of its occurrences in the database is expected to be close to 
the number of occurrences of the peptides abced, abdce, abdec, etc. We neglected here the effects of close neigh-
bors, which may cause the permutations to be nonequivalent.

For each pentapeptide in each permutation group, we converted the observed number of occurrences Nobs 
into a z-score (see Methods). The z-score gives us a formal statistical measure of how strongly the Nobs of a par-
ticular peptide differs from its expected number of occurrences (assuming a binomial distribution of occurrences 
that implies a common probability for each peptide of the same composition; see Methods). Pentapeptides that 
differed significantly from their expected numbers of occurrences are further referred to as “overrepresented” or 
“underrepresented”, accordingly.

Domain and non-domain regions compared.  We then asked how does the pentapeptide distribution 
differ between defined protein structural domains and other sequences. To investigate this, we constructed three 
subsets of the SQ dataset (see Methods). One, termed DM, contains all sequences corresponding to known pro-
tein domains (included in the CDD database). The second, termed ND, is also derived from proteins that contain 
CDD domains, but it includes all the sequence regions outside of these domains (these may be interdomain or 
transmembrane regions, but they may also represent unknown domains). The third set, termed NN, contains all 
peptides from proteins that are devoid of identified domains. This set served as an internal control that allowed us 
to ascertain that non-domain proteins do not behave in our analysis differently from non-domain regions. This 
was necessary because it might be suspected that domain-less proteins include a substantial fraction of artifacts, 
i.e. protein sequences resulting from wrongly predicted open reading frames. We then determined the number of 
occurrences of each possible pentapeptide in these sub-datasets (Table 1).

To assess the statistical abundance of a particular peptide in the DM, ND and NN datasets, we calculated the 
z-scores for all individual pentapeptides. We identified the highest and lowest abundance pentapeptides in each 
permutation group, and we estimated the associated values of z-scores and termed these z_max and z_min. In 
Fig. 1, we present cumulative distribution functions (CDFs) of the parameters z_max (Fig. 1A,C,E) and z_min 
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Pentapeptide category abcde a2bcd a2b2c a3bc a3b2 a4b a5 Total

# different residues 5 4 3 3 2 2 1

# permutation classes, g 15504 19380 3420 3420 380 380 20 42504

# sequences in each class, m 120 60 30 20 10 5 1

# sequences in category, g*m 1860480 1162800 102600 68400 3800 1900 20 3200000

SQ

# peptides 11826966639 10678009933 1474713851 1250343041 137441351 118960963 16794874 25145695663

DM

# peptides 8403194988 7331367618 946224643 761468629 66880015 48819824 2475299 17560431016

% peptides 71.1 68.7 64.2 60.9 48.7 41.0 14.7 69.8

avr. count of peptides per sequence 4517 6305 9222 11133 17600 25695 123765 5488

α = 0.05

# outlier peptides 493138899 424035844 53363368 42424412 4159480 7698699 1024820702

% outlier peptides 5.9 5.8 5.6 5.6 6.2 15.8 5.8

# sequences with high-abundance outliers 53101 39865 4056 2897 203 248 100370

# sequences with low-abundance outliers 0 1 4 12 8 114 139

# sequences with outliers 53101 39866 4060 2909 211 362 100509

% sequences with outliers 2.9 3.4 4.0 4.3 5.6 19.1 3.1

# classes with no outliers 1268 4079 1298 1622 229 204 20 8720

% classes with no outliers 8.2 21.0 38.0 47.4 60.3 53.7 20.5

α = 0.001

# outlier peptides 280213162 220140554 26341865 15042352 1528111 5171988 548438032

# sequences with outliers 23395 15522 1445 814 60 159 41395

# classes with no outliers 4442 9749 2314 2714 322 276 20 19837

ND

# peptides 1945203546 1941405338 318589904 302524159 46571312 47671781 9690386 4611656426

% peptides 16.4 18.2 21.6 24.2 33.9 40.1 57.7 18.1

avr. count of peptides per sequence 1046 1670 3105 4423 12256 25090 484519 1441

α = 0.05

# outlier peptides 65287845 60332804 11852693 10445205 7080780 8322425 163321752

% outlier peptides 3.4 3.1 3.7 3.5 15.2 17.5 3.5

# sequences with high-abundance outliers 45401 31854 3205 2331 255 257 83303

# sequences with low-abundance outliers 0 6 9 19 20 84 138

# sequences with outliers 45401 31860 3214 2350 275 341 83441

% sequences with outliers 2.4 2.7 3.1 3.4 7.2 17.9 2.6

# classes with no outliers 2400 6238 1673 1956 183 215 20 12685

% classes with no outliers 15.5 32.2 48.9 57.2 48.2 56.6 29.8

α = 0.001

# outlier peptides 29230408 23141426 3649728 2180996 4410942 4902831 67516331

# sequences with outliers 17112 10753 884 535 109 164 29557

# classes with no outliers 6940 12430 2713 2951 276 273 20 25603

NN

# peptides 1309190957 1254681724 190474037 170300897 22748621 21599223 4612762 2973608221

% peptides 11.1 11.8 12.9 13.6 16.6 18.2 27.5 11.7

avr. count of peptides per sequence 704 1079 1856 2490 5986 11368 230638 929

α = 0.05

# outlier peptides 27845910 27168059 5035864 4734407 3100618 4456107 72340965

% outlier peptides 2.1 2.2 2.6 2.8 13.6 20.6 2.4

# sequences with high-abundance outliers 28667 21968 2487 1822 304 284 55532

# sequences with low-abundance outliers 1 10 10 18 12 93 144

# sequences with outliers 28668 21978 2497 1840 316 377 55676

% sequences with outliers 1.5 1.9 2.4 2.7 8.3 19.8 1.7

# classes with no outliers 4067 8309 1902 2153 146 202 20 16799

% classes with no outliers 26.2 42.9 55.6 63.0 38.4 53.2 39.5

α = 0.001

# outlier peptides 10275506 8847995 1465607 683925 2104751 2921002 26298786

# sequences with outliers 10017 6975 665 355 156 192 18360

# classes with no outliers 9279 14491 2856 3105 229 259 20 30239

Table 1.  Characteristic features of the analyzed pentapeptide categories.
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(Fig. 1B,D,F) for each pentapeptide category analyzed in domain (DM) and non-domain regions (ND) and in 
domain-less proteins (NN), separately. The graphs show that for the majority of peptide classes the observed 
distributions of their extreme pentapeptides disagree substantially with the expected binomial distributions. For 
domain regions (DM) the medians of the plotted z-scores for z_max range from 28 for the class a4b to over 100 
for the class abcde (Fig. 1A), and for z_min values they vary in a range from 22 to 29 (Fig. 1B). For non-domain 
regions (ND) the distances from the theoretical distributions are smaller, but still substantial: the z-score medians 
range from above 25 to 40 for z_max values (Fig. 1C), and for z_min from 14 to over 24 (Fig. 1D). Importantly, 
pentapeptides in proteins with no assigned domains display distributions close to those observed for non-domain 
regions (Fig. 1E,F vs. Fig. 1C,D), clearly confirming the applicability of the method used for domain identification 
and suggesting that, generally, domain-less proteins are not qualitatively different from non-domain regions in 
those with domains.

We analyze here 42,484 different pentapeptide permutation classes extracted from 3 different contexts, (i.e. 
from domains, DM, from regions outside of domains, ND, and from proteins with no identified domains, NN). 
Each permutation class consists of 5 (a4b) to 120 (abcde) pentapeptide sequences (the 20 trivial classes a5 were 
excluded from the analysis; see Table 1 for details). When applied to this analysis, the Bonferroni correction for 
multiple comparisons13 implies that 1% confidence intervals (CI) for z-scores equal (−5.72; 5.72), (−5.64; 5.64), 
(−5.20; 5.20), (−5.13; 5.13), (−4.55; 4.55) and (−4.41; 4.41) for the abcde, a2bcd, a2b2c, a3bc, a3b2 and a4b per-
mutation classes, respectively. However, the majority of the highest/lowest abundance peptides are outside of the 
associated CIs, demonstrating that the abundances of pentapeptides within each permutation class disagree with 
the binomial distribution.

Interestingly, the distributions shown in Fig. 1 also differ qualitatively. For domain regions, we observe that 
among the most overrepresented peptides the lower the complexity of the peptide composition, the less signifi-
cant the deviation from the binomial distribution (Fig. 1A; note the a4b and a3b2 groups at the left of the graph). 
The median of the curve at the far right deviates from the expected distribution by a z-score of >100, indicating 
that in domain regions there is an extremely strong pressure favoring certain complex peptides. At the same time, 
among the most underrepresented peptides no substantial effect of peptide complexity is observed (Fig. 1B). 
This might reflect the fact that the existence of a limited number of strongly overrepresented peptides implies 
an apparent underrepresentation of some other peptides. For non-domain regions (ND and NN) the situation 
is different: among overrepresented peptides there is less divergence (however, the observed differences are still 
statistically significant) and - surprisingly - the low-complexity permutation groups show highest deviation from 
the expected distribution (Fig. 1C,E), and among the most underrepresented peptides again the low-complexity 
categories deviate stronger from the binomial distribution than other categories (Fig. 1D,F). This could indicate a 
possible role of low-complexity sequences within non-domain regions.

In the Supplementary Material (Suppl. Fig. S1A and S1B), we also present individual instances of the data 
aggregated in Fig. 1.

Next we attempted to compare the pentapeptide distributions between domain and non-domain regions. 
Since no important differences were found between the ND and NN datasets in the distributions presented in 
Fig. 1, the combined dataset ND + NN was used for some of the further analyses, considering it representa-
tive for non-domain regions. For every possible pentapeptide, we plotted the z-scores calculated from the DM 
and ND + NN datasets (Fig. 2). Almost all permutation groups are large enough to justify the use of the nor-
mal approximation of the binomial distribution (see Methods). We analyzed 3,200,000 different pentapep-
tide sequences; assuming a statistical pentapeptide distribution and applying the Bonferroni correction for 
multiple comparisons, in this analysis only several peptides are expected in this analysis to display z-scores out-
side of the (−5; 5) range (z = 5 corresponds to a p-value of 2.9·10−7). The plots in Fig. 2 show that this is not the 
case: the vast majority of all pentapeptide sequences are non-statistically distributed (i.e. they lie far away from the 
(0,0) point). However, the majority of pentapeptides are neither strongly overrepresented nor strongly underrep-
resented in any dataset - they are relatively close to the (0,0) point. This is clearly visible in panel A (the coloring 
indicates the number of peptides represented in each dot).

The most interesting feature of the graph in Fig. 2A is the fact that a substantial number of pentapeptides is 
clearly strongly favored solely in one of the datasets (either DM or ND + NN), while no peptides favored in both 
datasets were identified. The underrepresented pentapeptides do not display this feature: here the graph shows no 
tendency towards either the DM or ND + NN axis.

During random evolution, the number of peptide occurrences within a permutation group (Nobs) is attracted 
to the expected uniform probability, i.e. to the (0, 0) point in the plots. Any step away from this attractor has to be 
functionally or thermodynamically justified - indicating the existence of strong evolutionary pressure in domain 
regions.

We also investigated the relation between peptide abundance and hydrophobicity (Fig. 2B). We noticed that 
strongly hydrophobic peptides appear to be favored among those overrepresented in ND + NN regions, as well 
as among those underrepresented in both DM and ND + NN regions. This asymmetric hydrophobicity pattern 
supports the notion that different functional constraints and pressures function in the evolution of domain and 
non-domain sequences – balance of subtle short-range interactions between hydrophobic side-chains together 
with solvation effect may be one of the factors influencing the non-statistical distribution of pentapeptides.

Next we looked whether the distribution of pentapeptides in the human proteome differs from the distribu-
tion in the whole dataset (Fig. S2). We note that for human proteins, relatively fewer underrepresented peptides 
are observed than in the total protein universe (compare Fig. S2 and Fig. 2B), but otherwise the picture is similar 
to that of all proteomes: we see a subset of pentapeptides strongly favored in DM regions.

Outliers: far away from other sequences.  On one hand, the permutation group approach allowed us 
to overcome the problem of estimating the significance level of the observed differences. On the other hand, it 
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Figure 1.  Cumulative distribution functions (CDFs) of the z-score for the most overrepresented (A,C,E) 
and most underrepresented (B,D,F) pentapeptides from each permutation class. A’–F’ represent the CDFs 
of z_max and z_min for each pentapeptide category - in a manner similar as in A–F - but using data where all 
outlier peptides have been removed from each category. The z-scores are calculated as described in the Methods 
(“Analysis of pentapeptide abundances using permutation groups and z-scores” section). The znorm notation points 
out that normal distribution is assumed. The distributions are plotted for all permutation classes of the indicated 
compositions identified in domain regions (A,B), non-domain regions (C,D), or in proteins with no domains 
identified (E,F). ND – non-domain, DM – domain, NN – peptides from non-domain proteins.
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enabled us to screen every permutation group separately for the existence of outliers, i.e. pentapeptides whose 
abundance is very different from the overall distribution of their permutation group. To identify outliers in our 
data, we applied the Grubb’s test, which is widely used in outlier identification (see Methods).

A confidence level of α = 0.05 was used to ensure that the majority of potential outliers were identified in the 
analyzed distributions. We extracted 100,370 high-abundance outlier sequences from the DM dataset, 83,303 
from the ND dataset and 55,532 from NN. This implies that as much as 3.1%, 2.6% and 1.7% of all possible 
sequences in the DM, ND and NN datasets, respectively, might represent outliers. The outliers are distributed in 
such a way that the majority of permutation groups contain at least one outlier peptide (see Fig. 3 and Table 1). 
However, there is a difference in the presence of outliers between domain and non-domain sequences. For the 
NN dataset, 60.5% of the permutation groups contain outliers, for the ND dataset it is 70.2%, while for the DM 
dataset, as many as 79.5%. This difference probably reflects the fact that more functional (structure-related) con-
straints are imposed by evolution on short peptide motifs (only 5 aa in length) when they are part of structural/
functional domains. This difference may also be related to the fact that the NN set contains fewer peptides than 
the other sets (ND and DM), hence fewer outlier pentapeptides can reach significance.

We also searched for low-abundance outliers. At the confidence level of 0.05 we found only 139 low-abundance 
outliers from 109 permutation groups in the DM dataset, 138 such outliers in the ND dataset, and 144 in the NN 
dataset. Examples of low-abundance outlier peptides (see also Table 3) include: DVVDD (found 15,871 times in 
the DM dataset, with 21,716 occurrences expected), CTCTT (found 402 times in domain regions, with 849 occur-
rences expected), GPGPP (NN dataset, 2337 occurrences; 10,080 expected), GPGPP (ND dataset, 10,793 occur-
rences; 58,698 expected) and RSSRR (ND dataset, 24,251 occurrences; 51,045 expected). In the Supplementary 
Figures S3 and S4, we exemplify the CDFs for the permutation classes containing outliers with the highest scores. 
Figure S3 shows results for the DM dataset and S4 for the ND + NN datasets.

The number of outlier sequences found in a particular permutation class does not significantly depend on 
the peptide category. Generally, up to 20% of sequences may be regarded as outliers, except for the a4b category, 
where in 10% of the permutation classes the outlier proportion reaches 75% (see Fig. 3A–C). A similar relation 
is observed for the contribution of outlier peptides, however the simpler the class composition, the higher the 
number of outlier peptides observed (see Fig. 3D–F). Interestingly, we observed statistically significant differences 
between the ND and NN versus DM datasets. For the categories abcde, a2bcd, a2b2c and a3bc, the relative contri-
bution of outlier peptides is significantly higher in the DM than in the ND and NN datasets. In the a4b category 

Figure 2.  Comparison of z-scores expressing the observed numbers of occurrences of pentapeptides in relation 
to the expected numbers of occurrences (see Methods, “Analysis of pentapeptide abundances using permutation 
groups and z-scores” section) for domain (DM) and non-domain (ND + NN) regions. The znorm notation points 
out that normal distribution is assumed. Every point represents a pentapeptide. Colouring by abundance (A) or 
by hydrophobicity scale (B)33. Arithmetic average is taken when two points overlap. In Fig. 2A, red means many 
overlapping pentapeptides, blue - single pentapeptides.
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the distribution of outliers is almost the same for both datasets, while for the a3b2 category the contribution of 
outlier peptides is substantially higher in the ND or NN than the DM dataset. Although we should bear in mind 
that due to smaller representation the determination of outlier peptides is less sensitive in the ND and NN data-
sets, the observed differences still indicate that for the two categories with simplest sequences (a4b and a3b2) the 
ND and NN datasets have relatively more highly overrepresented outlier peptides than the DM dataset.

We next plotted the CDFs of z_max and z_min for each pentapeptide category - in a manner similar as in 
Fig. 1A–F - but using data where all putative outlier peptides determined at α = 0.05 have been removed from 
each category. The results are presented in panels A’-F’ of Fig. 1. They show that even after the removal of outliers 
the pentapeptide distributions are much wider than those expected for binomial distributions. This is true for the 
whole distributions of peptide occurrences in most groups (also after the correction for multiple comparisons). 
Consequently, the ratio of observed to expected variance substantially exceeds 1 for most permutation classes 
(Fig. 4). In the DM dataset, this effect can be observed uniformly in all peptide classes, while in the ND and NN 
datasets, the simpler the compositions, the higher the observed divergence. This again shows that in non-domain 
regions there are strong pressures in low-complexity regions.

Gibbs clustering of the identified outliers.  For further analysis, to ensure that all analyzed pentapeptide 
sequences are true outliers, they were identified at a much more restrictive significance level of 0.001. In this case 
the Bonferroni correction for multiple comparisons implies that approximately 50 false positives are expected 
among the 41,395 and 20,796 outlier peptides identified in DM and ND + NN, respectively. The high-abundance 
outliers identified at the 0.001 level were then grouped according to sequence similarity, using Gibbs sampling 
clustering (see Methods). The most striking feature in both the DM and ND + NN high-abundance outlier 
datasets is the large number of peptides containing CxxC motifs, known from oxidoreductases and zinc fingers 
(Fig. S5).

Other pentapeptides overrepresented both in domain and non-domain regions include further motifs of func-
tional importance (see Table 2). For example, we found several conserved ATP-binding motifs (the P-loop-like 
G[ST]GK), as well as zinc-dependent metalloprotease active site motifs (HExxH) and the classical kinase active 
site motif ([HY]RD). The relatively large number of outliers containing motifs corresponding to enzyme active 
sites in the ND and also in the NN regions suggests that novel, undescribed enzyme families (maybe kinases or 
metalloproteases) may still lurk in these regions in substantial numbers.

Many pentapeptides may be abundant for a biological reason. Here, we provide several examples, and further 
down a systematic analysis of outlier pentapeptides of the type a2bcd is presented, arguing for their functional 
relevance. Among the most abundant outliers from the ND and NN datasets, GGRGG is a well-known generic 
arginine methylation motif14. This finding may suggest that some of the pentapeptides frequent in ND and NN 
regions actually represent yet-undescribed functional motifs in domains or regulatory motifs outside of those. 
Quite unexpectedly, another of the most abundant outliers from the ND dataset (and also significant in the NN 
dataset), QITLW is found at the N-terminus of the human immunodeficiency virus protease (PR) and is recog-
nized by an antibody blocking this enzyme15. The use of such an abundant peptide in a viral protein may have 
reason in an evolutionary arms race whereby use of a common peptide may be an attempt at mimicry.

Interestingly, among the very few identified low-abundance outliers in the domain regions, AAEAP 
occurred16. This motif is a building block of an outer membrane lipoprotein, designated Lip, present in all tested 
strains of pathogenic Neisseria species. The use of this rare motif by a pathogen may also reflect the evolutionary 
arms race whereby the pathogen attempts to evade detection, this time by using a very rarely seen epitope.

A summary of the top outlier pentapeptides (ten most underrepresented and ten most overrepresented pep-
tides in DM, in ND and in NN, respectively) is presented as Table 3. Strikingly, the most significant outliers 
contribute more than 70% of occurrences of their permutation class (as much as 86% for the HPDKW peptide 
in the ND set).

It has been well-known for several decades now that functional properties of protein sequences are only inter-
pretable in the context of three-dimensional structures17,18. In this study, we have conscientiously decided to focus 
on sequence properties, to ignore the temptation of mapping the analyses onto structural resources and to keep 
this work focused as a computational study. Although the structural databases still represent only a fraction of 
the sequence world and there is a severe bias towards proteins of particular scientific interest and a bias resulting 
from technical issues (e.g. crystallizability), we decided to perform a limited in-depth analysis of a group of outlier 
pentapeptides relating to structural and functional properties. For simplicity, we selected pentapeptides of the 
type a2bcd, and focused on the Cys-, His-, Ile- and Leu-containing ones (see Table 4).

For example, among permutation classes of the type L2bcd consisting of exactly two leucine residues, the 
majority of DM region outliers were of the type LxxxL (37%) and LxxL (30%) while LxL (12%) and LL (18%) 

Sequence 
motif Motif function

Number of high-
abundance outliers in DM

Number of high-
abundance outliers in ND

Number of high-
abundance outliers in NN

[HY]RD protein kinase active site34 56 23 14

HExxH zinc metallo-protease active site19,35 41 8 37

G[ST]GK ATP-binding motif, P-loop-like34 18 2 8

CxxC Zn-binding motif in zinc fingers or 
oxido-reductase active site36,37 1587 680 1085

Table 2.  Examples of known, biologically relevant sequence motifs found in overrepresented outlier 
pentapeptides.
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were far less common. This is very different from preferences for Ile-containing outliers and clearly indicates 
that in DM regions, LxL or LL organization is much less favoured than LxxxL and LxxL. This likely reflects 
preference for peptides building leucine zippers (leucine residues located in inter-helical hydrophobic interface, 
e.g. in coiled-coil structures) and proves that chemically very similar residues (Leu and Ile) are subject to differ-
ent evolutionary pressures, most likely related to their structural properties. Another interesting example are 
His-containing peptides. Here, the HxxxH species is most common, and this requirement is most pronounced in 
the ND and NN sequence sets. The HxxxH motif corresponds to metal ion binding sites, such as in metallopro-
tease active sites, and its abundance in non-domain regions may indicate presence of yet-unidentified metallo-
proteases or metallo-motifs19. Then, Cys-containing peptides show a striking preference for CxxC motifs, more 
pronounced for the DM set (82%) but also preferred in ND and NN (44% and 73%, respectively). This motif is 
characteristic of oxidoreductase active sites and zinc fingers. This again points at possible numerous functional 
motifs in the non-domain regions that are typically not functionally characterized yet.

Mapping the overrepresented outlier pentapeptides onto biologically relevant motifs.  We 
analyzed the relationship between the overrepresented pentapeptides elucidated in this study and three special 

Figure 3.  Cumulative distribution functions (CDFs) of the relative contribution of sequences with 
overrepresented outlier peptides (A–C) or underrepresented outlier peptides (D–F). The distributions were 
calculated for each pentapeptide category separately for domain (A,D) and non-domain (B,E) regions, and for 
non-domain proteins (C,F).
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Protein 
region

Permutation 
class

Number of sequences 
in the class

Total occurrences 
of the class

Average occurrences 
of the class Variance Sequence

Occurrences of 
the sequence %Total

Z 
score

Under-represented

DM LLLLS 5 1103203 220641 176512 SLLLL 129826 11.8 −216

DM AAELR 60 7061680 117695 115733 LEARA 46773 0.7 −208

DM AELLR 60 5987177 99786 98123 LELRA 35795 0.6 −204

DM AAAAL 5 2256485 451297 361038 LAAAA 335710 14.9 −192

DM GGGGI 5 442963 88593 70874 GGGGI 41341 9.3 −177

DM AAAGL 20 4815784 240789 228750 LGAAA 156132 3.2 −177

DM AEKLL 60 4064306 67738 66609 LKLEA 24337 0.6 −168

DM ELLRR 30 2152724 71757 69366 RLELR 29344 1.4 −161

DM AAALR 20 4377052 218853 207910 LRAAA 145448 3.3 −161

DM EEKLL 30 1999573 66652 64431 ELKLE 26021 1.3 −160

Over-represented

DM EGHKT 120 827985 6900 6842 HTGEK 413267 49.9 4913

DM FMNSW 120 268723 2239 2221 NMSFW 198813 74.0 4171

DM PTVWY 120 351052 2925 2901 WTVYP 209428 59.7 3834

DM GKLST 120 3009236 25077 24868 GKSTL 595718 19.8 3619

DM EGKPY 120 911766 7598 7535 GEKPY 318604 34.9 3583

DM EGKPT 120 1461844 12182 12081 TGEKP 389313 26.6 3431

DM GTVWY 120 445075 3709 3678 GWTVY 210756 47.4 3414

DM EGMWY 120 217167 1810 1795 WMGYE 145689 67.1 3396

DM FMNPR 120 339635 2830 2807 FPRMN 177146 52.2 3290

DM FLMSW 120 362542 3021 2996 MSFWL 182120 50.2 3272

Under-represented

ND GGPPP 10 586979 58698 52828 GPGPP 10793 1.8 −208

ND AAAPP 10 1239944 123994 111595 APPAA 71014 5.7 −159

ND AGGGG 5 839291 167858 134287 GAGGG 114103 13.6 −147

ND DDSSS 10 606514 60651 54586 SDDSS 26740 4.4 −145

ND GPPPP 5 388310 77662 62130 PGPPP 42721 11.0 −140

ND DDDSS 10 487092 48709 43838 DDDSS 19800 4.1 −138

ND GGGRR 10 580934 58093 52284 GRRGG 26697 4.6 −137

ND AAGGG 10 948949 94895 85405 AGGGA 58015 6.1 −126

ND RRRSS 10 510453 51045 45941 RSSRR 24251 4.8 −125

ND RRSSS 10 563675 56368 50731 SRSSR 29134 5.2 −121

Over-represented

ND DHKPW 120 141538 1179 1170 HPDKW 122449 86.5 3546

ND DKPTW 120 168175 1401 1390 PDKWT 121326 72.1 3217

ND KQTVW 120 156893 1307 1297 KWTVQ 116218 74.1 3191

ND ILQTW 120 171694 1431 1419 QITLW 121321 70.7 3183

ND DGKMP 120 207222 1727 1712 KPGMD 129015 62.3 3076

ND DKTVW 120 175850 1465 1453 DKWTV 117182 66.6 3036

ND GKLMP 120 249781 2082 2064 LKPGM 128663 51.5 2786

ND ILPQT 120 431365 3595 3565 PQITL 122621 28.4 1994

ND FIPPS 60 241704 4028 3961 FPISP 110649 45.8 1694

ND EIPST 120 536102 4468 4430 SPIET 106093 19.8 1527

Under-represented

NN AGGGG 5 395836 79167 63334 AGGGG 52481 13.3 −106

NN GGGGN 5 157711 31542 25234 NGGGG 17608 11.2 −88

NN AAAPP 10 469392 46939 42245 APPAA 29107 6.2 −87

NN GGPPP 10 100799 10080 9072 GPGPP 2337 2.3 −81

NN AAGGG 10 484217 48422 43580 AGGGA 32303 6.7 −77

NN GGGNN 10 126506 12651 11386 GGGNN 4638 3.7 −75

NN GGGGT 5 151280 30256 24205 GTGGG 18821 12.4 −74

NN LLQQQ 10 160339 16034 14431 QQLQL 8129 5.1 −66

NN DDSSS 10 179338 17934 16140 SDDSS 9821 5.5 −64

NN DDDSS 10 144807 14481 13033 DDSSD 7326 5.1 −63

Continued
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datasets: 1) the Prosite database of protein functional motifs20, 2) the ELM database of short linear motifs involved 
in protein-protein interactions21 and 3) the set of ancient structural peptides described in a recent paper by 
Andrei Lupas and co-workers22.

The Fisher’s exact test allowed us to assess whether, for example, outlier pentapeptides overrepresented in 
protein domains (DM) were significantly more likely than other peptides to match the Lupas ancient peptides. 
This was indeed the case (green symbols in Fig. 5, two-fold overrepresentation) which strongly supports the idea 
that pentapeptides overrepresented in protein domains correspond to ancient structural motifs. Interestingly, 
also pentapeptides overrepresented in domain-less proteins (NN) are significantly likely to match the ancient 
peptides. This may indicate that a substantial fraction of the “domain-less” proteins may contain yet-undescribed 
protein domains.

For the ELM database, the relationship to overrepresented outlier peptides is different. The pentapeptides 
overrepresented in protein domains (DM), in non-domain regions (ND) and in domain-less proteins (NN) are 
very significantly unlikely to correspond to ELM motifs (red symbols in Fig. 5). These observations may be sug-
gestive that the ELM protein-protein interaction motifs are specific and do not utilize very common pentapep-
tides21. Thus, although structural motifs are known to be important for predicting protein-protein interactions23,24 
the need for specificity within the interaction interfaces could possibly require such motifs to be built of uncom-
mon sequences.

Lastly, the outlier pentapeptides overrepresented in domain regions (DM) and those overrepresented in the 
whole sequence set (SQ) are very significantly likely to match Prosite functional motifs (blue symbols in Fig. 5) 
albeit the overrepresentation is not high in relative numbers. This plays well with the notion that frequent penta-
peptide motifs will often play functional roles. It has to be borne in mind that Prosite motifs are by large based on 
experimental functional (e.g. biochemical) characterization of proteins and often correspond to active sites while 
the Lupas ancient peptides are derived from structure analyses. Thus, for outlier ND peptides (from non-domain 
parts of domain-containing proteins) compared versus Prosite database underrepresentation is not unexpected 
– Prosite motifs are typically identified in well-studied and described domains. The fact that the outlier pentapep-
tides overrepresented in non-domain regions (ND) are actually unlikely to match Prosite motifs could also reflect 
the fact that the Prosite database is focused on functional motifs discovered previously within known protein 
domains. The explanation of this effect is not obvious, however, one might speculate that functional motifs in ND 
regions may differ from those in known domains. Since Prosite motifs can be expected to occur within known 
protein domains, one might also presume that if recognizable Prosite motifs were present in ND regions, then the 
presence of those motifs would have allowed the surrounding sequence regions to be assigned to known domains, 
hence the motif would have ended up in a DM region.

Most common amino acids in the high-abundance outlier pentapeptides.  The most common 
amino-acids in the high-abundance outliers are Cysteine (C), Tryptophan (W), Methionine (M) and Histidine 
(H). This is interesting when we take into account the fact that these amino acids are the least frequent in the 
overall space of sequences in the Uniprot database (as summarized by the “Amino acid scale: Amino acid com-
position (%)” in the UniProtKB/Swiss-Prot data bank). All these amino acids are also biologically unusual: i) 
Tryptophan is a scarce resource, hard to synthesize, ii) Cysteine is used for disulfide bonds and ion coordination, 
iii) Methionine is the universal starting amino-acid and iv) Histidine often contributes to enzymatic active sites 
and to ion coordination. This non-random amino acid composition of highly overrepresented peptides may indi-
cate that there is non-random placement of certain important components in a well-defined order and structural 
context (i.e. fixed in the term of a protein sequence) for full functionality.

It has to be stressed that the issue of enrichment of outliers in unexpected features (amino acids) has been 
resolved by our permutation-based approach which corrects for bias linked to different occurrence frequencies of 
amino acids in nature. For example, the most abundant outlier from the DM set, the HTGEK pentapeptide (see 
Table 3), provides 49.9% of all occurrences of the pentapeptides of the same amino acid composition. Hence, it 
is not only the use of relatively rare amino acids that distinguishes the outlier pentapeptides, it is also the specific 
sequence order and neighbourhood of those.

Protein 
region

Permutation 
class

Number of sequences 
in the class

Total occurrences 
of the class

Average occurrences 
of the class Variance Sequence

Occurrences of 
the sequence %Total

Z 
score

Over-represented

NN CEFHK 120 41470 346 343 KHCFE 26831 64.7 1431

NN CEFHV 120 44399 370 367 HCFEV 27459 61.8 1414

NN CFHKS 120 45270 377 374 SKHCF 26211 57.9 1336

NN DESTV 120 348198 2902 2877 TDEVS 48183 13.8 844

NN CEFVV 60 44179 736 724 CFEVV 22635 51.2 814

NN HKSSV 60 89154 1486 1461 VSSKH 31133 34.9 776

NN DEFVV 60 148928 2482 2441 FEVVD 37821 25.4 715

NN CHKSS 60 34640 577 568 SSKHC 16273 47.0 659

NN DDERT 60 122092 2035 2001 DRTDE 30087 24.6 627

NN DERTV 120 255182 2127 2109 RTDEV 30351 11.9 615

Table 3.  Summary of the top outlier pentapeptides. Ten most underrepresented and ten most overrepresented 
peptides in DM, in ND and in NN protein regions, respectively.
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The three datasets of high-abundance outliers identified at the 0.001 significance level - in domain 
(DM),non-domain (ND) regions as well as in domain-less protein (NN) - differ substantially in terms of amino 
acid frequencies. The highest differences were noted for Cysteine (9.78% in NN, 9.07% in ND and 7.58% in DM), 
Tryptophan (8.08% in NN, 8.77% in ND and 6.68% in DM) and Serine (4.69% in DM, 3.67% in NN and 3.28% 
in ND). Still, despite these differences, Cysteine and Tryptophan are among the most abundant amino acids in 
both groups. And the differences between the two datasets of outliers are smaller than the difference between the 
outlier groups and the Uniprot data, as shown in Fig. 6. This pattern can be explained by the extreme nature of 
outliers regardless of their position in the protein sequence.

Figure 4.  Cumulative distribution functions (CDFs) of the ratio of the variance estimated experimentally 
within each permutation class (var(exp)) and the value expected for the same data (var(Bernoulli)). The 
distributions are plotted for all permutation classes of the indicated composition identified in either domain  
(A) or non-domain (B) regions, or in regions from non-domain proteins (C). The square root of the abscissa 
value could be roughly interpreted as the number of folds that the observed distribution is wider than the 
expected distribution.
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Phylogenetic spread of high-abundance outlier pentapeptides.  The dataset studied (SQ) was 
mapped to unique NCBI Taxonomy identifiers at the species level (taxids): Eukaryota, 362596 species (84.4%), 
Bacteria, 48015 species (11.2%), Viruses 13455 species (3.1%) and Archaea, 2805 species (0.65%).

In the DM dataset, we identified 41,395 high-abundance outlier peptides in proteins from 424,454 different 
species. In the NN dataset, we found 18,343 high-abundance outliers in proteins from 372,361 different species. 
In the ND dataset, we found 29,544 high-abundance outliers in proteins from 378,124 different species. The over-
all taxonomic composition of the outlier datasets is very similar due to the prevalence of shared taxa, only 0.2% 
of taxa are specific to ND outliers, 0.1% are specific to NN outliers and 4.99% to DM outliers. In both datasets 
Eukaryotic sequences dominated: 85.2% of the DM outliers and 85.7% of ND and 85.6% of NN outliers repre-
sented eukaryotic sequences. There is however a difference in the taxonomic composition of the outlier groups 
that are specific for DM, ND or NN regions (Fig. 7). The group of outliers specific for DM regions has a similar 
composition to the overall outlier taxonomic composition, with the dominance of Eukaryota (79.01%) followed 
by Bacteria (17.32%). The ND and NN specific outliers are also dominated by Eukaryota (46.87% in NN, 41% in 
ND), but Bacteria (25.29% in NN, 28.15% in ND) and Viruses (26.68% in NN, 29.99% in ND) comprise together 
more than half of the dataset.

When only organisms with more than 20,000 high-abundance outliers were considered, a clear difference was 
observed in the taxon distribution between the DM, ND and NN datasets (Fig. 8). For the DM dataset, there were 
6,437 organisms with more than 20,000 overrepresented peptides, and of these 5,367 were bacteria and 1,024 were 
eukaryotes.

For the ND dataset, there were only 1,457 organisms with more than 20,000 overrepresented peptides, and of 
these the majority were eukaryotes (926 taxa) and only 514 were bacteria. There were 1,320 organisms with more 
than 20,000 NN overrepresented pentapeptides of which 888 belonged to Eukaryota and 423 to Bacteria. All taxa 
with more than 20,000 high-abundance ND and NN outliers had also more than 20,000 DM outliers (Fig. 8). This 
abundance of outlier sequences in Eukaryota might be related to a difference in codon usage between the domains 
of life, and to the fact that protein composition in Eukaryota is more strongly influenced by protein-protein inter-
actions. In principle, the whole SQ datasets could also be built separately for different taxa, e.g. for the four king-
doms: Archaea, Bacteria, Eukaryota, and viruses. Such an analysis, although potentially very interesting, would 
have to be carefully performed in order to avoid the bias present in the quantitative representation of different 
species and higher taxonomic units in the sequence databases.

Discussion
In this paper we are exploring the pentapeptide composition of known proteins. Previous studies of this kind 
have found that many pentapeptides were completely absent from known proteomes1,2,8. Now we show that – due 
to the increased number of sequences available for analysis – no “forbidden pentapeptides” exist anymore. The 
sequencing coverage of living organisms has reached a point where all possible pentapeptides can be found in 
known protein sequences.

Figure 5.  Overrepresented outlier pentapeptides relate to functional motifs. Relationships between overrepresented 
outliers and Prosite functional motifs (blue), ELM protein-protein interaction motifs (red) and predicted ancient 
structural peptides from Lupas et al.22 (green). Fisher’s exact test was applied. P-value with Bonferroni correction is 
shown. Non-significant datapoints are dimmed. The Y axis shows log2 of odds ratio, hence value of 1 corresponds to 
2-fold odds ratio. The dashed red line indicates the significance threshold (P-value = 0.01).
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However, we argue here that more important than absolute frequencies of particular peptides are their nor-
malized frequencies, i.e. frequencies corrected for amino acid usage. To investigate these normalized frequencies, 
we use pentapeptide permutation groups, and using this methodology we show that it is not a small subset of 
peptides that are more or less abundant than statistically expected, but instead the whole observed distributions 
differ strongly from the expected distributions.

We also identified numerous outlier sequences, i.e. sequences that are very far away from the overall dis-
tributions of their permutation groups. The outliers are important because they represent cases where strong 
evolutionary pressure could be present. And, accordingly, they contain many rare amino acids and they often 
correspond to known protein sequence motifs, as shown by the comparison of high-abundance outliers from the 
analyzed datasets to the functional protein motifs from the Prosite database. Our results show that the outlier 
sequences are useful, very likely all of them perform some specific functions.

It is important to note that even after leaving out all outliers, the overall observed distributions of pentapep-
tides still differ strongly from the theoretical expected distributions. This means that these distributions are highly 
“non-statistical”: rare permutations are much more rare than expected, while frequent ones are more frequent 
than expected. This could be partly related to the fact that we ignored close-neighbor effects, which may cause the 
permutations to be nonequivalent. Still, this observation warrants a functional explanation.

The most interesting results appear when comparing known protein domains with non-domain regions. 
Domains contain many times more outliers than non-domain regions, and there are also qualitative differences 
between both types of regions: in the domain dataset, the strongest pressures are visible for the most complex 
pentapeptides (composed of three or more different amino acids), while in all non-domain regions the least 
complex pentapeptides (composed of only two different amino acids) are subject to strongest pressures. Further, 
the high-abundance outliers derived from known protein domains correspond very often to the sequences of 
predicted ancient structural peptides22, while neither domain nor non-domain high-abundance outliers match 
protein-protein interaction motifs from the ELM database. These results show that although all types of outliers are 
subject to strong pressure, the characteristics of overrepresented peptides from domain and non-domain regions 
will be different. Future work should cast light on their detailed structural, kinetic and thermodynamic properties.

Additionally, our results indicate that the probability for a peptide to be favored in domain regions is much 
higher than in non-domain regions, which is consistent with the notion that domain and non-domain regions of 
protein sequences are subject to different functional constraints and pressures. In particular, the most extremely 
overrepresented peptides (with z-scores above 200) are overrepresented either within domains or – less often 
– outside of them, and only very rarely in both types of regions simultaneously. Thus, overabundance seems to 
appear in evolution in response to some kind of pressure: structural, dynamical, or – most likely – functional. 
Although ultimate confirmation of functional importance of the outlier pentapeptides will require experimental 
studies, the sequence signals observed by us are statistically extremely significant, and thus are unlikely to be 
caused by bias of any sort but possibly reflect evolutionary pressure.

Materials and Methods
Sequence database preparation.  The non-redundant (NR) database of protein sequences was obtained 
from NCBI in September 2016. Each sequence was mapped on the NCBI taxonomy and assigned a taxonomy 
identifier and a species level identifier, if these were not available, it was labeled as unknown. First, the NR data-
base was clustered – for each species separately – using CD-HIT25 with sequence identity set to 100% and length 
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Figure 6.  Frequency of each of the 20 canonical amino-acids in all UNIPROT proteins compared to frequency 
among high-abundance outlier pentapeptides identified in this work.
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similarity set to 90% of the shorter sequence. This was done in order to remove duplicates, i.e. identical sequences 
from different strains of well-studied taxa (e.g. model organisms, such as Escherichia coli). Next, known protein 
domains from the CDD database version 3.15 (June 2016)26 were mapped onto the unified database using the 
RPS-Blast + tool27, with an e-value threshold of 0.001.

Identification of all short peptides (up to 5 residues) in the database.  The database described above 
was used to determine the abundance of all possible short peptides in all known protein sequences. In particular, 
we analyzed the differences in peptide composition between known protein domains and interdomain regions.

Using an in-house script, we scanned all sequences in the database in order to determine the abundance of all 
possible peptides of length ranging from 1 to 5. We first scanned the entire database, and in this way we obtained 
a list showing the number of occurrences in the database of each possible peptide (we termed this list SQ). Then 
we constructed three subsets of the database: one that includes only sequences corresponding to known domain 
regions, a second one consisting of all regions found outside of any known domains (these sequences repre-
sent either interdomain regions or unknown domains), and a third one grouping proteins without any domains; 
we scanned these subsets in the same manner as the entire database. In this way we obtained three more lists, 
showing the number of occurrences of each peptide in known domain regions (this list we termed DM), in 
non-domain regions (ND) and in non-domain proteins (NN). In our analysis, a peptide occurrence is only then 
counted if the peptide fits entirely in the analyzed region – thus, for a given peptide, the count in the SQ list is 
usually larger than the sum of counts in the DM, ND and NN lists. Transmembrane regions were not treated 
separately. They were either included in the domain regions (if they belonged to known domains) or they were 
included in the non-domain regions. For some analyses, the combined dataset ND + NN was used, to represent 
all non-domain regions.

Analysis of pentapeptide abundances using permutation groups and z-scores.  In order to sepa-
rate peptide abundances from the abundances of the individual amino acids that constitute them, we decided to 
analyze abundances in permutation groups. For this purpose, the set of all possible pentapeptides (205 = 3,200,000 
pentapeptides) was clustered into 42,504 permutation groups, so that each group consisted of all pentapeptides 
that share the same amino acid composition – i.e. those that are permutations of a single sequence.

Since the same amino acid residue may come up more than once in a given peptide, we have seven different 
categories of pentapeptides: a1b1c1d1e1, a1b1c1d2, a1b2c2, a1b1c3, a2b3, a1b4 and a5 (where a-e stand for any, but 
different from each other, amino acid residue). Each category includes many different groups, e.g. the category 
a1b4 includes the permutation groups A1W4, W1A4, A1T4, etc. Each group includes all individual peptides that 
are permutations of the given composition, e.g. A1W4 has five permutations: AWWWW, WAWWW, WWAWW, 
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Focus residue Protein region % “aa” %“axa” %“axxa” %“axxxa” Total counts

A DM 23 26 22 27 443

A ND 20 22 18 37 30

A NN 100 0 0 0 6

C DM 2 5 82 9 530

C ND 3 17 44 34 60

C NN 2 0 73 24 22

D DM 20 36 22 20 366

D ND 38 20 20 20 27

D NN 0 33 66 0 7

E DM 37 15 31 15 456

E ND 45 0 42 12 23

E NN 85 0 14 0 13

F DM 27 25 20 26 340

F ND 30 27 23 18 29

F NN 100 0 0 0 2

G DM 21 28 28 21 673

G ND 22 18 50 8 63

G NN 33 66 0 0 5

H DM 18 20 15 46 361

H ND 10 17 10 62 17

H NN 0 0 0 100 3

I DM 23 20 28 27 395

I ND 21 8 27 42 34

I NN 0 0 0 100 1

K DM 31 20 25 22 330

K ND 41 21 20 16 35

K NN 56 24 0 18 17

L DM 18 12 30 37 511

L ND 36 9 41 11 46

L NN 50 0 16 33 8

M DM 18 17 30 33 231

M ND 7 13 39 39 24

M NN 0 0 33 66 2

N DM 24 24 21 29 296

N ND 20 53 26 0 11

N NN 0 100 0 0 3

P DM 15 21 31 32 464

P ND 15 20 38 25 44

P NN 20 0 0 80 2

Q DM 34 28 19 18 227

Q ND 10 28 17 42 29

Q NN 0

R DM 30 29 28 11 383

R ND 31 47 7 14 21

R NN 0 33 33 33 6

S DM 30 21 27 20 278

S ND 29 12 38 19 13

S NN 63 0 36 0 9

T DM 21 29 26 23 376

T ND 11 49 15 23 32

T NN 0 57 0 42 5

V DM 31 30 18 19 375

V ND 7 28 21 42 19

V NN 57 21 0 21 15

W DM 23 38 19 18 305

W ND 28 28 14 28 27

W NN 0

Continued



www.nature.com/scientificreports/

1 6ScIentIfIc REPOrTs |  (2018) 8:15178  | DOI:10.1038/s41598-018-33433-8

WWWAW, WWWWA. Table 1 shows the number of groups in each category, the number of permutations in each 
group, and the total number of different pentapeptides in each category.

The number of occurrences of an individual peptide (Nobs) in a group can be viewed as the result of a classical 
Bernoulli experiment, B[n,p], with probability p = 1/m (where m is the number of permutations in the group, 
i.e. the number of possible sequences corresponding to the given amino acid composition) and number of tri-
als n (which stands for the total number of occurrences of all pentapeptides of a given composition identified 
in the analyzed subset of the database). In terms of the probability theory, the random trial in this experiment 
corresponds to the procedure of pentapeptide sequence shuffling, while the sample space is the set of all possible 
pentapeptide sequences of a given composition. (The sequence shuffling here is orthogonal to what is really hap-
pening in the course of evolution, i.e. to residue replacement). Further, since the samples in this experiment are 
large, the normal approximation with μ = n∙p and σ2 = n∙p∙(1-p) could be applied28. Hence, for each peptide, the 
number of its occurrences Nobs could be scored statistically using the expected value μ, and each Nobs could also 
be examined by its (dis)agreement with the value μ. For example, Nobs may be the number of occurrences of the 
peptide AWWWW, while n would be the number of occurrences of all peptides of the A1W4 group, and m = 5 
would be the number of possible permutations in this example.

The null hypothesis stating that the observed distribution of pentapeptides sharing the same amino acid compo-
sition is random can be thus tested against the expected binomial distribution. In order to test the hypothesis, we 
estimated the probabilities that the number of occurrences of the most over- and underrepresented pentapeptides 
in each group could be regarded as following the binomial distribution B[n,p], in which n is the total number 
of peptide occurrences in the tested permutation group, and p =1/m, where m is the number of different pen-
tapeptides in the group. We screened 42,484 permutation groups (starting from all possible 42,504 groups but 
excluding the 20 trivial a5 groups). Almost all of these groups are large enough to justify the use of the normal 
approximation (N) of the theoretical binomial distribution (B): B[n,p]~N[n∙p, n∙p∙(1-p)]28. Hence, the observed 
number of occurrences Nobs of any peptide can be converted to the corresponding z-score according to the fol-
lowing equation:

σ= − μ = − ⋅ ⋅ ⋅ −z (N )/ (N n p)/sqrt(n p (1 p))obs obs

We calculated the z-scores for all observed pentapeptides in the datasets. The extreme values, corresponding 
to the most overrepresented and the most underrepresented pentapeptide in each permutation group, we denoted 
by z_max and z_min. It should be noted that even for groups consisting of rare amino acids, the value of n∙p∙(1-p) 
always exceeded 10, which confirms the applicability of the normal approximation.

Identification and analysis of outlier pentapeptides.  For each permutation group, possible outliers 
were identified iteratively, according to the Grubb’s test with the significance level α = 0.05 for filtering, and 0.001 
for outlier identification29.

The rigorous Bonferroni correction for multiple comparisons was used to adjust significance levels or to define 
appropriate confidence intervals13.

For sequence-based clustering of the thousands of identified outlier pentapeptides, the GibbsCluster Server30 
was used. The number of clusters allowed was set to the maximal value (10). An extra “trash” bin was used for 
pentapeptides that didn’t match any of the clusters.

In order to identify well-annotated proteins that harbour certain selected outlier pentapeptides, we used the 
ScanProsite tool31 on the SwissProt database.

Relating overrepresented pentapeptides to functional and structural motifs.  Overrepresented 
outlier pentapeptides from the DM, NN and ND sets (identified at significance level of 0.001) were analyzed in 
order to test whether they are over- or underrepresented in: (1) the set of ancient structural peptides defined by 
Lupas and co-workers22, (2) the ELM database of functional motifs21 and (3) the Prosite database of functional 
motifs20.

Significance was estimated with the two-sided Fisher’s exact test. Contingency tables were constructed accord-
ing to the scheme where pentapeptides in the tested group (e.g. overrepresented DM outliers) were analyzed vs 
all other pentapeptides within and outside of the tested dataset (e.g. ELM). P-values were adjusted separately 
in all three groups with the Bonferroni correction; adjusted p-values of less than 0.01 were considered signifi-
cant. Motifs from the ELM and Prosite databases were converted into 5-character long regular expressions. The 
obtained unique regular expressions were considered only if they met the following criteria: 1) no more than two 
positions with undefined amino acid residues (e.g. AAxxA or AAxAA but not AxxxA) and 2) no more than one 
additional position in which one of no more than five amino acids can fit (e.g. [ACDEF] but not [ACDEFG]). This 
means that the regular expressions considered could match at most 2000 pentapeptides. Thus, the most generic 

Focus residue Protein region % “aa” %“axa” %“axxa” %“axxxa” Total counts

Y DM 28 20 25 25 282

Y ND 42 22 0 34 8

Y NN 0 0 0 100 2

Table 4.  In-depth analysis of the outlier pentapeptides of the type a2bcd. For every “focus residue” a, the 
highest abundant outliers (z > 100) were considered that contained exactly two occurrences of the focus residue. 
Then, occurrences were considered where the focus residue was separated by 0, 1, 2 or 3 residues.
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motifs were discarded from the analysis. The regular expressions used for the analysis cover 90.76% of motifs 
from the Prosite database (1188/1309) and 60% of motifs from the ELM database (159/265). They were used to 
scan all pentapeptides. The Lupas set of ancient structural peptides was prepared using the supplementary data 
for the paper by Lupas and co-workers22. The 305 peptide sequences representing fourty “primordial fragments” 
and five “B-set fragments” described by Lupas et al. were scanned for identical substring matches against all 
pentapeptides.

All analyses were performed in R version 3.3.232 with homemade scripts. Plots were generated with the ggplot2 
(2.2.1) and ggrepel (0.7.0) packages.
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