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High-resolution NMR studies of antibiotics in
cellular membranes
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The alarming rise of antimicrobial resistance requires antibiotics with unexploited mechan-

isms. Ideal templates could be antibiotics that target the peptidoglycan precursor lipid II,

known as the bacterial Achilles heel, at an irreplaceable pyrophosphate group. Such anti-

biotics would kill multidrug-resistant pathogens at nanomolecular concentrations without

causing antimicrobial resistance. However, due to the challenge of studying small membrane-

embedded drug–receptor complexes in native conditions, the structural correlates of the

pharmaceutically relevant binding modes are unknown. Here, using advanced highly sensitive

solid-state NMR setups, we present a high-resolution approach to study lipid II-binding

antibiotics directly in cell membranes. On the example of nisin, the preeminent lantibiotic, we

show that the native antibiotic-binding mode strongly differs from previously published

structures, and we demonstrate that functional hotspots correspond to plastic drug domains

that are critical for the cellular adaptability of nisin. Thereby, our approach provides a

foundation for an improved understanding of powerful antibiotics.
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The rapid growth of antimicrobial resistance (AMR) is a
severe threat to global health. To date, AMR has been
observed against all clinically used antibiotics, which is

forecast to cause a staggering 10 million annual human deaths by
year 20501. It is hence of pressing need to develop antibiotics that
operate via unexploited mechanisms and that are robust to
resistance development.

Structural information is decisive for antibiotic design.
However, resolving structural information that is relevant for
drug development is complicated by the potentially critical
influence of the medium on drug-binding modes. Structural
data on antibiotic–receptor interactions are therefore ideally
obtained under native conditions, which guarantees that the
most relevant antibiotic state is studied. This tenet is of special
importance for antimicrobial peptides (AMPs) that target
bacterial membranes, which are media of enormous com-
plexity. Most of these antibiotics are active in the micromolar
concentration range and non-specifically target bacterial
membranes. A smaller number of AMPs are active in the
nanomolar concentration range, which is achieved by speci-
fically targeting a membrane component such as the essential
cell wall precursor lipid II2. These lipid II-binding com-
pounds, such as vancomycin, plectasin3, tridecaptin4, or the
recently discovered teixobactin5, can kill multidrug-resistant
bacteria while resistance development is extraordinarily dif-
ficult. Native structural information is of particular relevance
for antibiotics that target lipid II, whose accessibility and
structure vary across bacteria6, 7, which can modulate drug
activity strongly3, 4, 8. However, structural data on lipid II-
binding antibiotics are scarce and usually only available in
artificial media such as micelles. Altogether, it is largely
unknown how native conditions modulate membrane-binding
antibiotics. This is because quantitative structural studies of
small (<10 kDa) drug–receptor complexes in cell membranes
present major technical challenges that are yet to be overcome.

In principle, solid-state NMR (ssNMR) allows for structural
studies directly in cell membranes9–11. However, native
ssNMR studies are enormously challenging due to the low
cellular concentration of the target system and the resulting
poor spectral sensitivity. This problem is even more strongly
exacerbated for cellular drug-binding studies with lipid II,
whose minute native concentration cannot be increased
recombinantly. In this work, using a state-of-the-art ssNMR
approach that integrates the highly sensitive methods 1H-
detection and high-field dynamic nuclear polarization (DNP),
we show high-resolution studies of an antibiotic–lipid II
complex directly in cellular membranes on the example of the
lantibiotic nisin12.

Nisin employs a unique dual mode of antimicrobial action12

and is effective against multidrug-resistant pathogens. Pre-
vious solution NMR studies in organic solvents reported a
nisin:lipid II complex structure (1WCO)13, which served as
template for many drug design efforts14–17. Here, we show
that the native lipid II-bound state of nisin in cell membranes
strongly differs from the previously published structure. We
rationalize the native conformational space of lipid II-bound
nisin and identify plastic domains that enable the antibiotic
to adapt to the cellular environment. Intriguingly, these
plastic domains correspond to pharmaceutical hotspots
that allow to improve nisin’s activity, establishing a link
between antimicrobial activity and cellular adaptability.
These insights provide a foundation for design strategies
for lipid II-targeting antibiotics and demonstrate the high
potential of our native structural biology approach to obtain
an improved understanding of antibiotics that target mem-
brane constituents.

Results
The nisin–lipid II pore only forms in membranes. The heavily
modified lantibiotic nisin (34 residues) is characterized by five
thio-ether rings named A–E (Fig. 1a). Nisin employs a unique
antimicrobial dual mode of action that combines pore formation
and inhibition of the peptidoglycan biosynthesis analogously to
vancomycin12. These two functions are structurally separated. Via
hydrogen bonds with the backbone amino protons, the N-
terminal rings A–B directly bind lipid II at the pyrophosphate
(PPi) group, thereby blocking the peptidoglycan synthesis13. The
PPi group is deemed irreplaceable, and nisin is therefore highly
robust against AMR development. The C-terminal part, con-
taining rings D–E, is essential for the subsequent pore formation,
in which eight nisin and four lipid II are assumed to span a hole
across the plasmamembrane (Fig. 1b)18. N- and C-terminal
domains are connected via a “hinge” linker, which is common to
type A(I) lantibiotics19. The hinge is of high pharmacological
interest, and mutations/extensions/deletions of hinge residues
improve or reduce the pore-forming of nisin15, 16, 20, 21. However,
in the absence of high-resolution data for the pore, it is unknown
how mutations modulate the native state of nisin, critically lim-
iting its use as a template. The only information available is a
nisin:lipid II complex solved in DMSO at a 1:1 stoichiometry13.
Interestingly, the 2:1 stoichiometry, found in lipid membranes18,
could not be detected in DMSO.

To investigate the structure of nisin bound to lipid II in the
pore state, we first produced [13C,15N]-labeled nisin in the native
nisin producer Lactococcus lactis. [13C,15N]-labeled nisin showed
strong activity in standard assays (Fig. 1c) and minimum
inhibitory concentration (MIC) values comparable to previously
reported values (see Supplementary Fig. 4)22, 23. Afterward, we
co-assembled the nisin:lipid II pore at a 2:1 ratio in DOPC
liposomes, and acquired a 1H-detected 2D 15N–1H spectrum with
60 kHz magic angle spinning (MAS) (Fig. 1d). We could readily
identify the spectrally well-separated signal of residue O2, which
interacts with the PPi group and exhibits the same very high 1H-
chemical shift of 12.85 ppm as in DMSO13. This demonstrates
that nisin is bound to lipid II under our experimental conditions,
which is also clearly evidenced by a lipid II-free control sample
(Fig. 2a). Lipid II-bound nisin featured sharp, well-resolved NMR
signals in DOPC, implying an ordered pore state. Strikingly, the
spectra of lipid II-bound nisin in DOPC and in DMSO drastically
deviated (Fig. 1d). To analyze this difference, we de novo assigned
the backbone chemical shifts of lipid II-bound nisin in liposomes
using 3D experiments (Fig. 1e). The chemical shift perturbations
(CSPs) profile that compares NMR signals in DOPC and DMSO
indeed shows a marked overall conformational change in
liposomes. The largest CSPs occur in the C-terminal rings D–E,
which is likely diagnostic for pore formation in the DOPC
membrane opposed to a non-pore state in DMSO. Moreover, we
also observed stark CSPs for rings A–B, which strongly suggests
that the critical interaction with the PPi group is altered in
liposomes. Intriguingly, in liposomes, we could detect the N-
terminal residue I1, which is of high importance for nisin’s
activity for uncertain reasons24, 25, and which remained invisible
in DMSO13. Altogether, we succeeded to capture the lipid II-
bound state of nisin in the pore at high spectral resolution. Our
data demonstrate that a previously solved structure13 did not
report on a physiologically relevant state. However, given that the
medium strongly influences the conformation of lipid II-bound
nisin (Fig. 1d), we set out to extend our liposomal studies of the
nisin:lipid II pore to cellular bacterial membranes.

The native nisin–lipid II complex in cellular membranes.
ssNMR studies in cellular membranes suffer from low molecular
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concentration, resulting in poor sensitivity. We recently demon-
strated that 1H-detection can provide the ssNMR sensitivity
required to study recombinantly overexpressed proteins in cell
membranes at physiological temperatures26. However, studying
native lipid II–peptide interactions is much more challenging
because the lipid II concentration is minute in bacterial mem-
branes (<0.5 mol % compared to plasmamembrane phospholi-
pids)27 and cannot be increased recombinantly.

To study the native lipid II-bound state of nisin in the pore by
1H-detected ssNMR, we added nisin to membrane vesicles
derived from the Gram-positive bacterium Micrococcus flavus, a
nisin-sensitive bacteria (MIC= 2.7 ± 0.75 nM)22, 23, which con-
tain all inherent membrane components (lipids, proteins, and
other biomolecules)27. Our sample contained ~25 μg, i.e., less
than 10 nmol of antibiotic. Despite of this 15–20-fold concentra-
tion reduction compared to the DOPC sample, we could acquire a
sensitive 2D 15N–1H spectrum of lipid II-bound nisin (Fig. 2a).
The native spectrum reproduced our DOPC data, and we could
annotate most signals, strongly suggesting that we had captured
the native state of lipid II-bound nisin in the pore in both
membrane systems. However, subtle differences, which we
discuss below, between the spectra of the two membrane systems
indicated that the cellular environment modulates the pore
conformation. We also detected a second set of signals, which can
be seen by the signals splitting for G14 and As28. As it became
clear from a negative control spectrum in DOPG/DOPC without
lipid II (Fig. 2a, in gray), these signals originate from non-
specifically bound nisin, present in slight excess over lipid II,
whose exact native concentration is difficult to measure. Note that

anionic lipids were used to enhance non-specific binding in the
control sample28.

Despite the simultaneous presence of lipid II-bound and non-
specifically attached nisin, a number of residues (O2, As3, I4, U5,
L6, G10, As11, K12, G14, As19, K22, and As28) give unambiguous
signals for the native state of lipid II-bound nisin. Interestingly,
the amino group of residue I1 was not detectable. This suggests
that the I1 amino group has a high mobility, given that we used
dipolar ssNMR experiments, in which signal sensitivity decreases
with increased dynamics. Generally, rings A–B (O2–G10) showed
marginal CSPs in cell membranes compared to DOPC, which is
in agreement with their tight interaction with the PPi group,
rendering these rings less susceptible to the medium. Exceptions
were residues L6 and especially I4, which both showed 15N CSPs
between 0.6 and 1.0 ppm. Furthermore, the 1H-signals of residues
L6, G10, and A*8 were broadened, potentially due to hetero-
geneous PPi interactions. Ring C (A*13–As19) showed clear CSPs
in cellular membranes, which are most notable for G14 and As19.
Further CSPs for L16–M17 are consistent with the native
spectrum but could not be unambiguously resolved. This suggests
that the cellular membrane subtly changes the C ring conforma-
tion, which is essential for nisin activity for unexplained
structural reasons29.

Intriguingly, the hinge (N20–K22) and C-terminal domain
(A*23–As28), which form the actual transmembrane (TM) pore,
featured consistent signal shifts in the cellular membrane
compared to DOPC. The hinge is the only TM element that is
not restraint in thio-rings and is assumed to play a special role30.
Drug development efforts have concentrated on the hinge,
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yielding nisin derivatives with enhanced bioactivity14–16. The
hinge residues and A*23–A24 in direct proximity, showed clear
CSPs in cellular membranes. Intriguingly, M21 either strongly
shifted or disappeared in the cellular spectrum due to increased
mobility. Altogether, this suggests that the hinge is plastic and
important for the adaption of nisin:lipid II pore to bacterial
membranes. Furthermore, also the pore-forming rings D–E are
sensitive to the membrane environment, as shown by the marked
CSP of residue As28. Residues H31–V32 disappeared in the
dipolar-based cellular spectrum, pointing to an increased mobility
of the C terminus.

Adaptation of the pore structure to native environment. The
differences between the spectra from DOPC or M. flavus mem-
branes indicate that the nisin pore structure adapts to the
membrane environment. A likely source of this modulation is the
complex composition of lipid tails and headgroups in cellular M.
flavus membranes. In the following, we investigated the impact of
the membrane composition on the conformation and dynamics
of lipid II-bound nisin, focusing on two key aspects, i.e., bilayer
charge and thickness. Furthermore, we varied the length of
the prenyl-chain of lipid II.

Gram-positive membranes generally are highly enriched in
anionic lipids that constitute usually >50% of the bilayer31. To
test the effect of an anionic bilayer, we acquired ssNMR data of
the lipid II-bound state of nisin in the pore in mixed liposomes
composed of anionic DOPG and zwitterionic DOPC lipids

(Fig. 2b). Globally, the ssNMR spectrum shows that nisin is only
weakly modulated by the membrane charge, in agreement with its
high specificity for lipid II20. Nonetheless, we observed smaller
but clear 15N CSPs around 0.5–1 ppm for residues As3–I4, which
correspond in direction and magnitude to the signal perturba-
tions in M. flavus membranes. This means that ring A at the
membrane–water interface is modulated by anionic lipids in cell
membranes. Interestingly, this observation agrees with mutagen-
esis studies that showed that replacing I4 by a cationic residue
favorably affects nisin’s activity32. Equally interesting, also
residues N20 and A*23–A24 at and around the hinge showed
significant CSPs in anionic membranes. These residues all showed
significant CSPs inM. flavus vesicles. Given that the hinge is most
likely located in the membrane core and not directly interacting
with lipid headgroups33, these findings suggest that the hinge
conformations change in order to adapt the pore structure to the
membrane charge.

Membrane thickness has been shown to be very important for
the pore-forming activity of some lantibiotics34, 35. Micrococcal
membranes contain mainly branched C15:0 fatty acids and are
therefore thinner compared to a DOPC bilayer. To explore the
modulatory influence of the bilayer thickness, we acquired spectra
of the lipid II-bound state of nisin in the pore in liposomes
formed of C14:1 DMoPC that is much shorter compared to
DOPC (18:1) (Fig. 2c). While rings A–B, that are not in contact
with the lipid tails, did not show CSPs in DMoPC, almost all
residues of ring C (e.g., G14 and A15) showed CSPs in the thinner
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membrane, and these CSPs are consistent with the cellular M.
flavus spectrum (Fig. 2a). Equally in agreement with the cellular
spectrum, residues N27–As28 of the TM part also exhibited clear
CSPs in DMoPC. To better rationalize these signal changes, we
acquired 15N T1rho ssNMR relaxation data in order to compare
the mobility of the nisin pore in DOPC and DMoPC liposomes
(Fig. 2e, f). From this comparison, we sought to understand if the
membrane thickness modulates the conformational dynamics of
the pore structure. We observed a striking stiffening of G14 of
ring C in DMoPC, which correlated with a stark mobility increase
of K22 in the hinge. This corroborates our observation that the
hinge is plastic, and suggests that the hinge conformation is
coupled to the functionally critical29 conformation of the adjacent
C ring. Moreover, the C-terminal As28 showed enhanced
dynamics in DMoPC, which agrees with the reduced thickness
of DMoPC membranes and corroborates our conclusion that the
nisin C terminus pierces through the membrane surface. The
enhanced C terminus mobility also explains the absence of the
H31–V32 signals in M. flavus vesicles.

The dodecaprenyl-(C55) prenyl-chain of lipid II is highly
conserved in bacteria. Since we used a slightly shorter
heptaprenyl-(C35) lipid II for ssNMR measurements in DOPC
liposomes, the longer length of the C55-prenyl-chain in the native
M. flavus membrane could potentially modulate our cellular
ssNMR spectra. However, such an influence is not likely, given
that previous leakage studies strongly suggest that the tail of the
prenyl-chain is neither involved in pore formation nor interacts
with nisin23. Indeed, the nisin:(C35)–lipid II and nisin:
(C55)–lipid II complexes give exactly the same 2D NH spectra
in DOPC liposomes (Supplementary Figure 2).

Linker regions enable the cellular adaptability of the pore. So
far, our results pointed to an important role of the hinge plasti-
city, which may be required for the adaption of the pore to the
thickness and charge of the target membrane. In a pore structure,
this may mean that the hinge would be accessible by the water
phase through the pore lumen. Provided the hinge is not involved
in strong inter- or intramolecular interactions, which is expected
as it needs to stay flexible, the hinge residues should be sensitive
to deuterium exchange26, 36, 37. Indeed, after 1d of incubation in
deuterated buffers, signal of G18–A24 around the hinge had
either disappeared or showed strongly decreased intensity in a 2D
15N–1H spectrum (Fig. 2d, g). This demonstrates that the hinge
has the required conformational flexibility to enable the adaption
of the pore structure to the cellular environment, and it also
demonstrates that hinge residues line the pore lumen. Surpris-
ingly, we also observed a complete exchange of K12, and most
likely A*13, that link rings B–C. This suggests that these residues
also line the pore lumen, and that the orientation between rings B
and C exhibits some degree of flexibility, matching with the
rearrangement of ring C that we observed in M. flavus mem-
branes and shorter lipids (Fig. 2a, c). Notably, just like the hinge,
residue K12 was identified as pharmaceutical hotspot38. Alto-
gether, this shows that drug domains of high functional sig-
nificance relate to nisin’s plasticity.

Residues O2–G10 did not exchange in deuterated buffers,
which is in excellent agreement with the direct interaction of
rings A–B with the PPi group, protecting them from 1H/2H
exchange. Surprisingly, the critical residue I124, thought to tightly
interact with the PPi group25, disappeared in deuterated buffers.
This result makes a strong hydrogen bond between I1 and the PPi
group unlikely. To further investigate the role of the I1 amino
group, we measured the nanosecond dynamics (15N T1) of lipid
II-bound nisin in DOPC, which indeed confirmed the high
flexibility of the I1 amino group (Supplementary Figure 1), and

which also explains the absence of the I1 amino group in cellular
conditions (Fig. 2a).

The native nisin–lipid II complex as seen by DNP-ssNMR.
With the data presented so far, we could capture the native lipid
II-bound state of nisin in the pore and rationalize the influence of
cellular membranes on nisin’s lipid II-binding mode. However,
the 1H-detected cellular spectrum did not allow investigating all
nisin residues, and did not provide side chain data, which can
often be critical for drug binding. In order to obtain this com-
plementary information, we sought to use DNP enhancement,
which can boost the NMR signals of biomolecules by orders of
magnitude39–46. Combined with a high-field 800MHz
magnet47, 48, we envisioned that DNP would provide sufficient
sensitivity and resolution to study the nisin pore in cell mem-
branes. Therefore, we used a similar sample preparation as for
cellular 1H-detection, where we could clearly detect the native
state of nisin in the pore. We obtained a DNP enhancement ε of 8
in M. flavus vesicles, which enabled the acquisition of a well-
resolved 2D 13C–13C spectrum of the lipid II-bound state of nisin
in the pore in 4 days of measurement time (Fig. 3).

Given that DNP measurements require very low temperatures
(100 K), we first explored the impact of cryogenic temperatures in
order to subsequently study the influence of cellular membranes
on the nisin:lipid II pore. This is because at 100 K, conformational
dynamics can result in signal broadening and solvents effects can
lead to signal shifts49–52. Thereby, DNP spectra can provide
valuable information on molecular motions and surface exposure.
We first acquired a so-called 2D 13C–13C “spin diffusion”
experiment at 280 K in DOPC to assign the nisin side chain 13C-
signals (Fig. 3a, in blue). 13C-signals of residues I1–V32 could be
fully assigned (see Supplementary Fig. 5 and Supplementary
Table). Notably, while the C-terminal residues I30–K34 gave only
faint signals at 280 K temperature; we could detect these residues
at 250 K (Fig. 3g). This confirms the enhanced dynamics of the C
terminus that we observed in the 1H-detected M. flavus spectrum,
implying that C terminus sticks out of the membrane.

After obtaining the 13C-assignments, we acquired a DNP-
enhanced 2D 13C–13C experiment of lipid II-bound nisin in
DOPC at 800MHz and 100 K as reference spectrum (Fig. 3a, in
orange), and compared it to the same type of spectrum acquired
in cell membranes (Fig. 3b, magenta). The DNP spectrum in
DOPC was of appealing resolution, and globally followed the
room temperature (280 K) spectrum closely, which enabled us to
analyze most signals at DNP conditions. Figure 3c shows the (Cα

+ Cβ) CSPs in DOPC membranes comparing 280 K and
cryogenic (100 K) DNP conditions, which enables us to study
which side chains are water-exposed or conformationally
heterogeneous. While most nisin residues show minor signal
shifts, we see clear maxima for O2 and I4, which is similar in the
cellular DNP spectrum. These CSPs likely relate to hydration
effects, since ring A presumably localizes on top of the
membrane13. Note that we also verified with further 2D
measurements at 280 K that these CSPs relate to the cryogenic
temperatures and are not caused by the DNP radical53.
Surprisingly, while I4 showed CSPs and signal broadening, the
I1 side chain featured intense, defined signals in both DOPC and
cellular DNP spectra. This suggests that the I1 side chain is rigid
and water shielded in the native pore. This assumption could be
further corroborated in a series of dipolar-based 2D spectra at
280 K, showing a much faster built-up for I1 side chain signals
compared to I4 (Fig. 3f). This suggests that the I1 side chain,
rather than the backbone, may be important for nisin’s pore
structure. Note that highly conserved32 residue P9 showed intense
signals without CSPs in DNP spectra in DOPC and M. flavus
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membranes, demonstrating that the ring B conformation is highly
defined, which is presumably critical for efficient PPi binding.
Intriguingly, the hinge and adjacent residues like A*23 showed
strongly decreased intensities due to signal broadening at DNP
conditions in DOPC, which was even exacerbated in cellular
membranes (Fig. 3e). This again demonstrates the conformational
heterogeneity of the hinge, which is in very good agreement with
our 1H-detected experiments. Notably, the A*13 signals

disappeared on both sides of the diagonal in the cellular DNP
spectrum, while these signals were visible in DOPC. This
broadening most likely relates to an increased conformational
plasticity of residues K12–A*13 that connect ring C to the PPi-
binding motif, which is in excellent agreement with the absence of
these residues in 1H/2H exchange experiments. This highlights
that ring C is modulated by the membrane complexity, as we
showed above (Fig. 2c). Furthermore, at 100 K, residue
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S29 showed severe line broadening in DOPC and cellular
membranes, confirming that the C terminus is dynamically
disordered in the native pore. This finding, yet again, underscores
the importance of flexible regions for nisin’s activity, given that
mutations of S29 increase nisin’s activity54.

Discussion
Antimicrobial resistance is a severe problem and the development
of antibiotics is of high urgency. Drugs that target lipid II, the
bacterial “Achilles heel,” are promising templates for next-
generation antibiotics that are robust against AMR2. However,
the native, i.e., pharmaceutically relevant binding modes of these
drugs are scarcely understood because the major technical chal-
lenges to study small drug–receptor complexes in cell membranes
at the atomic level are yet to be overcome. In the present study,
we introduced a cutting-edge ssNMR approach that enables
comprehensive high-resolution studies of antibiotic–lipid II
complexes directly in native bacterial membranes. We demon-
strated our approach on the example of the lantibiotic nisin,
which uses a unique dual mode of action of targeted pore for-
mation and vancomycin-like blockage of the peptidoglycan
synthesis.

A previous solution NMR study in DMSO already provided a
nisin:lipid II complex structure13, which has been the gold

standard for the structural understanding of nisin and similar
lantibiotics. The present ssNMR data conclusively showed that
the conformation of lipid II-bound nisin is drastically different in
membranes, i.e., the physiologically/pharmacologically relevant
environment. De novo ssNMR assignments demonstrated that
the membrane environment markedly modulates the nisin:lipid II
complex structure, which is because nisin forms a pore complex
with lipid II in membranes, as opposed to a non-pore state in
DMSO (Fig. 1d, f).

Given the marked influence of the membrane environment on
the binding mode, it seemed plausible that the functional state of
the nisin pore is modulated by the cellular membrane complexity.
Therefore, as a next step, using 1H-detected ssNMR, we could
acquire a spectrum of the lipid II-bound state of nisin in the pore
directly in native M. flavus membranes at physiological tem-
peratures (Fig. 2a). The obtained cellular spectrum globally
reproduced our data in DOPC, and demonstrated that we had
discovered the functional state of the pore. Intriguingly, we
observed that specific regions of lipid II-bound nisin were
modulated by cellular conditions (Fig. 4a). Using studies in dif-
ferent membrane types, we showed that the membrane compo-
sitions modulate the conformational space of nisin. This
modulation is especially visible around the linker K12 and the
hinge N20–K22 that connect both lipid II-binding and pore-
forming functional motifs of nisin. Using 1H/2H exchange
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experiments, we showed that these linker domains are not
involved in strong intermolecular interactions, which is required
for the plasticity of the linkers (Fig. 2d, e). These observations
could be confirmed in high-field DNP-enhanced experiments in
native bacterial membranes, where signals of linker domains and
the C terminus exhibited severe signal broadening due to con-
formational heterogeneity. Intriguingly, the linker domains and
the C terminus were identified as pharmacological
hotspots15, 32, 38, 54, and modifications of these plastic elements
can strongly increase nisin’s bioactivity, even against Gram-
negative pathogens (Fig. 4b)14, 54. Thereby, our study suggests
that these flexible linker regions are critical for nisin to adapt to
the target membrane of a given bacterium. This is in excellent
agreement with a recent study that indicated that substitutions/
extensions of the linker domains change the bioactivity of nisin in
a strain-specific manner30. Furthermore, our 1H/2H exchange
experiments demonstrate that hinge residues line the pore lumen,
which provides the first high-resolution topological insights in the
hitherto elusive pore state (Fig. 4a).

Our studies also conclusively showed that the nisin ring A, and
especially the conserved ring B32, are least modulated by the
environment, which is consistent with nisin’s high specificity for
the PPi group. Surprisingly, 1H/2H exchange studies and mea-
surements of nisin’s dynamics suggest that the critical residue I1
does not engage in strong hydrogen bonding with the PPi
group13, 25. While we cannot rule out that the N-terminal I1
amino group transiently interacts with the PPi group, our data
hint at an important role for the I1 side chain, which adopts a
well defined and presumably water-shielded conformation in the
native nisin pore (Fig. 3). This assumption is supported by
mutational studies that showed a twofold activity reduction upon
replacing I1 by a tryptophan55.

To summarize, our native structural study provides high-
resolution insights into the dual activity of the preeminent lan-
tibiotic nisin. Given the uniqueness of nisin’s binding mode, its
high activity and robustness against AMR development, the use
of nisin as a template could be a promising strategy for the
construction of antibiotics. As demonstrated in this work, the
combination of advanced highly sensitive ssNMR methods paves
the way to obtain comprehensive molecular insights into small
antibiotic–receptor complexes in a cellular membrane environ-
ment. Such native studies may be particularly important to
understand the pharmaceutically relevant states of lipid II-
binding drugs with a high exposure to the membrane surface3, 5.

Methods
Nisin production and ssNMR sample preparation. The Lactococcus lactis NIZO
22186 strain carrying the nisZ gene was used for nisin production. Uniformly
labeled [13C,15N]-nisin Z was obtained using [13C,15N]-enriched medium56. Nisin
was extracted from the growth medium using Amberlite XAD-16N (Sigma-
Aldrich) resin and purified with RP-HPLC (Discovery C18, L. × I.D. 150 mm ×
2.1 mm, 5 μm particle size). The column was equilibrated with [H2O 95:5 ACN,
0.05% TFA] and elution was carried out with a linear gradient 50–100% of [ACN
95:5 H2O, 0.05% TFA] at RT and 0.75 ml flow rate. The absorbance of the eluent
was monitored at 214 nm and the fractions containing nisin were subsequently
lyophilized. The presence and purity of nisin in the eluted fractions was confirmed
by ESI-MS (Finnigan LCQ Deca XP). See Supplementary Fig. 4 for an HPLC
elution profile and an ESI ionization trance. The concentration of nisin was
measured using the Micro BCA Protein Assay (Thermo Scientific) and cross-
validated by 1H-solution NMR using DSS as an internal standard. Accordingly, the
specific absorbance for nisin Z at 220 nm was 1.214 mg−1 ml mm−1 in 0.05% acetic
acid solution.

Antimicrobial activity of nisin was monitored by a bioassay against
Staphylococcus simulans 22 (Fig. 1c). Accordingly, S. simulans was grown in TSB
medium (Sigma-Aldrich) at 37 °C under aerobic conditions. Bacteria were seeded
at 1% dilution into soft TSB agar medium (0,6% agar, cooled to 37 °C), plated and
dried. Aliquot of 10 μl of each test sample was pipetted onto surface of the seeded
agar plate, which was afterward dried and incubated overnight at 37 °C. The test
samples containing nisin were prepared in Tris buffer (15 mM Tris-HCl, 25 mM
NaCl, pH 7.0).

Lipid II (lysine form) was purified using published protocols23, using
heptaprenyl-phosphate as the polyisoprenyl substrate, as this guarantees optimal
pore formation by nisin in DOPC membranes23.

Phospholipids 1,2-dioleoyl-sn-glycero-3-phosphocholine (C18:1, DOPC), 1,2-
dimyristoleoyl-sn-glycero-3-phosphocholine (C14:1, DMoPC), and 1,2-dioleoyl-
sn-glycero-3-phosphoglycerol (C18:1, DOPG) were purchased from Avanti Polar
Lipids, Inc.

Dry lipid films containing the lipid II/phospholipids mixture (4% mol/mol)
were hydrated by vortexing with 1.5 ml of a nisin solution (15 mM Tris-HCl,
25 mM NaCl, pH 7.0). The correspondent samples contained exact stoichiometric
amounts for a 2:1 nisin–lipid II complex. Subsequently, in order to complete
nisin–lipid II pore complex formation, the lipid suspension containing the pore
complex was incubated at room temperature for 90 min. Liposomes were collected
by centrifugation (20,000 × g) and loaded into Bruker 1.3 or 3.2 mm zirconia
rotors. Afterward, supernatants were virtually free of nisin, as we tested with
antimicrobial activity assays. In total, the samples contained ~0.60 mg and 2.60 mg
(150 and 750 nmol) of nisin in the 1.3 and 3.2 mm rotors, respectively. Note that
we did not observe chemical shift differences for the nisin–lipid II complex in
DOPC liposomes with different concentrations (1, 2, or 4 %) of lipid II.

For 1H/2H exchange studies, reconstituted liposomes containing the nisin–lipid
II pores were resuspended in deuterated buffer (99.8% D2O, 25 mM NaCl, 15 mM
Tris-HCl, pH 7.0) and incubated for 1 day before ssNMR measurements.

Native membrane vesicles (MVs) preparations were obtained from Micrococcus
flavus DSM 1790 strain based on the method described previously23. Accordingly,
the bacteria were grown in TSB medium (6L) up to an OD600 of 5 (mid log phase).
Cells were harvested and washed with 50Mm Tris-Cl, pH 8.0, resuspended in the
same buffer (30–50 ml per liter of culture), and lysed over eight runs using a cell
disruptor (Constant Systems). The remaining intact cells were removed by a low-
speed centrifugation of the mixture at 600 × g and the clear supernatant was
centrifuged at 20,000 × g to collect the membranes. The resulting membrane pellet
was resuspended in the same buffer, flash-frozen in liquid nitrogen, and stored at
−20 °C.

During the MVs preparation, a large fraction of the lipid II pool is naturally
consumed by the active enzymes present in the membrane. Therefore, the lipid II
content in the M. flavus MVs was restored to maximal natural amounts by
incubating the membranes in a suspension with the corresponding lipid II
precursors UDP-MurNAc-pentapeptide and UDP-GlcNAc12. The lipid II
concentration in the M. flavus membrane preparations was estimated to be 0.5% of
its total phospholipids molar content27, which was calculated via an inorganic
phosphate determination. Briefly, membrane lipids were extracted and isolated
according to the Bligh–Dyer procedure57 and the amount of organic phosphate
present was subsequently determined according to the method described by Rouser
et al.58. Nisin was accordingly added to the lipid II-replenished MVs considering a
2:1 nisin:lipid II stoichiometry.

For the cellular 1H-detected ssNMR experiments, M. flavus MVs samples
contained ~10 nmol of nisin which were loaded in a Bruker 1.3 mm zirconia rotor.
For the cellular DNP-ssNMR experiments, M. flavus MVs samples contained ~55
nmol of nisin which were loaded in a Bruker 3.2 mm sapphire rotor.

Reconstituted lipid II-bound nisin in DOPC liposomes (4% lipid II) for the
DNP samples were prepared using 300 nmol lipid II and 600 nmol of nisin.

Prior to the measurements, all DNP samples were suspended in 60% glycerol-
d8, 35% buffer solution (25 mM NaCl, 15 mM Tris-HCl pH 7.0 final
concentration), and 5% 15 mM AMUPol53 (final concentration) in D2O. Samples
were filled in a Bruker 3.2 mm sapphire rotor.

NMR spectroscopy. 1H-detected ssNMR experiments were performed at 60 kHz
MAS frequency at static magnetic fields of 18.8 and 22.2 T (800 and 950MHz 1H-
frequency, Bruker Biospin). All experiments were performed using dipolar-based
sequences at a sample temperature of about 310 K. Sequential backbone chemical
shift assignments were performed using 3D CANH, 3D CONH, and 3D CAcoNH
experiments26. For the latter experiment, one-bond polarization 13C–13C transfer
between CA and CO was achieved with DREAM59 recoupling. For all cross-
polarization (CP) steps, we used ramped (10–20%) contact pulses. All 3D
experiments were acquired with sparse sampling (40–50%). In all 1H-detected
experiments, the last transfer step from 15N to 1H was kept short (500–700 μs) to
exclusively obtain intra-residual transfer. PISSARRO60 low-power (15 kHz
decoupling amplitude, 70 μs pulse length) decoupling was used during all indirect
and direct detection periods.

Two-dimensional 13C–13C spin diffusion experiments at room temperature
(280 K) were performed with PARIS61 recoupling at 950MHz and 17 kHz MAS
frequency. The PARIS recoupling amplitude was 10 kHz, the mixing time 45 ms,
and we used the standard phase inversion time of half a rotor period (N=½, i.e.,
29.41 μs). SPINAL6462 was used in both indirect and direct detection periods. For
the dipolar magnetization transfer buildup curves (Fig. 3f), we used 2D PDSD 13C–
13C experiments, i.e., we did not apply a recoupling sequence on the protons in
order to emphasize the effect of local molecular motions.

DNP-enhanced 2D 13C–13C spin diffusion ssNMR experiments were carried
out using an 800MHz/527 GHz setup (Bruker Biospin) at 100 K experimental
temperature and 10.6 kHz MAS. A 13C–13C mixing time of 40 ms was used for all
DNP experiments without recoupling irradiation on the proton channel.
SPINAL64 decoupling was used in all detection periods.
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1H-detected 15N T1rho and T1 relaxation experiments were carried out at 950
MHz and 800MHz magnetic field, respectively, using 60 kHz MAS26. The 15N
transverse magnetization decay was probed with a 15N spinlock field of 17.5 kHz,
without application of 1H-decoupling during the 15N spinlock. We measured six
points for both T1 (0, 2, 4, 6, 8, 12, and 18 s) and T1rho (0, 10, 25, 50, 100, and 130
ms). Only well-isolated peaks were considered for the analysis, for which we
measured the peak intensities. The T1 and T1rho trajectories were fit to single
exponentials.

Data availability
Data supporting the findings of this manuscript are available from the corresponding
authors on reasonable request. The solid-state NMR assignments of lipid II-bound nisin
have been deposited in the BMRB (accession number 27572).
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