Thioloxidoreductase HP0231 of Helicobacter pylori impacts HopQ-dependent CagA translocation.
Magdalena J. Grzeszczuk1, Katarzyna M. Bocian-Ostrzycka1, Anna M. Banaś1, Paula Roszczenko-Jasinska1#, Agata Malinowska2, Hanna Stralova1, Rainer Haas3, Thomas F. Meyer4, Elżbieta K. Jagusztyn-Krynicka1§
1 Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
2 Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
3Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Germany
4 Department of Molecular Biology, Max-Planck Institute for Infection Biology, Berlin, Germany
#present address Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
§Corresponding author: kjkryn@biol.uw.edu.pl
University of Warsaw, Faculty of Biology, Institute of Microbiology, Department of Bacterial Genetics, Miecznikowa 1. 02-096 Warsaw, Poland
Abstract
Thioloxidoreductase HP0231 of Helicobacter pylori plays essential roles in gastric colonization and related gastric pathology. Comparative proteomics and analysis of complexes between HP0231 and its protein substrates suggested that several Hop proteins are its targets. HP0231 is a dimericoxidoreductase that functions in an oxidizing Dsb (disulfide bonds) pathway of H.pylori. H. pylori HopQ possesses six cysteine residues, which generate three consecutive disulfide bridges. Comparison of the redox state of HopQ in wild-type cells to that in hp0231-mutated cells clearly indicated that HopQ is a substrate of HP0231. HopQ binds CEACAM1, 3, 5 and 6 (carcinoembryonic antigen-related cell adhesion molecules). This interaction enables T4SS-mediated translocation of CagA into host cells and induces host signaling. Site directed mutagenesis of HopQ (changing cysteine residues into serine) and analysis of the functioning of HopQ variants showed that HP0231 influences the delivery of CagA into host cells, in part through its impact on HopQ redox state. Introduction of a C382S mutation into HopQ significantly affects its reaction with CEACAM receptors, which disturbs T4SS functioning and CagA delivery. An additional effect of HP0231 on other adhesins and their redox state, resulting in their functional impairment, cannot be excluded.
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Introduction 
The bacterial proteins of the Dsb (disulfide bonds) family — important components of the posttranslational protein modification system — catalyze the formation of disulfide bridges, a process that is crucial for protein structure stabilization and protein activity. Dsb proteins play an essential role in the assembly of many virulence factors. The Dsb system of Helicobacter pylori is less complicated than that described in detail for Escherichia coli. The H. pylori genome lacks classical DsbA and DsbB proteins, which are members of the Dsb oxidative pathway, as well as classical DsbC and DsbD proteins that are members of the Dsb isomerization pathway. It includes only two periplasmic proteins (HP0231 and HP0377) and a membrane located DsbB-like protein, HP0595 
(Bocian-Ostrzycka et al., 2015a; Bocian-Ostrzycka et al., 2015b).
The dimeric oxidoreductase (HP0231), a V-shaped protein, functions in an oxidizing pathway of H. pylori 
(Yoon et al., 2011; Roszczenko et al., 2012; Lester et al., 2015). In order to introduce disulfide bonds, most DsbA proteins need to cooperate with a membrane DsbB that transfers electrons to the respiratory chain, providing the re-oxidation of the DsbA. It is still unclear how HP0231 is re-oxidized in vivo. H. pylori does not encode a classical DsbB, though it encodes a DsbB-like protein, HpDsbI (HP0595), which lacks the second pair of Cys residues located in the 3-4 periplasmic loop of classical DsbBs that are involved in cooperating with DsbA. Although mutation of the hpdsbI gene has an impact on the redox states of HP0231 and HP0377, it does not influence HP0231 function in motility (Roszczenko et al., 2012; Roszczenko et al., 2015). Resolved structure and biochemical analysis of HP0377 has documented that it is a counterpart of CcmG (cytochrome c maturation) (Yoon et al., 2013). HP0377, in contrast to other CcmGs described so far, is a bifunctional protein, acting not only in the reduction of apocytochrome c but, additionally, in disulfide isomerization (Roszczenko et al., 2015).
The Dsb system plays an important role in H. pylori pathogenesis. We demonstrated that anH. pylori mutant impaired in disulfide bond formation (hp0595-mutated strain) is greatly impaired in its ability to colonize the mouse gastric mucosa (Godlewska et al., 2006)(Zhong et al., 2016).Recently, work conducted by Zhong et al. showed that the lack of H. pylori HP0231 impairs CagA translocation into gastric epithelial cells, reduces VacA-induced cellular vacuolation and influences the level of H. pylori-induced IL8 induction in epithelial cells. Moreover, H. pylori HP0231-deficient bacteria were not able to colonize the gastric mucosa of mice .
Recently, it was shown that not only periplasmic, but also outer membrane proteins, are substrates of the Dsb system (Denoncin et al., 2010)(Alm et al., 2000). The H. pylori genome encodes numerous outer membrane proteins (OMPs). Most OMPs can be allocated to two protein families: Helicobacter OMPs (Hop) and Hop-related proteins (Hor). One of the Hops is HopQ (Omp27), which possesses six cysteine residues that form three disulfide bonds (Javaheri et al., 2016). HopQ binds CEACAM1, 3, 5 and 6 and induces host cell signaling. This interaction enables translocation of CagA into host cells (Koniger et al., 2016)(Busch et al., 2015).HopQ is also involved in the inhibition of leukocyte migration in a CagA-dependent process . We asked the question: does HP0231 affect CagA translocation through an impact on HopQ posttranslational modification.
Materials and methods
Bacterial strains, primers, plasmids, media and growth conditions
Bacterial strains, plasmids and primers used in this study arelisted in Tables S1 and S2.
DNA/RNA techniques
General DNA manipulations 
Standard DNA manipulations were carried out as described earlier (Sambrook and Russell, 2001) or according to the manufacturer's instructions. Polymerase chain reactions (PCR) were performed with PrimeStar HS DNA Polymerase (Takara), HotStarHiFidelity Polymerase (Qiagen) or Phusion (Thermo Scientific) under standard conditions. Synthetic oligonucleotides synthesis and DNA sequencing were performed by Genomed S.A., Warsaw, Poland.
Site-directed mutagenesis of the hopQ,hp0377 and hp0231 genes
To obtain mutated HopQ proteins, a set of recombinant plasmids was constructed from pCE4, which carries the hopQgene. Cys-to-Ser point mutations were generated using the Quick Change Site-Directed Mutagenesis Kit (Qiagen) according to the manufacturer's instructions, starting with 100 ng of pCE4 template and 125 ng of each primer (listed in Table S2). To obtain C92S-mutated HP0377 protein, a recombinant plasmid was constructed from pUWM2065 carrying the hp0377 gene with its promoter, signal sequence and a His-tag at the C-terminus. To obtain P258Tmutated HP0231,the recombinant plasmid pUWM589 was used as a template. The Cys-to-Ser mutation of HP0377 and the Pro-to-Thr were generated as described above. Appropriate primer pairs for site-directed mutations are listed in Table S2. In all cases the correct construction of recombinant plasmids was verified by sequencing.
Natural transformation of H. pylori 
The naturally competent H. pylori P12 was grown on horse serum agar plates for 24 h. Subsequently, bacteria were plated onto fresh plates for 5 h. Then 0.5–1 µg of plasmid DNA was added and plates were incubated for 24 h. Afterwards, bacteria were transferred onto a plate supplemented with kanamycin or chloramphenicol/kanamycin, and transformants were grown for 4-5 days.
Real-time qPCR 
RNA was isolated using the GeneJET RNA Purification Kit (ThermoScientific), according to the manufacturer's protocol. Real-time qPCR was performed using the Power SYBR Green RNA-to-CT 1-Step Kit (Life Technologies), on an ABI Prism 7900 H sequence detection system (Applied Biosystems). Reactions were performed in 25 μl containing 20 ng RNA, 10 μl SYBR Green mix, 0.16 μl RT mix and 0.2 μM per primer. Program: 30 min 48°C; 10 min 95°C; followed by 40 × cycles of 15 s 95°C/60 s 60°C. For each oligonucleotide pair and RNA sample, the reaction was performed in triplicate. The amplification plots obtained from the RT–PCR were analyzed with the ABI Prism SDS Software package (version 2.2.2; Applied Biosystems). The expression levels were quantified applying the comparative Ct (threshold cycle) method and calculating ΔΔCt. Relative expression levels of the target genes were normalized to the expression of glyceraldehyde-3-phosphate dehydrogenase in each individual sample.Fold change was calculated as an average of ΔΔCt of independent biological replicates (2−ΔΔCt), and the standard deviation (SD) was calculated as ΔΔCt+s and ΔΔCt–s, where s is the pooled SD of the ΔCt and ΔCt control values.
Protein analysis
Preparation of H. pylori and E. coli protein extracts, SDS-PAGE (sodium dodecyl sulfate polyacrylamide gel electrophoresis) and blotting procedures were performed by standard techniques (Sambrook and Russell, 2001)(Roszczenko et al., 2012). For Western-blot analysis we used rabbit specific anti-HP0231 , rabbit specific anti-HP0595 (Roszczenko et al., 2015), rabbit specific anti-HP0377 (Roszczenko et al., 2015)and a peptide-based serum (AK298) directed against the HopQ type I- specific protein region (Koniger et al,2016 ).
Preparation of subcellular fractions 
The localization of HopQ and HP0377 proteins was determined as previously described 
(Roszczenko et al., 2015).
Overexpression and purification of HP0231 (its C137S and P258T variants)
The expression vector pUWM2191, carrying HP0231-P258T-His6 (Table S1),was constructed by cloning the insert from pUWM2190 into pET28a, using NcoI and XhoI restriction enzymes. For further experiments, proteins were overexpressed by autoinductionfrom an E. coli Rosetta strains and purified using the NGC Medium-Pressure Chromatography Systems, Bio-Rad, as previously described 
(Roszczenko et al., 2015).
Identification of HP0231 protein substrates 
The mutated forms of HP0231P258T and HP0231C137S (KBO2068 strain) generated by site-directed mutagenesis were overexpressed in anE. coli Rosetta strain. Substrate-HP0231 complexes were purified using NGC™ Medium-Pressure Chromatography. First, His–tagged proteins were immobilized on anNi-NTA column. Then, lysate of H. pylori 26695 was loaded ontothe column. Complexes were eluted from the column with increasing concentrations of imidazole and analyzed by SDS-PAGE under reducing and non-reducing conditions.
In vivo redox state of HopQ in H. pyloriwt and its hp0231 mutated version 
The redox states of HopQ was visualized by alkylating the free cysteine residues using 4-acetamido-4′-maleimidylstilbene-2,2′-disulfonic acid (AMS, Invitrogen) as previously described 
(Denoncin et al., 2013; Roszczenko et al., 2015). The proteins were resolved by 12 % SDS-PAGE without reducing agent. HopQ was then detected by an immunoblot analysis using peptide-based anti-HopQ serum. As controls, we used samples treated with DTT before precipitation of the proteins with TCA.
Analysis ofthe T4SS functioning - CagA delivery into host cells 
Infection assays
For infection experiments, AGS cells were grown in 12-well tissue culture plates for 1–2 days to reach 70 to 80% confluence. AGS cells were then incubated in serum-free RPMI-1640 medium (Gibco) for 3 h before infection. Bacteria harvested from agar plates were washed two times in PBS, resuspended in RPMI medium and added to AGS cells at an assay–specific multiplicity of infection (MOI). Infection was carried out at 37 °C in a humidified atmosphere supplemented with 5% CO2. Samples were taken 3 h and 6 h post infection (p.i).
Hummingbird phenotype 
Development of the hummingbird phenotype in AGS cells (human gastric adenocarcinoma cell line, ATCC CRL-1739) was assessed upon infection with H. pylori strains at an MOI of 100. Samples were analyzed after 6h of infection. AGS cells were fixed in 2% paraformaldehyde, treated with 0.2% Triton X100 in PBS for 20 min at RT (room temperature) and incubated with Alexa Fluor® 546 (A546) phalloidin (Invitrogen, Germany) and DAPI to stain actin and DNA, respectively. Cells were visualized using a Leica TCS SP laser confocal microscope. Elongated cells were defined as cells that had thin needlelike protrusions that were >20 µm long and a typical elongated shape. The proportion of elongated cells was calculated the numbers of cells having the hummingbird phenotype. 
Immunoblotting
Cells were lysed in 1× Laemmli buffer (60 mMTris (pH 6.8), 2% SDS, 10% glycerol, 0.1% bromophenol blue). Proteins were separated by SDS-polyacrylamide gel (12%) electrophoresis and then transferred onto PVDF membranes (Perkin Elmer) in buffer (25 mMTris, 192 mM glycine, 20% methanol). Non-specific binding sites were blocked by incubation in blocking buffer (0.05 M Tris (pH 7.4), 0.2M NaCl, 3% Tween, 3% BSA) for 1h at RT before probing with primary antibodies against β-actin, (Sigma, Germany), phospho-Tyr (PY99) and CagA, Santa Cruz Biotechnology, Germany); all at a final dilution of 1:1000 in blocking buffer supplemented with 3% BSA. Secondary HRP-labelled goat anti-rabbit or goat anti-mouse antibodies (GE Healthcare, Germany) were used at a dilution of 1:3000 in the same buffer. The blots were detected on the X-ray film AmershamHyperfilmTM ECL (GE Healthcare) after treatment with enhanced chemiluminescence reagent (ECL) (Pierce, USA).
Bacterial pull down
Analysis of the HopQ and its mutated variants interactions with human His-tagged CEACAM1 (10822-H08H, Sino Biological) by pulldown experiment was performed as described 
(Javaheri et al., 2016).
M/S analysis.
The quantitative, label-free proteomic analysis of periplasmic fractions from different H. pylori strains (wild type and mutant strain hp0231) and analysis of complexes between HP0231 and its protein substrates were performed at the Mass Spectrometry Laboratory Institute of Biochemistry and Biophysics, Polish Academy of Sciences (Warsaw, Poland). The details of experiments are given in supplementary materials.
The given annotations (hp0231, hp0377, hp0595) concern the H. pylori 26695 strain, and the gene numbers for the H. pylori P12 strain are hpp12_0231; hpp12_1044 and hpp12_0602, respectively.
Results and discussion
The influence of HP0231 on H. pylori virulence was documented by Zhong (Zhong et al., 2016). We first investigated whether other components of the H. pylori Dsb network also have an impact on pathogen interaction with epithelial cells. Isogenic hp0231 and hp0595(dsbI) knock-out strains of H. pylori P12 were constructed by allelic exchange methodology using previously prepared constructs (Raczko et al., 2005; Roszczenko et al., 2012).The absence of hp0595 and hp0231 gene products was confirmed by Western blot analysis (Figure S1AB). As HP0377 is an essential protein for H. pylori, it is impossible to directly evaluate its potential influence on H. pylori virulence. To overcome this difficulty, we expressed in trans, in a wt H. pylori, a mutated version of His-tagged HP0377 containing the CSYC motif changed to CSYS. The rationale for using HP0377CXXS variant was based on the observation that thiol oxidoreductases of reductase activity with changed catalytic motif CXXC to CXXS create stable complexes with their targets. Thus, it leads to the reduction of the Dsb substrate physiological activities (Denoncin et al., 2010; Jameson-Lee et al., 2011)(Zhong et al., 2016). The presence of HP0377CSYS overexpressed from the plasmid was confirmed by Western blot analysis using mouse specific anti-His and rabbit specific anti-HP0377 sera (Figure S1CD). The generated strains were used to estimate CagA translocation into gastric epithelial cells. H. pylori wild type bacteria, the hp0595 mutant and hp0377CXXS+ induced a hummingbird phenotype. No such phenotypic changes were induced in cells infected with bacteria lacking hp0231, whereas complementation of hp0231 reconstituted the characteristic cell elongation (Figure 1). To further analyze CagA translocation by strains with the hp0231 and hp0595 deletions, or with HP0377CXXS overexpression, lysates from infected cells were subjected to Western blot to detect CagA phosphorylation. Infection of cells with wild type, Δhp0595 and hp0377CXXS+ bacteria resulted in CagA tyrosine phosphorylation, while in the absence of hp0231, phosphorylation of CagA was not detected (Figure 2). Also, only the H. pylori P12 strain lacking HP0231 was deficient in IL-8 induction in AGS cells upon infection, as measured by Real time qPCR (Figure 3). These data, consistent with those presented by Zhong et al., suggested that CagA translocation is impaired only in the absence of HP0231 .
Our comparative analysis of the periplasmic subproteome of hp0231 mutant indicated two main differences between wt and the HP0231 deficient strain (Table 1). First, the levels of many oxidative stress combating enzymes, such as catalase or superoxidase dismutase, were lower in the proteome of the hp0231 mutant compared to the wt strain. This may suggest a role of the Dsb system in defense against oxidative stress. It should be pointed out that the localization of these proteins is still unclear. According to in silico predictions, they should be localized in the cytoplasm. However, many proteomic analyses have documented their extracytoplasmic location 
(Sabarth et al., 2002; Backert et al., 2005; Smith et al., 2007). Second, we noticed that there was a significant increase in the amount of HopQ and HopD present in the periplasmic space of an H. pylori hp0231-mutated strain, as compared to the wt strain. This observation may indicate that HopQ/HopD lacking disulfide bonds cannot be transported into cell’s outer-membrane. To substantiate this finding, a subcelullar fractionation experiment was carried out for H. pylori wt and hp0231-mutated strains in order to determine the location of HopQ. First we asked the question whether the periplasmic protein fraction was not contaminated by the membrane proteins. As an extra control for the cellular fractionation methodology, we traced the cellular location of HP0377, which is an H. pylori inner-membrane lipoprotein (Roszczenko et al., 2015). Localization of HopQ and HP0377 within specific subcellular fractions was determined by immunoblot analysis using specific anti-HopQ and anti-HP0377 sera, respectively. We found that in the wt cell fractionation experiment HopQ (outer membrane, surface-exposed) and HP0377 (inner-membrane) were not present among periplasmic proteins. Thus, we became convinced that the used procedure was correct. As mentioned above, we observed that HopQ, in agreement with expectations, was present only in the outer-membrane compartment of the wt strain. In contrast, in the hp0231-mutated strain most of the HopQ was detected in the periplasmic compartment (Figure 4A). HP0377 was present in the inner membrane fraction of the wt as well as of all analyzed mutated strains. (Figure S2). Thus, we conclude that the observed presence of HopQ in the periplasmic compartment of the mutated strains probably results from the lack of disulfide bonds. Additionally, the observed phenotypic differences of AGS cells infected byH. pylori lacking HP0231 resemble those that arise from infection with a strain lacking hopQ: both phenotypes abolish CagA delivery, IL-8 release and cell elongation. 
Next, to confirm the interaction between Hop proteins and HP0231, we identified complexes formed between HP0231 and its potential substrate proteins using site-directed mutagenesis. The mixed complexes between thioloxidoreductases and their substrates are short-lived and are difficult to detect, and the cis-Pro loop is highly conserved in thioloxidoreductases. It has been documented that mutations that alter the conserved cis-proline of thioloxidoreductases involved in disulfide bond generation, slows the second step of oxidative folding, which results in accumulation of their intermediate complexes with substrates 
(Kadokura et al., 2004; Jameson-Lee et al., 2011). Thus, to stabilize the intermediate complexes of HP0231 with its substrate proteins, we constructed a mutated version of HP0231 with proline258 replaced by threonine. His-tagged HP0231 was overexpressed and purified from an E. coli Rosetta strain and used to identify complexes between HP0231 and its substrates by a “reverse purification” substrate trapping technique. A small scale experiment was first performed to verify the effectiveness of the method. Potential complexes, between H. pylori 26695 HP0231P258T and its protein substrates, eluted from the Ni-NTA affinity column with increasing concentrations of imidazole were subjected to SDS-PAGE with or without treatment by a reducing agent (DTT) and were next analyzed by immunoblot using anti-HP0231 antibodies (Figure 5A). HP0231 was the most abundant protein present, but other proteins of higher molecular weight that reacted with anti-HP0231 serum were also observed. After DTT treatment, several of the additional protein bands present under the non-reducing conditions disappeared. So, we concluded that they correspond to complexes between HP0231 and its potential substrates. Next, in a large scale experiment, protein bands visualized by staining with Coomassie Blue (Figure 5B) were cut out of a non-reducing gel, digested with trypsin and analyzed by mass spectrometry (details of the analysis are given in the methods section of the supplementary materials). In the control experiment another mutated version of HP0231CXXS was immobilized on an Ni-NTA column. As mentioned above Dsb oxidoreductases of reductase activity with CXXS motif  creates complexes with their substrates. As HP0231 acts as oxidase, HP0231 variant possessing C- terminal cysteine of the CXXC motif changed to serine does not form complexes with HP0231 substrates. We compared proteins identified by MS in both experiments. Those identified in control experiment (HP0231CXXS immobilized in the column) with score higher than 50% of value observed when HP0231P/T was used as a bait were not considered as HP0231 substrates (Table S3 and Table 2). Finally, MS analysis revealed several potential HP0231 substrate proteins, including seven Hop proteins containing well-conserved paired-cysteine patterns (Moonens et al., 2016). Two of them (HopS, HopU) potentially contain four disulfide bonds, three (HopT, HopQ, HopD) have three disulfide bonds and two (HopM, HopN) potentially contain two disulfide bonds (Table 2). According to data presented by Voss et al., all of them meet two or three criteria to be classified as surface exposed, outer membrane proteins (Voss et al., 2014)(Peck et al., 1999). HopZ, which also contains conserved cysteine pairs and is a surface exposed protein, was not detected by our analysis, due to the phase variation phenomenon: the H. pylori 26695 hopZ gene contains 11 CT dinucleotides located in the region encoding the signal sequence, which results in a frameshift mutation. As a consequence, HopZ is not produced . Our analysis also did not indicate SabA (HopP; OMP16), which is essential for H. pylori adhesion interacting with the sialyl-Lewisx antigen, as an HP0231 substrate, although it is an outer membrane-anchored and surface-exposed protein containing two disulfide bonds (Pang et al., 2014). The reason for this observation remains unclear. The structure of HopS (BabA) has been solved, and it was demonstrated that cysteine-clasped loop 2 (CL2) of HopS plays an important role in its binding to mucosal ABO/Leb blood group carbohydrates (Hage et al., 2015; Moonens et al., 2016). 
The objective of the next part of the research was to evaluate whether the cysteine residues determine the activity of HopQ. In this work, we asked which disulfide bonds of HopQ are essential for its adherence onto gastric epithelial cells and for CagA delivery into host cells? H. pylori HopQ, whose structure has recently been solved, possesses six cysteine residues, namely Cys123, Cys152, Cys258, Cys290, Cys382 and Cys405, which generate three consecutive disulfide bridges 
(Javaheri et al., 2016)(Denoncin et al., 2013). First, we determined the redox state of HopQ in vivo in H. pylori wt and hp0231-mutated strains by the AMS–trapping technique. AMS reagent moieties covalently react with reduced cysteines possessing a free thiol group –SH, resulting in a molecular mass increase of 490 Da/each cysteine. Oxidized dithiols are protected from this modification and, in consequence, the oxidized and reduced forms of proteins may be easily separated by non-reducing SDS-PAGE . We found that HopQ is present in the oxidized form in wild-type cells and in the reduced form in cells lacking HP0231, which suggests that it is actually a substrate of HP0231 (Figure6).
Next, the plasmid-encoded point-mutated versions of HopQ, in which a single cysteine residue was replaced with serine, were constructed. The insertion of the correct mutations was confirmed by sequencing, and recombinant plasmids were introduced into H. pylori lacking hopQ. First we analyzed the subcellular location of HopQ mutated versions. We found that HopQ mutated variants with only one defective disulfide bond, in contrast to wt HopQ, were present in both, outer-membrane fraction as well as in periplasmic compartment (Figure 4B). Most of the HopQ of the hp0231-mutated strain was detected in the periplasmic compartment (Figure 4A). Next, the resulting strains were used to check the activity of the mutated HopQ forms by comparing the T4SS-induced CagA translocation into AGS cells infected with H. pyloriwt, H. pylori carrying a disrupted hopQ gene and H. pylori strains producing mutated HopQ variants. H. pylori wild type bacteria and a hopQ mutant complemented with a wild type version of hopQ induced a hummingbird phenotype, CagA phosphorylation and IL-8 production. Three variants of HopQ differed substantially in terms of analyzed characteristics. All phenotypic changes induced in AGS cells infected with theH. pylori wt was also created by AGS cellinfection with hopQ mutant complemented with HopQC123S, whereas the HopQC382S variant was unable to complement a hopQ mutant. HopQC382S did not stimulate CagA phosphorylation and did not activate NF-κBto initiate IL-8 expression. Complementation of the lack of HopQ with HopQC258S resulted in lower levels of CagA phosphorylation and IL-8 production. (Figure 7, 8, 9). These results showed that although HopQ contains six cysteine residues, only two are crucial for its function.
According to data presented by Javaheri et al., the outer membrane protein HopQ is the main H. pylori CEACAM binding adhesin. The HopQ-deficient H. pylori P12 strain show significantly reduced ability to adhere to cell lines expressing CEACAM1 
(Javaheri et al., 2016). Thus, we next asked the question whether the observed effect of the lack of CagA translocation displayed byH. pylori expressing the HopQC382S version results from its reduced level of interaction with the CEACEM1 receptor. We determined CEACAM1 binding properties of H. pylori P12 strains expressing wt HopQ,as well as its mutated versions, by pull down experiments. Interaction of analyzed strains with CEACAM1 was detected by Western-blots using anti-His tag antibodies. The control immunoblot developed with anti-HopQ serum documented that all used H. pylori strains produce comparable amounts of HopQ (Figure 10). We showed that wt HopQ and its mutated version HopQC123S, bind strongly to CEACAM1 molecules, whereas the HopQC382S version does not display an interaction with CEACAM1. The presence of HopQC258S variant partially abolish H. pylori binding to CEACAM1 receptor. This documented that the disulfide bridge between Cys382 and Cys405 plays an essential role in the HopQ adhesion process.
It should be noted that comparative genomics performed on many H. pylori strains revealed a high level of genome diversity. Our work was done on two clinical isolates of H. pylori: H. pylori 26695 and H. pylori P12. OMPs of H. pylori 26695 strain have been recently precisely characterized 
(Voss et al., 2014)(Cao and Cover, 2002). We documented that HP0231 affects CagA translocation by influencing disulfide bonds of HopQ. HopQ exists in two allelic forms: alleles I and II. The type I hopQ allele is often present in the genomes of highly pathogenic strains . Both investigated H. pylori strains contain HopQ type I (94% of amino-acid identity). We speculate that interactions between HP0231 and HopQ are rather universal among H. pylori isolates. It is rather independent on HopQ type as hopQ type II complements hopQ type I (see Belogolova et al). What is really controversial is the adhesion process which may be strain-specific. Although HopQ interaction with CEACAM receptors stimulates CagA translocation in the HP0231-dependent process, this interaction is not always strictly correlated with pathogen adhesion to gastric cells. Thus, expression of different adhesins by independent H. pylori strains may influence the bacterial binding and their function might be influenced by HP0231. Also the applied methodology and used cell line are of big importance (Loh et al., 2008; Belogolova et al., 2013; Javaheri et al., 2016). So to gain more precise insight into the process and to test the validity of the findings for the whole of H. pylori, more strains should be analyzed using various methodology.
Conclusions 
HP0231, the main thioloxidoreductase of H. pylori, has an impact on pathogen virulence by influencing HopQ redox state, which facilitates translocation of CagA, the main pathogenic oncoprotein. However, HopQ is not the only significant target of HP0231 during interaction of H. pylori with epithelial cells. Also, other H. pylori outer membrane proteins, members of the Hop family, are potentially substrates of  HP0231. These other proteins play various roles in H. pylori pathogenesis; for example, HopS or SabA are responsible for adhesion to various receptors and do not influence T4SS functioning. Our work on HP0231 substrate proteins also indicated other important virulence factors of H. pylori, such as catalase or GroEl, as substrates of the HP0231 thioloxidoreductase. Additionally, other candidates are the CagL and CagI proteins, which are involved in T4SS pilus formation (Backert and Blaser, 2016). Both contain two cysteine residues, and the residues in CagL generate a disulfide bridge (Pham et al., 2012; Barden et al., 2013)(Zhong et al., 2016). The role of disulfide bridges in CagL and CagI function has not been analyzed. However it was documented that CagI and CagL are reduced in levels in H. pylori strain lacking HP0231 . The influence of the Dsb system on H. pylori virulence thus appears to be extremely complex. 
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Table 1. Quantitative MS analysis comparing the periplasmic proteomes of hp0231::cat and wild type H. pylori 26695 strains 
	locus
	%WT
(q-value) 
	Number of peptides
	Number of
Cysteines
	localization
	Protein name&function

	HP0224
	80
(0,00005)
	34
	4
	cytoplasm
	Peptide methionine sulfoxide reductase MsrA
( oxidative stress response)

	HP0073
	117
(0,00005)
	32
	1
	cytoplasm/secreted
	UreA, Urease subunit alpha
(catalysis of urea degradation to ammonia and carbon dioxide)

	HP1286
	80
(0,00005)
	18
	0
	periplasm
	Hypothetical protein 
(acidic stress response factor)

	HP0547
	87
(0,00005)
	45
	1
	secreted
	CagA, Cytotoxicity-associated immunodominant antigen
(toxin transporter activity)

	HP0072
	114 (0,00005)
	44
	3
	cytoplasm/secreted
	UreB, Urease subunit beta (catalysis of urea degradation to ammonia and carbon dioxide) 

	HP0629
	116
(0,00009)
	26
	7
	cytoplasm
	Uncharacterized protein

	HP0294
	80
(0,00046)
	12
	11
	cytoplasm
	AmiE, Aliphatic amidase, (Catalysis of the hydrolysis of short-chain aliphatic amides)

	HP0389
	87
(0,0008)
	37
	2
	periplasm
	SodB, Superoxide dismutase [Fe]
(antioxidant)   

	HP1177
	137
(0,00583)
	6
	6
	outer membrane
	HopQ, omp27

	HP0570
	92
(0,00617)
	57
	10
	cytoplasm
	PepA, Cytosol aminopeptidase
(processing and regular turnover of intracellular proteins)

	HP0243
	72
(0.000775)
	18
	0
	cytoplasm
	NapA, DNA protection during starvation protein
(DNA protection from oxidative damage)

	HP0390
	83
(0,01612)
	31
	2
	cytoplasm/periplasm
	TagD, Probable thiol peroxidase
(antioxidant)

	HP0068
	112
(0.01711)
	9
	3
	cytoplasm
	Urease accessory protein UreG
(functional incorporation of the urease nickel metallocenter facilitation)

	HP0875
	75
(0,01743)
	8
	2
	cytoplasm/periplasm
	KatA, catalase 
(hydrogen peroxide decomposition, oxidative stress response)

	HP1555
	111
(0,02063)
	24
	3
	cytoplasm
	Tsf, elongation factor Ts
(translation elongation factor)

	HP0824
	93
(0,02114)
	35
	3
	cytoplasm
	TrxA, thioredoxin

	HP0310
	82
(0,02924)
	9
	0
	cytoplasm
	PgdA,Peptidoglycandeacetylase
(N-deacetylation of peptidoglycan catalysis)

	HP0025
	172
(0,00005)
	6
	6
	outer membrane
	HopD (omp2)

	HP0979
	120
(0.05071)
	12
	2
	cytoplasm
	FtsZ, Cell division protein FtsZ
 (Essential cell division protein, procaryoticconterpart of tubulin)

	
	
	
	
	
	

	
	
	
	
	
	


Table 2. HP0231 protein substrates identified by a “reverse purification” substrate trapping technique and mass spectrometry.Protein bands that correspond to hypothetical complexes between HP0231 and its protein substrates were cut out from the gel. Next, protein complexes were digested and the obtained peptides were analyzed using mass spectrometry. Proteins with the highest scores are listed. Results were classified using UniProt ID, and their predicted localization and number of cysteines were checked. For selected proteins, their localization, based on experimental data, was also added. Those with scores in the control experiment (HP0231CXXS) higher than 50% of value obtained in relevant experiment (HP0231P/T) were rejected.
	locus tag
	gene name
	uniprot ID
	Protein name&function 
	score
	number of cysteines
	predicted localization
	confirmed localization
	references

	HP_0010*
	groL
	CH60_HELPY
	60 kDa chaperonin
	12383
	1
	cytoplasm
	cytoplasm/extracellular
	 
(Cao et al., 1998; Backert et al., 2005; Gonzalez-Lopez et al., 2013)

	HP_1430
	rnj
	RNJ_HELPY
	Ribonuclease J
	2217
	3
	cytoplasm
	nt
	 

	HP_1512*
	frpB-3
	O26042_HELPY
	Nickel-regulated outer membrane protein (FrpB-3)
	1426
	3
	cell outer membrane
	cell outer membrane
	 
(Carlsohn et al., 2006; Davis et al., 2006)

	HP_1205
	tufA
	EFTU_HELPY
	Elongation factor Tu 
	1339
	2
	cytoplasm
	cytoplasm/ cell surface
	 
(Backert et al., 2005)

	HP_1177*
	omp27
	O25791_HELPY
	Outer membrane protein HopQ
	1300
	6
	cell outer membrane
	cell outer membrane
	 
(Carlsohn et al., 2006; Voss et al., 2014)

	HP_0570*
	pepA
	AMPA_HELPY
	Aminopeptidase 
	1188
	10
	cytoplasm
	cytoplasm/extracellular
	 (Ki et al., 2015)

	HP_1134
	atpA
	ATPA_HELPY
	ATP synthase subunit alpha
	1162
	3
	cell inner membrane
	nt
	 

	HP_0317*
	omp9
	O25086_HELPY
	Outer membrane protein BabC (HopU)
	589
	8
	cell outer membrane
	cell outer membrane
	 
(Carlsohn et al., 2006; Voss et al., 2014)

	HP_1195
	fusA
	EFG_HELPY
	Elongation factor G 
	540
	6
	cytoplasm
	nt
	 
(Backert et al., 2005)

	HP_1243*
	omp28
	O25840_HELPY
	Outer membrane protein BabA (HopS)
	534
	8
	cell outer membrane
	cell outer membrane
	 
(Carlsohn et al., 2006; Voss et al., 2014)

	HP_0025*
	omp2
	O24870_HELPY
	Outer membrane protein HopD
	490
	6
	cell outer membrane
	cell outer membrane
	 

	HP_0896*
	omp19
	O25556_HELPY
	Outer membrane protein BabB (HopT)
	409
	6
	cell outer membrane
	cell outer membrane
	 

	HP_0875*
	katA
	CATA_HELPY
	Catalase 
	418
	2
	cytoplasm
	cytoplasm/ extracellular
	 

	HP_0227*    /HP_1342*
	omp5    /omp29
	O34523_HELPY
	Outer membrane protein HopM/HopN
	337
	4
	cell outer membrane
	cell outer membrane
	 


* proteins classified as extracytoplasmic by Zanotti and Cendron (Zanotti and Cendron, 2014)

Figure 1. Development of hummingbird phenotype in AGS cells upon infection with the H. pylori wild type strain P12 (WT) and with its isogenic mutants P12ΔhopQ, P12Δhp0231, P12Δhp059, P12hp0377CXXS+ and the complemented mutants: P12Δhp0231/hp0231, P12Δhp0595/hp0595,in comparison to non-infected AGS cells (NI). The results are the means of three independent experiments. The error bars indicate standard deviations. Statistical analysis was evaluated using Student's t-test. *P < 0.05, **P <0.01 and ***P <0.001 compared with WT P12 infected cells.
Figure 2. CagA phosphorylation in AGS cells upon infection with H. pylori wild type strain P12 (WT), with its isogenic mutants P12ΔhopQ, P12Δhp0231, P12Δhp059, P12hp0377CXXS+and the complemented mutants: P12Δhp0231/hp0231, P12Δhp0595/hp0595 in comparison with non-infected AGS cells (NI). Infection was performed at an MOI of 100 for 3 h. Phosphorylated CagA (pCagA), total amount of CagA (CagA) and AGS cells (β-actin) were estimated with specific antibodies by immunoblot analysis. 
Figure 3. Production of IL-8 in AGS cells upon infection with the H. pylori wild type strain P12 (WT), its isogenic mutants: P12 Δhop, P12 Δhp0231, P12 HP0377cxxs,P12Δhp0595, and P12 Δhp0231/hp0231, P12 Δhp0595/hp0595 in comparison to non-infected AGS cells (NI)estimated by RT-PCR. Errors bars show ± SD of three independent experiments. Statistical analysis was evaluated using Student's t-test. *P < 0.05, **P <0.01 and ***P <0.001 compared with WT P12 infected cells.
Figure 4. Localization of HopQ within subcellular fractions of H. pylori strain P12wt,H. pylori strain P12 lacking HP0231,H. pylori strain P12 Δhp0231 and H. pylori strain P12 Δhp0231/hp0231using anti-HopQ antibody (panel A).
Localization of HopQ mutated variants within subcellular fractions of H. pylori strain P12 with the complemented hopQ mutants: P12ΔhopQ/hopQ, P12ΔhopQ/hopQC123S, P12ΔhopQ/hopQC258S, P12ΔhopQ/hopQC38 using anti-HopQ antibody (panel B)
Figure 5. Analysis of complexes between H. pylori 26695 HP0231-P258T and its protein substrates isolated using affinity chromatography (Ni-NTA agarose columns). A – Small scale experiment.Protein complexes, eluted from column were treated ornot-treated with DTT, separated by 12% SDS-PAGE and analyzed by immunoblot using anti-HP0231 antibodies; B – Large scale experiment.Protein complexes, eluted from the column were separated by 12% SDS-PAGE (non-reducing conditions) and visualized by Coomassie staining. Asteriskcorresponds to HP0231, and hash corresponds to complexes eluted from the columnand used for substrate identification by MS. F1, F2, F3 correspond to collected fractions
Figure 6. Redox state of HopQ in wt, hp0231::cat mutated and hp0231::cat mutated complemented with hp0231 strains of H. pylori P12 strains. Bacterial cultures were treated with 10 % TCA, followed by alkylation with AMS. Cellular proteins, including reduced (DTT treated, modified with AMS) and oxidized (non-modified with AMS) controls, were separated by 14 % SDS-PAGE under non-reducing conditions, and Western blot analysis using antibodies against HopQ was performed. Each lane contains proteins isolated from the same amount of bacteria.
Figure 7. Development of hummingbird phenotype in AGS cells upon infection with the H. pylori wild type strain P12 (WT), with its isogenic mutant P12ΔhopQ, and with the complemented hopQ mutants: P12ΔhopQ/hopQ, P12ΔhopQ/hopQC123S, P12ΔhopQ/hopQC258S, P12ΔhopQ/hopQC382S, in comparison to non-infected AGS cells (NI). The results are the means of three independent experiments. The error bars indicate standard deviations. Statistical analysis was evaluated using Student's t-test. *P < 0.05, **P <0.01 and ***P <0.001 compared with WT P12 infected cells.
Figure 8. CagA phosphorylation in AGS cells upon infection with H. pylori wild type strain P12 (WT), with its isogenic mutants P12ΔhopQ and with the complemented hopQ mutants: P12ΔhopQ/hopQ, P12ΔhopQ/hopQC123S, P12ΔhopQ/hopQC258S, P12ΔhopQ/hopQC382S, in comparison with non-infected AGS cells (NI). Infections were performed at an MOI of 100 for 3 h. Phosphorylated CagA (pCagA), total amount of CagA (CagA) and AGS cells (β-actin) were estimated with specific antibodies by immunoblot analysis. 
Figure 9. Production of IL-8 in AGS cells upon infection with H. pylori wild type strain P12 (WT), with its isogenic mutants P12ΔhopQ and with the complemented hopQ mutants: P12ΔhopQ/hopQ, P12ΔhopQ/hopQC123S, P12ΔhopQ/hopQC258S, P12ΔhopQ/hopQC382S, in comparison with non-infected AGS cells (NI) estimated by RT-PCR . Errors bars show ± SD of three independent experiments. Statistical analysis was evaluated using Student's t-test. *P < 0.05, **P <0.01 and ***P <0.001 compared with WT P12 infected cells.
Figure 10. Analysis of the H. pylori P12 wt and HopQ mutated variants (ΔhopQ, ΔhopQ/hopQC123S, ΔhopQ/hopQC258S, ΔhopQ/hopQC382S), binding to human CEACAM1 as determined after pull down experiments and detected by Western-blot (anti-His antibodies). Each lane contains proteins isolated from the same amount of bacteria. The protein bands are blurred because CECAM1 is highly glycosylated protein. As a control total amount of HopQ was estimated with specific antibodies by immunoblot analysis.
References
Backert, S., and Blaser, M.J. (2016). The Role of CagA in the Gastric Biology of Helicobacter pylori. Cancer Res 76, 4028-4031. doi: 10.1158/0008-5472.CAN-16-1680
76/14/4028 [pii].
Backert, S., Kwok, T., Schmid, M., Selbach, M., Moese, S., Peek, R.M., Jr., Konig, W., Meyer, T.F., and Jungblut, P.R. (2005). Subproteomes of soluble and structure-bound Helicobacter pylori proteins analyzed by two-dimensional gel electrophoresis and mass spectrometry. Proteomics 5, 1331-1345. doi: 10.1002/pmic.200401019.
Barden, S., Lange, S., Tegtmeyer, N., Conradi, J., Sewald, N., Backert, S., and Niemann, H.H. (2013). A helical RGD motif promoting cell adhesion: crystal structures of the Helicobacter pylori type IV secretion system pilus protein CagL. Structure 21, 1931-1941. doi: 10.1016/j.str.2013.08.018
S0969-2126(13)00310-9 [pii].
Belogolova, E., Bauer, B., Pompaiah, M., Asakura, H., Brinkman, V., Ertl, C., Bartfeld, S., Nechitaylo, T.Y., Haas, R., Machuy, N., Salama, N., Churin, Y., and Meyer, T.F. (2013). Helicobacter pylori outer membrane protein HopQ identified as a novel T4SS-associated virulence factor. Cell Microbiol 15, 1896-1912. doi: 10.1111/cmi.12158.
Bocian-Ostrzycka, K.M., Grzeszczuk, M.J., Banas, A.M., Jastrzab, K., Pisarczyk, K., Kolarzyk, A., Lasica, A.M., Collet, J.F., and Jagusztyn-Krynicka, E.K. (2016). Engineering of Helicobacter pylori Dimeric Oxidoreductase DsbK (HP0231). Front Microbiol 7, 1158. doi: 10.3389/fmicb.2016.01158.
Bocian-Ostrzycka, K.M., Grzeszczuk, M.J., Dziewit, L., and Jagusztyn-Krynicka, E.K. (2015a). Diversity of the Epsilonproteobacteria Dsb (disulfide bond) systems. Front Microbiol 6, 570. doi: 10.3389/fmicb.2015.00570.
Bocian-Ostrzycka, K.M., Lasica, A.M., Dunin-Horkawicz, S., Grzeszczuk, M.J., Drabik, K., Dobosz, A.M., Godlewska, R., Nowak, E., Collet, J.F., and Jagusztyn-Krynicka, E.K. (2015b). Functional and evolutionary analyses of Helicobacter pylori HP0231 (DsbK) protein with strong oxidative and chaperone activity characterized by a highly diverged dimerization domain. Front Microbiol 6, 1065. doi: 10.3389/fmicb.2015.01065.
Busch, B., Weimer, R., Woischke, C., Fischer, W., and Haas, R. (2015). Helicobacter pylori interferes with leukocyte migration via the outer membrane protein HopQ and via CagA translocation. Int J Med Microbiol 305, 355-364. doi: 10.1016/j.ijmm.2015.02.003
S1438-4221(15)00014-4 [pii].
Cao, P., and Cover, T.L. (2002). Two different families of hopQ alleles in Helicobacter pylori. J Clin Microbiol 40, 4504-4511.
Cao, P., Mcclain, M.S., Forsyth, M.H., and Cover, T.L. (1998). Extracellular release of antigenic proteins by Helicobacter pylori. Infect Immun 66, 2984-2986.
Carlsohn, E., Nystrom, J., Karlsson, H., Svennerholm, A.M., and Nilsson, C.L. (2006). Characterization of the outer membrane protein profile from disease-related Helicobacter pylori isolates by subcellular fractionation and nano-LC FT-ICR MS analysis. J Proteome Res 5, 3197-3204. doi: 10.1021/pr060181p.
Davis, G.S., Flannery, E.L., and Mobley, H.L. (2006). Helicobacter pylori HP1512 is a nickel-responsive NikR-regulated outer membrane protein. Infect Immun 74, 6811-6820. doi: IAI.01188-06 [pii]
10.1128/IAI.01188-06.
Denoncin, K., Nicolaes, V., Cho, S.H., Leverrier, P., and Collet, J.F. (2013). Protein disulfide bond formation in the periplasm: determination of the in vivo redox state of cysteine residues. Methods Mol Biol 966, 325-336. doi: 10.1007/978-1-62703-245-2_20.
Denoncin, K., Vertommen, D., Paek, E., and Collet, J.F. (2010). The protein-disulfide isomerase DsbC cooperates with SurA and DsbA in the assembly of the essential beta-barrel protein LptD. J Biol Chem 285, 29425-29433. doi: 10.1074/jbc.M110.119321
M110.119321 [pii].
Elias, J.E., and Gygi, S.P. (2010). Target-decoy search strategy for mass spectrometry-based proteomics. Methods Mol Biol 604, 55-71. doi: 10.1007/978-1-60761-444-9_5.
Godlewska, R., Dzwonek, A., Mikula, M., Ostrowski, J., Pawlowski, M., Bujnicki, J.M., and Jagusztyn-Krynicka, E.K. (2006). Helicobacter pylori protein oxidation influences the colonization process. Int J Med Microbiol 296, 321-324. doi: S1438-4221(06)00079-8 [pii]
10.1016/j.ijmm.2005.11.010.
Gonzalez-Lopez, M.A., Velazquez-Guadarrama, N., Romero-Espejel, M.E., and Olivares-Trejo Jde, J. (2013). Helicobacter pylori secretes the chaperonin GroEL (HSP60), which binds iron. FEBS Lett 587, 1823-1828. doi: 10.1016/j.febslet.2013.04.048
S0014-5793(13)00364-5 [pii].
Hage, N., Howard, T., Phillips, C., Brassington, C., Overman, R., Debreczeni, J., Gellert, P., Stolnik, S., Winkler, G.S., and Falcone, F.H. (2015). Structural basis of Lewis(b) antigen binding by the Helicobacter pylori adhesin BabA. Sci Adv 1, e1500315. doi: 10.1126/sciadv.1500315
1500315 [pii].
Heuermann, D., and Haas, R. (1998). A stable shuttle vector system for efficient genetic complementation of Helicobacter pylori strains by transformation and conjugation. Mol Gen Genet 257, 519-528.
Jameson-Lee, M., Garduno, R.A., and Hoffman, P.S. (2011). DsbA2 (27 kDa Com1-like protein) of Legionella pneumophila catalyses extracytoplasmic disulphide-bond formation in proteins including the Dot/Icm type IV secretion system. Mol Microbiol 80, 835-852. doi: 10.1111/j.1365-2958.2011.07615.x.
Javaheri, A., Kruse, T., Moonens, K., Mejias-Luque, R., Debraekeleer, A., Asche, C.I., Tegtmeyer, N., Kalali, B., Bach, N.C., Sieber, S.A., Hill, D.J., Koniger, V., Hauck, C.R., Moskalenko, R., Haas, R., Busch, D.H., Klaile, E., Slevogt, H., Schmidt, A., Backert, S., Remaut, H., Singer, B.B., and Gerhard, M. (2016). Helicobacter pylori adhesin HopQ engages in a virulence-enhancing interaction with human CEACAMs. Nat Microbiol 2, 16189. doi: 10.1038/nmicrobiol.2016.189
nmicrobiol2016189 [pii].
Kadokura, H., Tian, H., Zander, T., Bardwell, J.C., and Beckwith, J. (2004). Snapshots of DsbA in action: detection of proteins in the process of oxidative folding. Science 303, 534-537. doi: 10.1126/science.1091724
303/5657/534 [pii].
Ki, M.R., Lee, J.H., Yun, S.K., Choi, K.M., and Hwang, S.Y. (2015). Roles of the Peptide Transport Systems and Aminopeptidase PepA in Peptide Assimilation by Helicobacter pylori. J Microbiol Biotechnol 25, 1629-1633. doi: 10.4014/jmb.1505.05099
10.4014/jmb.1505.05099 [pii].
Koniger, V., Holsten, L., Harrison, U., Busch, B., Loell, E., Zhao, Q., Bonsor, D.A., Roth, A., Kengmo-Tchoupa, A., Smith, S.I., Mueller, S., Sundberg, E.J., Zimmermann, W., Fischer, W., Hauck, C.R., and Haas, R. (2016). Helicobacter pylori exploits human CEACAMs via HopQ for adherence and translocation of CagA. Nat Microbiol 2, 16188. doi: 10.1038/nmicrobiol.2016.188
nmicrobiol2016188 [pii].
Lester, J., Kichler, S., Oickle, B., Fairweather, S., Oberc, A., Chahal, J., Ratnayake, D., and Creuzenet, C. (2015). Characterization of Helicobacter pylori HP0231 (DsbK): role in disulfide bond formation, redox homeostasis and production of Helicobacter cystein-rich protein HcpE. Mol Microbiol. doi: 10.1111/mmi.12923.
Loh, J.T., Torres, V.J., Algood, H.M., Mcclain, M.S., and Cover, T.L. (2008). Helicobacter pylori HopQ outer membrane protein attenuates bacterial adherence to gastric epithelial cells. FEMS Microbiol Lett 289, 53-58.
Moonens, K., Gideonsson, P., Subedi, S., Bugaytsova, J., Romao, E., Mendez, M., Norden, J., Fallah, M., Rakhimova, L., Shevtsova, A., Lahmann, M., Castaldo, G., Brannstrom, K., Coppens, F., Lo, A.W., Ny, T., Solnick, J.V., Vandenbussche, G., Oscarson, S., Hammarstrom, L., Arnqvist, A., Berg, D.E., Muyldermans, S., Boren, T., and Remaut, H. (2016). Structural Insights into Polymorphic ABO Glycan Binding by Helicobacter pylori. Cell Host Microbe 19, 55-66. doi: 10.1016/j.chom.2015.12.004
S1931-3128(15)00496-5 [pii].
Pang, S.S., Nguyen, S.T., Perry, A.J., Day, C.J., Panjikar, S., Tiralongo, J., Whisstock, J.C., and Kwok, T. (2014). The three-dimensional structure of the extracellular adhesion domain of the sialic acid-binding adhesin SabA from Helicobacter pylori. J Biol Chem 289, 6332-6340. doi: 10.1074/jbc.M113.513135
M113.513135 [pii].
Peck, B., Ortkamp, M., Diehl, K.D., Hundt, E., and Knapp, B. (1999). Conservation, localization and expression of HopZ, a protein involved in adhesion of Helicobacter pylori. Nucleic Acids Res 27, 3325-3333. doi: gkc513 [pii].
Pham, K.T., Weiss, E., Jimenez Soto, L.F., Breithaupt, U., Haas, R., and Fischer, W. (2012). CagI is an essential component of the Helicobacter pylori Cag type IV secretion system and forms a complex with CagL. PLoS One 7, e35341. doi: 10.1371/journal.pone.0035341
PONE-D-11-14342 [pii].
Raczko, A.M., Bujnicki, J.M., Pawlowski, M., Godlewska, R., Lewandowska, M., and Jagusztyn-Krynicka, E.K. (2005). Characterization of new DsbB-like thiol-oxidoreductases of Campylobacter jejuni and Helicobacter pylori and classification of the DsbB family based on phylogenomic, structural and functional criteria. Microbiology 151, 219-231. doi: 151/1/219 [pii]
10.1099/mic.0.27483-0.
Roszczenko, P., Grzeszczuk, M., Kobierecka, P., Wywial, E., Urbanowicz, P., Wincek, P., Nowak, E., and Jagusztyn-Krynicka, E.K. (2015). Helicobacter pylori HP0377, a member of the Dsb family, is an untypical multifunctional CcmG that cooperates with dimeric thioldisulfide oxidase HP0231. BMC Microbiol 15, 135. doi: 10.1186/s12866-015-0471-z
10.1186/s12866-015-0471-z [pii].
Roszczenko, P., Radomska, K.A., Wywial, E., Collet, J.F., and Jagusztyn-Krynicka, E.K. (2012). A novel insight into the oxidoreductase activity of Helicobacter pylori HP0231 protein. PLoS One 7, e46563. doi: 10.1371/journal.pone.0046563
PONE-D-12-17686 [pii].
Sabarth, N., Lamer, S., Zimny-Arndt, U., Jungblut, P.R., Meyer, T.F., and Bumann, D. (2002). Identification of surface proteins of Helicobacter pylori by selective biotinylation, affinity purification, and two-dimensional gel electrophoresis. J Biol Chem 277, 27896-27902. doi: 10.1074/jbc.M204473200
M204473200 [pii].
Sambrook, J., and Russell, D.W. (2001). Molecular cloning : a laboratory manual. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press.
Smith, T.G., Lim, J.M., Weinberg, M.V., Wells, L., and Hoover, T.R. (2007). Direct analysis of the extracellular proteome from two strains of Helicobacter pylori. Proteomics 7, 2240-2245. doi: 10.1002/pmic.200600875.
Voss, B.J., Gaddy, J.A., Mcdonald, W.H., and Cover, T.L. (2014). Analysis of surface-exposed outer membrane proteins in Helicobacter pylori. J Bacteriol 196, 2455-2471. doi: 10.1128/JB.01768-14
JB.01768-14 [pii].
Weisbrod, C.R., Eng, J.K., Hoopmann, M.R., Baker, T., and Bruce, J.E. (2012). Accurate peptide fragment mass analysis: multiplexed peptide identification and quantification. J Proteome Res 11, 1621-1632. doi: 10.1021/pr2008175.
Yoon, J.Y., Kim, J., An, D.R., Lee, S.J., Kim, H.S., Im, H.N., Yoon, H.J., Kim, J.Y., Kim, S.J., Han, B.W., and Suh, S.W. (2013). Structural and functional characterization of HP0377, a thioredoxin-fold protein from Helicobacter pylori. Acta Crystallogr D Biol Crystallogr 69, 735-746. doi: 10.1107/S0907444913001236
S0907444913001236 [pii].
Yoon, J.Y., Kim, J., Lee, S.J., Kim, H.S., Im, H.N., Yoon, H.J., Kim, K.H., Kim, S.J., Han, B.W., and Suh, S.W. (2011). Structural and functional characterization of Helicobacter pylori DsbG. FEBS Lett 585, 3862-3867. doi: 10.1016/j.febslet.2011.10.042
S0014-5793(11)00793-9 [pii].
Zanotti, G., and Cendron, L. (2014). Structural and functional aspects of the Helicobacter pylori secretome. World J Gastroenterol 20, 1402-1423. doi: 10.3748/wjg.v20.i6.1402.
Zhong, Y., Anderl, F., Kruse, T., Schindele, F., Jagusztyn-Krynicka, E.K., Fischer, W., Gerhard, M., and Mejias-Luque, R. (2016). Helicobacter pylori HP0231 Influences Bacterial Virulence and Is Essential for Gastric Colonization. PLoS One 11, e0154643. doi: 10.1371/journal.pone.0154643
PONE-D-15-52731 [pii].
Supplementary/ Supporting information 
Supplementary Information Content:
1. Supplementary: materials and methods 
a. Supplementary Table S1: Bacterial strains and plasmids used in this study.
b. Supplementary Table S2: Primers used in this study
2. Supplementary: results
a. Supplementary Fig S1: Confirmation of H. pylori P12 genomic modification by Western-blot analysis. A. Confirmationofhp0231 mutation; B. Confirmation of hp0595 mutation. CD. Confirmation of HP0377CXXS production.
b. Supplementary Fig S2: Localization of HP0377 within subcellular fractions of H. pylori strain P12 wt, H. pylori strain P12 lacking HP0231 and H. pylori strain P12 Δhp0231 and H. pylori strain P12 Δhp0231/hp0231
c. Supplementary Fig S3: Development of hummingbird phenotype
d. Table S3: HP0231 protein substrates identified by a “reverse purification” substrate trapping technique using two mutated version of HP0231(CXXS; P/T) and mass spectrometry. 
1. Supplementary materials and methods
Bacterial strains, cell culture and cultivation
Bacterial strains, plasmids and primers used in this study are listed in Tables S1and S2. In our work, we used two strains, H. pylori 26695 and P12. The given annotations (hp0231, hp0377, hp0595) concern the H. pylori 26695 strain, and the gene numbers for the H. pylori P12 strain are hpp12_0231; hpp12_1044 and hpp12_0602, respectively. 
H. pylori strains were grown on horse serum agar plates containing vancomycin (10μg ml−1), trimethoprim (5μg ml−1), and nystatin (1μg ml−1) under microaerobic conditions (85% N2, 10% CO2, 5% O2) at 37 °C. For the selection of H. pylori mutants or complemented strains, kanamycin (8 µg ml−1) or/and chloramphenicol (4 µg ml−1) were added to the growth media.
The E. coli strains TG1, DH5α or TOP10 were used as a host for the construction and preparation of recombinant plasmids. E. coli strains were grown at 37°C on solid or liquid Luria-Bertani (LB) media. When needed, media were supplemented with antibiotics at the following concentrations: 100 µg ml−1 ampicillin, 30 µg ml−1 kanamycin and 20 µg ml−1 chloramphenicol.
AGS cells (human gastric adenocarcinoma cell line, ATCC CRL-1739) were maintained in RPMI-1640 medium (Gibco) supplemented with 10% fetal calf serum (FCS) in a humidified 5% 
MS analysis 
Quantitative, label-free proteomic analysis of periplasmic fractions from different H. pylori strains (wild type and mutant strain hp0231-). For each strain, 5 independent
sample preparations were conducted, and each sample was then analyzed
separately by MS.The protein samples were reduced, alkylated and digested with trypsin, according to the ProGest Trypsin Digestion Protocol (Genomic Solutions). The peptide mixtures were then applied to an RP-18 pre-column, fractionated on the nanoAcquity UPLC system (Waters) and measured on the OrbitrapVelos (Thermo) mass spectrometer with CID fragmentation. Each sample was measured in MS mode, without peptide sequencing, to obtain quantitative data. For protein identification, mixed samples from each analytical group were measured in triplicate, each run with different m/z range settings. Raw fragmentation spectra were searched against the Helicobacter pylori 26695 protein sequence database (JCVI CMR, 1,553 sequences) using the Mascot search engine (Matrixscience), with the following parameters: enzyme: psemiTrypsin, parent ions mass tolerance: 40 ppm, fragment ion mass tolerance: 0.8, missed cleavages: 1, fixed modifications: Carbamidomethyl (C), variable modifications: Carbamidomethyl (K), Oxidation (M). Protein identification was validated using a target-decoy search strategy. As a result of poor data quality, one wt sample was
discarded. The quantitative analysis was conducted with in-house software (Bakun et al., 2009) and subsequent statistical analysis to assess the significance of results was performed with Diffprot software (Malinowska et al., 2012).

Protein bands excised from the gel were analyzed by liquidchromatography coupled to the mass spectrometer.Gel pieces were dried with acetonitrile and subjected to reduction with 10 mM DTT in 100mM NH4HCO3 for 30 min at 57°C. Cysteines were then alkylated with 0.5 M iodoacetamide in 100 mM NH4HCO3 (45 minutes in a darkroom at room temperature) and proteins were digested overnight with 10 ng/ul trypsinin 25 mM NH4HCO3 (Promega) at 37 °C. Samples were concentrated and desalted on an RP-C18 pre-column (Waters), and further peptide separation was achieved on a nano-Ultra Performance Liquid Chromatography (UPLC) RP-C18 column (Waters, BEH130 C18 column, 75 µm i.d., 250 mm long) of a nanoACQUITY UPLC system, using a 45-min linear acetonitrile gradient. Column outlet was directly coupled to the Electrospray ionization (ESI) ion source of the OrbitrapVelos type mass spectrometer (Thermo), working in the regime of data dependent MS to MS/MS switch with HCD type peptide fragmentation. An electrospray voltage of 1.5 kV was used. Raw data files were pre-processed with Mascot Distiller software (version 2.6, MatrixScience). The obtained peptide masses and fragmentation spectra were matched to the Helicobacter pylori 26695 reference proteome derived from Uniprot
20170630 (1,553 sequences; 491,826 residues), supplemented with additional sequences of DsbCHisTag and HP0231. The following search parameters were applied: enzyme specificity was set to semiTrypsin, the protein mass was left as unrestricted, and mass values as monoisotopic with one missed cleavage being allowed. Alkylation of cysteine by
carbamidomethylation as fixed and oxidation of methionine was set as a variable modification. To reduce mass errors, the peptide and fragment mass tolerance settings were established separately for individual LC-MS/MS runs after a measured mass recalibration, as described previously 
(Weisbrod et al., 2012)(Elias and Gygi, 2010). After recalibration, the mass tolerance for proteins was in the range 5-5.4 ppm and for peptides 0.01 Da. A statistical assessment of the confidence of peptide assignments was based on the target/decoy database search . This procedure provided q-value estimates for each peptide spectrum match in the data set. All queries with q-values> 0.01 were removed from further analysis. Single-peptide identifications were left in the results, as further verification was provided by the presence in biological replicates. Proteins identified by a subset of peptides from another protein were excluded from the analysis.

Table S1 Bacterial strains and plasmids used in this study.
	Name
	Genotype or relevant characteristics
	Origin

	Helicobacter pylori strains
	
	

	26696
	H. pylori wild-type
	ATCC

	P12
	H. pylori wild-type
	ATCC

	MG305
	P12 dsbI::aph
	This study

	MG336
	dsbI+in trans complementant of dsbI::aph
	This study

	MG378
	P12 hp0231::cat
	This study

	MG397
	hp0231+in trans complementant of hp0231::cat
	This study

	MG2066
	hp0377CxxS+in trans in P12
	This study

	P12ΔhopQ
	P12 hopQ::cat
	

ADDIN EN.CITE.DATA
(Belogolova et al., 2013)


	P12hopQ+
	hopQ+in trans complementant of hopQ::cat
	

ADDIN EN.CITE.DATA
(Belogolova et al., 2013)


	P12hopQ1
	hopQC123S+in trans complementant of hopQ::cat
	This study

	P12hopQ2
	hopQC258S+in trans complementant of hopQ::cat
	This study

	P12hopQ3
	hopQC382S+in trans complementant of hopQ::cat
	This study

	
	
	

	Escherichia coli strains
	
	

	TG1

	supE44 hsdΔ5 thiΔ(lac- proAB) F’ [traD36 proAB + lacIqlacZΔM15]

	(Sambrook and Russell, 2001)

	Top10

	F- mcrAΔ(mrr-hsdRMS-mcrBC) φ80lacZ ΔM15 ΔlacX74 deoRnupG recA1 araD139 Δ(ara-leu)7697 galUgalKrpsL(strR) endA1 λ-

	Gibco BRL


	Rosetta (DE3)pLacI
	F−ompThsdSB (rB- mB-) gal dcmpLacIRARE (Cmr)
	Novagen


	KBO2068
	Rosetta carrying pUWM2062 (hp0231C137S in pET28a)
	(Bocian-Ostrzycka et al., 2016)

	
	
	

	Plasmids
	

	pHEL2
	CmrE. coli/H. pylori shuttle vector
	(Heuermann and Haas, 1998)


	pHEL3
	KmrE. coli/H. pylori shuttle vector
	(Heuermann and Haas, 1998)

	pCE4
	CmrhopQ+in pIB6 E. coli/H. pylori shuttle vector
	

ADDIN EN.CITE.DATA
(Belogolova et al., 2013)


	pUWM589
	hp0231+ in pGEM-T Easy
	(Roszczenko et al., 2012)

	pUWM2062
	hp0231CXXS+ in pET28a
	(Bocian-Ostrzycka et al., 2016)

	pUWM2065+
	hp03776His in pHEL2
	This study

	pUWM2066+
	hp0377CXXS+ in pHEL2
	This study

	pUWM2190
	hp0231VcT+ in pGEM-T Easy
	This study

	pUWM2191
	hp0231VcT+ in pET28a
	This study

	pUWMhopQ1
	hopQC123S+ in pIB6
	This study

	pUWMhopQ2
	hopQC258S+ in pIB6
	This study

	pUWMhopQ3
	hopQC382S+ in pIB6
	This study

	Plasmids for mutagenesis
	

	pUWM305
	pBluescript II SK/dsbI::aph
	

ADDIN EN.CITE.DATA
(Raczko et al., 2005)


	pUWM336
	dsbI+ in pHEL2
	

ADDIN EN.CITE.DATA
(Raczko et al., 2005)


	pUWM378
	pGEM-T Easy/hp0231::aph
	(Roszczenko et al., 2012)

	pUWM397
	hp0231+ in pHEL3
	(Roszczenko et al., 2012)

	
	
	


Table S2. Primers used in this study
	Name
	Sequence 5’ – 3’
	Orientation/Restriction site

	
	
	

	C123S
	GAATAGCATGGGTTATGCGGTCATATCGGAGGTTATACCAAAAG
	forward

	C123S_rev
	CTTTTGGTATAACCTCCAGATATGACCGCATAACCCATGCTATTC
	reverse

	C258S


	CAAACGATTGTCAATACCCTTAAAGATTATTCTCCCATGTTGATAGCGA
	forward

	C258S_rev

	TCGCTATCAACATGGGAGAATAATCTCTTTAAGGGTATTGACAATCGTTG
	reverse

	C382S


	ATCTTAAAGACTACATAGGGAAATCTGATATGAGTGCTATAAGCAGTACG
	forward

	C382S_rev
	CGTACTGCTTATAGCACTCATATCAGATTTCCCTATGTAGTCTTTAAGAT
	reverse

	HP231P-Tmut_L
	CCTTAT AATGGT ATAAGA AAGTCA CACCCT TAATCA CGCCAG
	forward

	HP231P-Tmut_R
	CTGGCG TGATTA AGGGTG TGACTT TCTTAT ACCATT ATAAGG
	reverse

	hp377I
	GGCGATACTTACCAGCAAG
	forward

	HP377_6His_rev
	GCGTTAGTGGTGGTGGTGGTGGTGGTTAGACTTGCTTTTAGAAAGG
	reverse

	hp377_C92SII_rev
	CTTTCGGAATAGGAGCAACCATTACGGC
	reverse

	hp377_C92SII
	GTTTTTGGCCGTAATGGTTGCTCCTATT
	forward

	GAPDH1
	GGTATCGTGGAAGGACTCATGAC
	forward

	GAPDH2
	ATGCCAGTGAGCTTCCCGTTCAG
	reverse

	IL8-1
	ACACTGCGCCAACACAGAAAT
	forward

	IL8-2
	ATTGCATCTGGCAACCCTACA
	reverse

	
	
	


Figure S1. Western–blot analysis of H. pylori P12 genomic modification by Western-blot analysis. A. Confirmation of hp0231 mutation;B. Confirmation of hp0595 mutation. C. Confirmation of HP0377CXXS production. D. Confirmation of HP0377 overexpression H. pylori wt P12, P12 hp0231::cat, P12 hp0595::aph or P12 hp0377CXXS+proteins (the whole cell lysates) were separated by 12% SDS-PAGE and electro-transferred onto a nitrocellulose membrane. Specific rabbit sera with antibodies against HP0231 (A) and against HP0595 (B) were used to verify the lack of HP0231 in P12 hp0231::cat or the lack of HP0595 in P12 hp0595::aph mutant cells. Specific mouse antibodies against His-tag were used to verify the production of HP0377CXXS (C) and specific rabbit serum with antibodies against HP0377 was used to verify overexpression of HP0377(D)
Figure S2. Localization of HP0377 within subcellular fractions of H. pylori strain P12 wt, H. pylori strain P12 lacking HP0231 and H. pylori strain P12 Δhp0231 and H. pylori strain P12 Δhp0231/hp0231using anti-HP0377 serum  
Figure S3. Development of hummingbird phenotype upon infection with different H. pylori strains
Table S3. HP0231 protein substrates identified by a “reverse purification” substrate trapping technique using two mutated version of HP0231(CXXS; P/T) and mass spectrometry. Protein bands that correspond to hypothetical complexes between HP0231 and its protein substrates were cut out from the gel. Next, protein complexes were digested and the obtained peptides were analyzed using mass spectrometry. Proteins with the highest scores are listed. Those with score in the control experiment (HP0231 CXXS) higher than 50% of that obtained in relevant experiment (HP0231 P/T) were rejected. Results were classified using UniProt ID and their predicted localization and number of cysteines were checked. For selected proteins, their localization, based on experimental data, was also added.
	lp
	Locus tag
	Gene name
	Uniprot ID
	 
	Score CXXS
	Score PT
	Number of cysteins
	Predicted localization

	1
	HP_0072
	ureA
	URE1_HELPY
	Urease subunit alpha 
	4383
	8079
	3
	cytoplasm

	2
	HP_0010
	groL
	CH60_HELPY
	60 kDa chaperonin
	3382
	12383
	1
	cytoplasm

	3
	HP_1430
	rnj
	RNJ_HELPY
	Ribonuclease J
	x
	2217
	3
	cytoplasm

	4
	HP_1512
	frpB4
	O26042_HELPY
	Nickel-regulated outer membrane protein (FrpB)
	411
	1426
	3
	Cell outer membrane

	5
	HP_0073
	ureB
	URE23_HELPY
	Urease subunit beta
	1001
	1251
	1
	cytoplasm

	6
	HP_0570
	pepA
	AMPA_HELPY
	Aminopeptidase 
	493
	1188
	10
	cytoplasm

	7
	HP_1177
	omp27
	O25791_HELPY
	Outer membrane protein (Omp27) 
	516
	1300
	6
	Cell outer membrane

	8
	HP_1132
	atpD
	ATPB_HELPY
	ATP synthase subunit beta 
	675
	1060
	1
	Cell inner membrane

	9
	HP_1205
	tuf
	EFTU_HELPY
	Elongation factor Tu 
	560
	1339
	2
	cytoplasm

	10
	HP_1134
	atpA
	ATPA_HELPY
	ATP synthase subunit alpha
	264
	1162
	3
	Cell inner membrane

	11
	HP_0470
	pepF
	O25216_HELPY
	Oligoendopeptidase F (PepF) 
	666
	641
	5
	cytoplasm

	12
	HP_0317
	omp9
	O25086_HELPY
	Outer membrane protein (Omp9)
	181
	589
	8
	Cell outer membrane

	13
	HP_1243
	omp28
	O25840_HELPY
	Outer membrane protein (Omp28) 
	125
	534
	8
	Cell outer membrane

	14
	HP_1588
	 
	Y1588_HELPY
	UPF0174 Ubiquinol-cytochrome C chaperone family protein
	259
	504
	4
	cytoplasm

	15
	HP_1195
	fusA
	EFG_HELPY
	Elongation factor G 
	x
	540
	6
	cytoplasm

	16
	HP_0377
	 
	O25140_HELPY
	Thiol:disulfide interchange protein (DsbC), putative 
	510
	x
	3
	periplasm

	17
	HP_0025
	omp2
	O24870_HELPY
	Outer membrane protein (Omp2)
	x
	490
	6
	Cell outer membrane

	18
	HP_0896
	omp19
	O25556_HELPY
	Outer membrane protein (Omp19) 
	x
	409
	6
	Cell outer membrane

	19
	HP_0875
	catA
	CATA_HELPY
	Catalase 
	x
	418
	2
	cytoplasm

	20
	HP_0227    /HP_1342
	omp29    /omp5
	O34523_HELPY
	Outer membrane protein HopM/HopN
	x
	337
	4
	Cell outer membrane

	21
	HP_1450
	yidC
	YIDC_HELPY
	Membrane protein insertase YidC 
	x
	309
	1
	Cell inner membrane

	22
	HP_0912
	omp20
	O25570_HELPY
	Outer membrane protein HopC
	x
	152
	3
	Cell outer membrane
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