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Abstract
Programmed cell death is a basic cellularmechanism. Apoptotic-like programmed cell death (called
apoptosis in animals) occurs in both unicellular andmulticellular eukaryotes, and some apoptotic
mechanisms are observed in bacteria. Endosymbiosis betweenmitochondria and eukaryotic cells took
place early in the eukaryotic evolution, and some of the apoptotic-likemechanisms ofmitochondria
that were retained after this event now serve as parts of the eukaryotic apoptoticmachinery. Apoptotic
mechanisms have several functions in unicellular organisms: they include kin-selected altruistic
suicide that controls population size, sharing common goods, and responding to viral infection.
Apoptotic factors also have non-apoptotic functions. Apoptosis is involved in the cellular aging of
eukaryotes, including humans. In addition, apoptosis is a key part of the innate tumor-suppression
mechanism. Several anticancer drugs induce apoptosis, because apoptoticmechanisms are inactivated
during oncogenesis. Because of the ancient history of apoptosis, I hypothesize that there is a deep
relationship betweenmitochondrialmetabolism, its role in aerobic versus anaerobic respiration, and
the connection between apoptosis and cancer.Whereas normal cells rely primarily on oxidative
mitochondrial respiration,most cancer cells use anaerobicmetabolism. According to theWarburg
hypothesis, the remodeling of themetabolism is one of the processes that leads to cancer. Recent
studies indicate that anaerobic, non-mitochondrial respiration is particularly active in embryonic
cells, stem cells, and aggressive stem-like cancer cells.Mitochondrial respiration is particularly active
during the pathological aging of human cells in neurodegenerative diseases. According to the reversed
Warburg hypothesis formulated byDemetrius, pathological aging is induced bymitochondrial
respiration.Here, I advance the hypothesis that the stimulation ofmitochondrialmetabolism leads to
pathological aging.

1. Background: basic definitions

Apoptosis is a type of PCD (programmed cell death)
found in animals,first described in 1972 [1]. The classical
studies were performed on C. elegans, a research model

established by Sydney Brenner [2]. Adult worms have a

predetermined number of cells: an adult hermaphrodite

has 959 cells, and an adult male has 1031 [3, 4]. Sulston
and Horvith described the developmental fate of every

single cell of C. elegans (see figure 1) from the embryo to

the adult, as a ‘family tree,’ and discovered dying cells:

the generation of the 959 cells in the hermaphrodite was

accomplished by the death of 131 cells. This proved that

apoptosis was programmed, not accidental. Later,muta-

tions affecting apoptosiswere described [5].

The morphological and biochemical hallmarks of
apoptosis allow one to easily distinguish it from other
types of cell death. When apoptosis begins, there is a
membrane permeability transition, characterized by
the breakdown of the inner mitochondrial transmem-
brane potential [6]. The next stage is characterized by
chromatin condensation and nuclear fragmentation
[3]. Then the cell breaks intomembrane-bound, ultra-
structurally well-preserved fragments that are ingested
by macrophages, which prevents the induction of
inflammation [1].

Although apoptosis was long believed to occur
only in animals, apoptosis-like cell death has also been
described in multicellular and unicellular eukaryotes.
In unicellular eukaryotes, it is not clear whether
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apoptosis-like cell death is programmed or incidental
[7]. There are also other types of programmed cell
death in organisms that do not have mitochondria,
including bacteria [8] and the amitochondrial proto-
zoanTrichomonas vaginalis [9, 10].

2. Background: themain hypotheses on the
origin of apoptosis

Two major hypotheses explaining the origin of
apoptosis exist, and they are notmutually exclusive.

According to the first, the ‘original sin’ hypothesis,
all living cells have an intrinsic inability to avoid ran-
domdestruction. Cellularmachinery regulates cellular
mechanisms to repress suicide. This scenario provides
a starting point for the evolution of programmed cell
death: it views programmed cell death as a modifica-
tion of accidental cell death [11]. Several recent papers
support this hypothesis. For example, Proto et al [7]
argue that the apoptotic-like cell death of parasitic
protists may be incidental. Noticing that the proteins
involved in programmed cell death also have other
ancient functions, Dick and Megeney [12] suggested
that the apoptotic behavior of this set of proteins was
co-opted from core functions not originally associated
with apoptosis.

According to the second hypothesis, the ‘endo-
symbiotic’ hypothesis, the apoptotic machinery origi-
nated in mitochondria. Kroemer observed that the
release of apoptotic factors from mitochondria initi-
ates apoptosis in the so-called permeability transition
[6, 13]. Kroemer suggested that the interaction
between the proto-mitochondrion and its initial host
was analogous to the currently observed interaction
between plasmids and bacteria [14]. Plasmids produce
long-range toxins and short-range antidotes, allowing
toxins to kill bacteria that lose plasmids [15]. His idea
is supported by studies of the structural properties of
the Bcl-2 proteins that both inhibit and activate animal
apoptosis. Their structure is strikingly similar to the

pore-forming domains of the bacterial colicin and
diphtheria toxins [16], and, like bacterial toxins, they
can form a channel through the cell membrane [17].
The BAX inhibitor 1 (BI-1) is a putative ancient anti-
apoptotic factor (antitoxin). In a yeast model, Xu and
Reed found that the transformation and expression of
mammalian BAX induces yeast apoptosis and that
although the yeast genome does not encode either
BAX or BI-1, BI-1 is nevertheless a mammalian sup-
pressor of yeast apoptosis induced by BAX [18]. The
anti-apoptotic properties of BI-1 have since been
demonstrated in both plants and animals [19]. BI-1
inhibits the release of apoptotic factors (toxins) from
mitochondria rather than inhibiting their activity in
the cytoplasm [20].

Frade and Michalidis [21] suggested that the
proto-mitochondrion was a pathogen that induced
the death of its host cell by a drop in levels of purines.
According to this hypothesis, proto-mitochondrion
was able to check the ‘health’ of the host against ATP
levels. A high level of ATP would indicate that the cell
is healthy. In contrast, decreasing amounts of ATP
would be a signal indicating that the host cell is dying.
In such conditions, the parasitic proto-mitochon-
drion would kill the cell and use its nutrients. Their
hypothesis is based on the observation that the perme-
ability transition results from the opening of mito-
chondrial transition pores, which are composed of
adenine nucleotide translocators and mitochondrial
porins. These proteins are related to eubacterial bac-
terial proteins.

The endosymbiotic hypothesis was later tested by
Aravind et al with phylogenetic analysis [22]. They
confirmed that many apoptotic factors encoded by the
nucleus have a putative bacterial origin and suggested
that these factors originated in mitochondria and
moved to the nucleus through horizontal gene trans-
fer. Their conclusion was that ‘much of the glory of
eukaryotic ascension to the ultimate complexity of higher
plants and animals might be owed to a lucky choice of

Figure 1.Themap of developmental fate of thewormC. elegans. (The following image imported fromwikipedia was used in this
image: https://upload.wikimedia.org/wikipedia/commons/6/68/Turbellaria_003.png (public domain).)
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bacteria with complicated differentiation processes as the
primary, pro-mitochondrial, and, perhaps, subsequent
symbionts’ [23].

The idea that apoptosis evolved due to a ‘lucky
choice’ of bacteria with a complex regulatory system
was further developed by Frank et al [24]. They sug-
gested that bacterial sporulation resembles apoptotic
mitochondrial fragmentation. However, in mamma-
lian cell apoptosis, fragmentation of mitochondria is
induced by dynamin-related protein 1 (Drp-1, Dyna-
min related protein 1). This factor is involved in mito-
chondrial division but is located largely in the cytosol.
Under apoptotic conditions, cytosolic Drp-1 translo-
cates into mitochondria. Inactivation of Drp-1 may
directly prevent both apoptosis and apoptotic mito-
chondrial fission.

Frank et al also suggested that mitochondrial frag-
mentation derived from an early stress response lead-
ing to sporulation of the primitive mitochondria; it
would have integrated stress signals and acted as an
initial sensor for the eukaryotic response system.

3. Phylogenetic analyzes

Early studies revealed a linear apoptotic pathway
whose core components are conserved from

nematodes to humans, the ‘canonical apoptotic path-
way’ [25–27] (see figure 2).

In C. elegans, cell death is induced by egg-laying
defective (EGL-1) protein [28–30]. The activity of this
gene modulates the effects of cell death abnormal
(CED) mutations [28]. The EGL-1 protein interacts
with the CED-9 anti-apoptotic protein [31]. The
molecular mechanism of CED-9 anti-apoptotic activ-
ity is based on direct interaction with the CED-4 pro-
apoptotic factor [32]. EGL-1 binding with CED-9
induces conformational changes in CED-9, resulting
in dissociation of the CED-4 apoptotic activator from
the complex [32]. The released CED-4 is then translo-
cated to the perinuclear space [32], where eight CED-4
molecules form a funnel-shaped structure. This struc-
ture is the core of the apoptosome. The CED-3 caspase
(apoptotic cystic aspartic protease) binds to this com-
plex and establishes a holoenzyme. The activity of
CED-3 caspase is markedly increased when com-
plexed with apoptosome and induces cellular
death [33].

In mammals, this pathway is more complicated,
for the apoptosome also contains a mitochondrial
cytochrome c [34–36].

Because the ‘canonical apoptotic pathway’ is not
present in non-animal eukaryotes, some researchers
incorrectly concluded that apoptosis occurs only in

Figure 2.The evolution of ‘canonical apoptotic pathway’ fromDegterev andYuan [38]. The picture imported fromwikipedia was
used. (An image imported fromwikipedia was used in this picture https://bg.wikipedia.org/wiki/%D0%9C%D0%B8%D1%82%
D0%BE%D1%85%D0%BE%D0%BD%D0%B4%D1%80%D0%B8%D1%8F#/media/File:Mito.png (public domain).)
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animals. Later, more apoptotic mechanisms were dis-
covered, some of which occurred in non-animal
eukaryotes or bacteria. Programmed cell death
induced bymitochondria is now believed to occur in a
broad range of eukaryotic organisms [37].

I analyzed the evolution of programmed cell death
in unicellular protists and multicellular eukaryotic
organisms (figure 3) using a phylogenetic tree based on
a recently published analysis of the evolution of 37
proteins [39]. (I assumed that barley [Hordeum vul-
gare] has the phylogenetic position ofA. thaliana.)

Three mechanisms were conserved across lineages
(see figure 4): (1) release of mitochondrial apoptotic
factors (red); (2) induction of PCD by apoptotic pro-
teases (caspases and metacaspases); and (3) destruc-
tion of nuclear DNA by apoptotic DNases (marked
green).

We propose the following model for their evol-
ution [40]:

Step 1: Release ofmitochondrial apoptotic factors
The first conservedmechanism in ourmodel is the

release of mitochondrial apoptotic factors, including
cytochrome c, apoptosis-inducing factor (AIF), and
EndoG, as well as the nucleases and proteases involved
in apoptosis. Cytochrome c is part of the mitochon-
drial oxidative chain [42]. The apoptotic activity of
cytochrome c has been shown in both yeast [43] and
animals [36], where it interacts with and enhances the
activity of apoptotic proteases, caspases (animal apop-
totic cystic aspartic proteases), or metacaspases (non-
animal apoptotic lysine/arginine specific proteases)
[43, 44]. Significantly, in animal cells, cytochrome c is
also part of a multiprotein apoptosis-activating com-
plex called the apoptosome [34–36]. The AIF is a

Figure 3.The phylogenetic tree used for inferences about the evolution of apoptosis. Only groupswithwell-described apoptosis-like
cell death are included. All branches have 100%bootstrap support except the root position, which is controversial. FromKaczanowski
et al [40], Adl et al [41], andHe et al [39]. Pictures imported fromwikipedia and PublicHealth Image Library of Centre for disease
control and preventionwere used in this image. (Following images imported fromwikipedia were used in thisfigure: https://en.
wikipedia.org/wiki/Chlamydomonas_reinhardtii#/media/File:Chlamydomonas6-1.jpg (public domain) https://commons.
wikimedia.org/wiki/File:Arabidopsis_thaliana_flower.jpg (public domain) https://commons.wikimedia.org/wiki/File:
Leishmania_donovani_01.png (PublicHealth Image Library of CDC-public domain) https://upload.wikimedia.org/wikipedia/
commons/2/23/Trypanosoma_sp._PHIL_613_lores.jpg (PublicHealth Image Library of CDC-public domain) https://pl.
wikipedia.org/wiki/Zarodziec_sierpowy#/media/File:Plasmodium_falciparum_01.png (PublicHealth Image Library of CDC-
public domain) https://upload.wikimedia.org/wikipedia/commons/thumb/f/f9/Ciliophora_morphology.svg/512px-
Ciliophora_morphology.svg.png (public domain) https://en.wikipedia.org/wiki/Dictyostelium_discoideum#/media/File:
Dictyostelium_Aggregation.JPG (public domain) https://upload.wikimedia.org/wikipedia/commons/6/68/Turbellaria_003.png
(public domain) https://commons.wikimedia.org/wiki/File:Drosophila-melanogaster-Nauener-Stadtwald-03-VII-2007-12.jpg
(public domain) https://commons.wikimedia.org/wiki/Homo_sapiens#/media/File:Human.svg (public domain) https://
commons.wikimedia.org/wiki/Saccharomyces_cerevisiae?uselang=pl#/media/File:S_cerevisiae_under_DIC_microscopy.jpg
(public domain).)
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flavoprotein. Several studies indicate that it performs
an important function in respiration and suggest a role
for it in respiratory chain homeostasis [45]. The apop-
totic activity of AIF has been demonstrated in organ-
isms belonging to widely differing taxonomic groups:
humans [46–48], yeast [49], slime molds [50], and
Tetrahymena [51].

Interestingly, studies of human AIFs revealed that
the flavoprotein domain is required only inmitochon-
drial AIFM1 [47] but is not required for the induction
of apoptosis in AIFM2 [48] and AIFM3 [52]. This
observation suggests that different parts of proteins
function in apoptosis and respiration.

A transition in mitochondrial permeability plays
an important role in the direct activation of some (but
not all) apoptotic proteases andDNases. Caspase 9, for
example, is released from mitochondria during apop-
tosis [53]. In contrast, caspase 2 is localized to the
nucleus and the Golgi apparatus [54]. The animal
apoptotic protease HtrA2/Omi [55] is also released
from mitochondria during the apoptotic mitochon-
drial transition, but the yeast HtrA2 ortholog
Nma111p exhibits nuclear localization [56]. Apoptotic
DNA-ses EndoG [57] and TNM1 of Tetrahymena are
released during apoptosis [58], whereas proteins

belonging to the NUC1/apoptotic DNase 2 family
have lysosomal localization [59, 60].

Step 2: Induction of apoptotic proteases
The second conserved apoptotic mechanism in

our model is the induction of apoptotic proteases, the
caspases, andmetacaspases. Caspases are found in ani-
mals, whereas metacaspases are found only in eukar-
yotes that lack caspases: plants, protists, and fungi.
Like caspases, they contain a caspase-specific catalytic
diad of histidine and cysteine, as well as a caspase-like
secondary structure.

Metacaspases and caspases have similar functions.
The apoptotic function of metacaspases has been
demonstrated in distantly related plants [61] and fungi
[62], and that of caspases has been demonstrated in
animals [53]. Caspases and metacaspases are so remo-
tely related that they have different enzymatic specifi-
city. Both types of protease have many different
substrates. Among them is tudor staphyllococus
nuclease, whose inactivation induces apoptosis, a pro-
cess that is probably an ancient conserved apoptotic
mechanism [63].

Both metacaspases and caspases also have non-
apoptotic functions. For example, metacaspases play a
role in cell cycle regulation in yeast and Trypanosomes

Figure 4.The scheme of evolutionary-conserved apoptotic pathways.
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[64]. A recent study shows that Drosophila caspase is
required for cellularmigration [65].

Step 3: Self-destruction ofDNA
The third conserved mechanism in our model is

the self-destruction ofDNAby the cell’s ownnucleoly-
tic DNases, including EndoG [57, 66–68], ZEN1 [69],
NUC1/DNase II [59], CAD, and TNM1 [40] (see
table 1).

We showed that EndoG, ZEN1, and NUC1 are
ancient apoptotic factors shared among distantly rela-
ted lineages [40]. The apoptotic function of EndoGhas
been demonstrated in various animals [57, 70], yeasts
[67], trypanosomes [68], and Leishmania [66].

NUC1, ZEN1, and EndoG are ancient apoptotic
DNases with homologs in remotely related eukaryotic
taxonomic groups and bacteria. ZEN1 is a key apopto-
sis DNase in plants. We also observed apoptotic
nucleases in one lineage. One of them, a well-descri-
bed apoptotic nuclease, is the mammalian caspase-
activatedDNase, or CAD [71]. CAD is found in a com-
plex with its inhibitor protein, ICAD, also called DNA
fragmentation factor 45 [72]. It has been shown that
cleavage of this inhibitor by caspases activates apopto-
tic degradation. These proteins are encoded by the
genomes of mammals and insects [40]. It is likely that
this enzyme appeared after the divergence of animals.

Another apoptotic nuclease observed exclusively
in one lineage is the mitochondrial nuclease TMN1 of
ciliates. Basic local alignment search tool (BLAST)
searches indicate that this protein is encoded only by
ciliates [58].

In conclusion, apoptosis is an ancient evolutionary
mechanism with similar pathways in widely differing
systematic groups. However, in each of the groups,
elements of the pathways have been adapted to other
functions aswell.

Several bacterial program cell death mechanisms
are described. They are often based on a toxin-anti-
toxin system [15]. It is not clear if any of suchmechan-
isms are evolutionary related to apoptosis [73–75].

4.Debate about themaintenance of
apoptosis

Apoptotic mechanisms are complex even in unicellu-
lar organisms. For example, in yeast, apoptosis-like
cell death is induced by different stimuli, including
aging [76], chemical or physical stress [77], and
unsuccessfulmating [78] (for a review, see [79]).

This observation prompts two great questions for
evolutionary biology: what is the origin of apoptosis,
and why is apoptotic machinery maintained in the
extant organisms? In previous chapters, I discussed
different hypotheses on the origin of apoptotic mech-
anism. However, it is not clear if such hypotheses pro-
vide an explanation for themaintenance of apoptosis.

There is a fundamental difference between the ori-
gin and maintenance. The origin of apoptotic traits
was caused by selection forces acting in the past. The
maintenance of such traits is caused by currently exist-
ing selection forces.

Table 1.BLASThomology searches using apoptosis DNases as queries. Results were confirmed using reciprocal blast. Each queryDNase
represents a different column and homologs detected in other organisms are presented in each row. The IDs for query and detected sequen-
ces are given and the expected values presented below each ID.

CAD ENDOG ZEN1 NUC1 TNM1

D.melanogaster H. sapiens H. vulgare C. elegans T. thermophila

NP_609631.1 NP_004426.2 BAA28942.1 NP_509604.1 XP_001013802.2

H. sapiens NP_004393.1 NP_004426.2 NO NP_067056.2 NO

7× 10−25 0 10−53

D.melanogaster NP_609631.10 NP_610737.1 NO NP_650672.1 NO

5× 10−90 10−56

C. elegans NO NP_491371.1 NO NP_509604.1 NO

8× 10−77 0

S. cerevisiae NO NP_012327.1 NO NO NO

2× 10−56

D. discoideum NO XP_637185.1 NO XP_635662.1 NO

9× 10−28 2× 10−53

V. carteri NO XP_002957302.1 NO XP_002952503.1 NO

10−38 0.012

A. thaliana NO NO NP_680734.1 NO NO

10−100

P. falciparum NO NO XP_002808920.1 NO NO

4× 10−10

T. cruzi NO XP_813011.1 XP_811600.1 NO NO

5× 10−25 2× 10−12

T. thermophila NO NO XP_001012761.1 XP_976867.1 XP_001013802.2

6× 10−12 2× 10−40 8× 10−99

T. vaginalis NO NO XP_001323878.1+ XP_001312304.1 NO

3× 10−9 2× 10−48
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While it is not clear why complex apoptotic
mechanisms are maintained in unicellular organisms,
some scientists hypothesize that apoptosis is altruistic
suicide maintained by kin selection [40, 80, 81].
According to this hypothesis, PCD is adaptive. How-
ever, ‘altruistic suicide’ is not an exclusive explanation
for the maintenance of apoptosis. ‘Antagonistic pleio-
tropy’ is a second hypothesis also considered by differ-
ent scholars. This hypothesis was first formulated by
Williams as an evolutionary explanation of senescence
[82]. According to this theory, antagonistic pleiotropy
occurs when one gene controls many traits, some of
them beneficial and others deleterious. This hypoth-
esis could also be applied to apoptosis, as has been
pointed out in a review byGarrido andKroemer [83].

Different experiments indicate that there are cir-
cumstances in which the ‘altruistic suicide’ seems be
the more favorable explanation, when in others, the
negative pleiotropy ismore likely.

There are several non-exclusive explanations why
‘altruistic’ suicide is beneficial for surviving cells.

The first is the involvement of programmed cell
death in the regulation of cell density.

Several studies of protozoan parasites support this
view. For example, Trypanosoma, which causes sleep-
ing sickness, uses several mechanisms for cell density
regulation [80]. One of them occurs in the develop-
mental stage called ‘stumpy forms.’ Stumpy cells pro-
duce an inducer of cell death of stumpy forms—the
prostaglandin D2 (PGD2). Apoptosis-like cell death
has also been observed in malaria parasites—Plasmo-
dium—during the infection of mosquitos [84]. The
involvement of apoptosis-like cell death in the regula-
tion of population size has also been described for
free-living unicellular eukaryotes that cause phyto-
plankton blooms (for a review, see [85]). For example,
a bloom of the dinoflagellate Peridinium gatunense is
observed each year in Lake Kinneret. The apoptosis-
like cell death quickly terminates the bloom [86].

The ‘public goods’ hypothesis is another plausible
explanation of ‘altruistic suicide.’ According to this
theory, the contents released by a cell programmed to
die constitute a ‘public good’ that benefits surviving
neighboring and related cells. In the green algae, Chla-
mydomonas, Durand’s group [87] has shown that the
contents liberated during non-programmed cell death
are detrimental to other cells, whereas the contents
released during apoptotic-like programmed cell death
are beneficial. This observation suggests a possible
mechanism for the origin andmaintenance of apopto-
tic-like programmed cell death: it was initially amech-
anism to eliminate toxic substances released by a dying
cell and protecting related neighbors.

Later they showed that this beneficial effect of the
liberated contents during program cell-death is spe-
cies-specific. They showed that PCD has an inhibitory
effect on the growth of other species [88].

Bacteria often respond to the attack of an obliga-
tory lytic phage by committing suicide. This is an

altruistic act protecting other cells. It has been shown,
using synthetic biology, that the reproductive cost of
suicide is low, because an infected cell has no chance of
escaping death, and the act provides large benefits to
related survivors [89]. It has also been shown that
eukaryotic apoptosis-like programmed cell death is
also involved in the analogous response to the attack of
viruses in unicellular green algaeEmiliania huxlei [90].

As was already mentioned, the negative pleiotropy
hypothesis could also be applied to apoptosis, as has
been pointed out in a review by Garrido and Kroemer
showing that yeast apoptotic proteins also have non-
apoptotic vital functions [83].

Different studies support this claim by different
genetic studies: e.g., cytochrome c, apart from being
part of the respiratory chain, is an apoptotic factor
[91]. It has also been shown that metacaspase is
involved in the process of clearing insoluble protein
aggregates [92], and that inactivation of its gene results
in slower cell cycle progression [93].

5. Evolution of developmental apoptosis

Multicellularity appeared several times independently
during the eukaryotic evolution in plants, fungi, and
animals. A recent paper has shown, using exper-
imental evolution, that multicellularity can be rapidly
selected in yeasts [94]. Gravity was the selection factor.
Selected multicellular strains had higher rates of
apoptosis-like cell death. In multicellular organisms,
cell death is an important developmental mechanism
called developmental apoptosis. Even in unicellular
ciliates like Tetrahymena, primitive developmental cell
death is observed. Tetrahymena have a complex life
cycle. After sexual conjugation, one nucleus (called a
macronucleus) is degraded by apoptotic-like cell death
[95]. There are several other examples that show that
developmental apoptosis is not exclusively an animal
process, which is required to establishmulticellularity.
For example, it is described in the slime mold,
Dictyostelium [96], as well as green plants (see [97]),
where it is involved in root development [98] and the
development of pollen [99]. In cnidarians, the most
basal animal clade, apoptosis is crucial for metamor-
phosis leading to the establishment of germ layers
[100, 101]. Apoptosis is also involved in the develop-
ment of the nervous and immune systems in animals,
including humans (see [102] and [103]). The critical
function of apoptosis is not restricted to development.
It also plays an important role in maintaining home-
ostasis in adult organisms. It is a crucial component of
wound healing, which involves three phases: inflam-
mation, tissue formation, and tissue remodeling.
During this process, specific populations of cell types
rapidly multiply or migrate to wounds. Later, such
cells are removed by apoptosis (see [104]).
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6. Evolution of apoptosis and cellular aging

Aging is an evolutionary inevitability observed in
virtually all organisms. It is likely that this process
appeared before the endosymbiosis of the proto-
mitochondrion with the proto-eukaryotic cell and
thus well before multicellularity. It appears that all
organisms that divide asymmetrically must age. For
example, the division of E. coli is asymmetric: the
‘parent’ cell inherits the older parts of the cell (e.g., the
end or pole) and the ‘daughter’ cell is rejuvenated by
the inheritance of newly synthetized parts [105]. This
is called replicative aging, in which cells inheriting
older components grow more slowly, divide less
frequently, and have higher mortality rates. It is likely
that the aging of E. coli is caused by protein aggregates,
which are inherited asymmetrically [106].

Several examples suggest that in eukaryotes aging
induces apoptosis. Replicative aging also occurs in
yeast, a unicellular eukaryote, where accumulation of
protein aggregates is observed in aging cells. The
mechanisms of the cell death of aged cells in yeast and
in bacteria differ slightly; old yeast cells often experi-
ence apoptosis-like cell death [107–109] (see [110]) in
yeast, where deletion of pro-apoptotic factors increa-
ses life span [62, 111]. Apoptosis and the pathological
accumulation of peptide aggregates play important
roles in animal cellular aging, including humans. Sev-
eral aged linked pathologies are caused by the accumu-
lation of toxic protein aggregates [112] that can induce
pathological apoptosis. Apoptosis seems be a very gen-
eral aging mechanism. A classical study showed that
the accumulation of mitochondrial mutations in
mutant mice of mitochondrial DNA polymerase γ

(POLG) induces apoptosis in different tissues [113]. It
would appear that this induction of apoptosis accel-
erates animal aging [113].

6.1. Carcinogenesis and apoptosis: theWarburg
hypothesis
I hypothesize that there is a deep relationship between
mitochondrial metabolism, its role in aerobic versus
anaerobic respiration, and apoptosis. Such a relation-
ship can be observed in human cells during tumor-
igenesis, pathological aging, and neurodegenerative
diseases

In contrast to aging cells, cancer cells are immor-
tal. Different studies suggest that carcinogenesis rever-
ses cellular aging. Understanding the origin of
apoptosis helps us to understand why apoptosis has
been deeply conserved and may shed light on the cau-
ses of cancer. A recent review suggested that a malig-
nant transformation can be seen as a reversion from
the phenotype of a differentiated cell of a multicellular
organism to an ancestral unicellular eukaryotic phe-
notype [114]. Such rapid reversal of evolution may be
one key to understanding cancer.

Mutations in mitochondrial DNA (mtDNA) tend
to accumulate in cancer cells [115, 116]. The function
of these mutations has been analyzed using cibrids
(cytoplasmic hybrids) to place mitochondria into dif-
ferent cell lines; the results suggest that mtDNA has
strong effects on the metastatic phenotype of cancer
cells [117, 118].

During neoplastic transformation, the suppres-
sion of apoptosis is an obligatory compensatory
change following the dysregulation of cell prolifera-
tion [119, 120]. Antiapoptotic inhibitors such as B-cell
lymphoma 2 (BCL2) are overexpressed [121], and pro-
apoptotic proteins, like those of the subunit of apopto-
some apoptotic protease activating factor 1 (APAF1-1)
and BAX protein (Bcl-2 associated X protein), are
often inhibited inmalignant cancer cells [35, 122].

Apoptosis is a key part of the intrinsic tumor sup-
pression mechanisms (for a review, see [123]). Several
stress types accompanying malignant transformation
activate apoptosis. In animals, p53 is a major stress
sensor involved in regulating the progress of the cell
cycle as well as apoptosis (see figure 5). Mitochondria
are usually a key player in apoptosis (although mito-
chondria- independent apoptosis also exists [124]).

Malignant transformation causes several pertur-
bations of cellular activity (malignant stresses), among
them defects in chromosome segregation. Such
defects were first observed by Boveri in 1914 [125],
who suggested that cancer arises from genomic
instability, an assumption that remains prevalent in
current thinking on cancer. Later, it was shown that
elevated mutagenesis increases the probability of
somatic mutation and malignant transformation (for
a review, see [126]). Both genomic instability [127] and
hypoxia [128] are often experienced by locally
advanced tumors, creating stresses that activate P53-
dependent apoptosis (for a review, see [127, 129]).
There are also P53-independent apoptosis activation
pathways. Hypoxia, for instance, also induces P53-
independent apoptosis by activating genes from the
BCL-2 family [128], and P53-independent apoptosis is
activated when microtubule depolymerization during
the mitotic G2/M transition is perturbed [130]. Dif-
ferent mechanisms for activating apoptosis are exploi-
ted by standard anticancer therapies: radiotherapy and
cis-platinum induce apoptosis by damaging DNA
[131], and taxol-based drugs induce apoptosis by sta-
bilizingmicrotubules duringmitosis [130].

Whereas normal cells rely primarily on oxidative
mitochondrial respiration, most cancer cells use anae-
robic metabolism. This classical observation of War-
burg’s led him to claim that ‘Cancer cells originate from
normal body cells in two phases. The first phase is the
irreversible injuring of respiration. (K) The irreversible
injuring of respiration is followed, as the second phase of
cancer formation, by a long struggle for existence by the
injured cells to maintain their structure, in which a part
of the cells perish from lack of energy, while another part
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succeed in replacing the irretrievably lost respiration
energy by fermentation energy’ [132].

Later he clarified that statement by observing that
the respiration of cancer cells is small relative to the
consumption of glucose, but not small relative to the
respiration of normal cells [133]. This is the Warburg
hypothesis of cancer, and several recent studies con-
firm that mutations leading to theWarburg effect play
an important role inmalignant transformations.

Tumor cells have been shown to express only the
embryonic isoform of pyruvate kinase. Switching pyr-
uvate kinase expression to the adult isoform leads to
the reversal of theWarburg effect and a reduced ability
to form tumors in nude mice [134]. Deletion of
embryonic pyruvate kinase accelerates mammary
tumor formation in mice, where both embryonic and
adult pyruvate kinases are inactivated in replicating
mammary tumor cells [135]. Recent studies also sug-
gest thatmutations of p53 are associatedwith theWar-
burg effect [136].

The Warburg effect is puzzling because oxidative
phosphorylation generates up to 36 ATPs from one
glucose molecule, whereas the anaerobic process gen-
erates only 2. How can cancers grow rapidly while
using a less efficient mechanism to generate energy?
One possible explanation is that inefficient ATP pro-
duction is a problem only when resources are scarce.
Heiden et al suggested that proliferating cells may be
adapted to facilitate the incorporation of nutrients
into biomass and that the anaerobic state is more effi-
cient for this purpose [137]. They argue that during
growth, glucose is also a source of carbons for mole-
cular synthesis and generating biomass. Oxidative
respiration is a less efficient way of producing biomass,
for some carbons are incorporated into useless Co2.
Some glucose must be diverted for macromolecular
precursors such as alanine, ribose, or acetyl-CoA.
They conclude that anaerobic is more efficient than

aerobic metabolism at incorporating nutrients into
biomass. This idea is supported by the fact that rapidly
dividing microbes do not often depend on oxidative
respiration even when they have access to oxygen.
According to this explanation, the Warburg effect is
not the direct cause of malignant transformation as
Warburg suggested, but it does lead to the increased
fitness of cancer cells by providing them with more
carbon-based molecules with which to build cellular
structures.

Recent studies suggest that the Warburg effect is
also involved in the reverse aging of cancer cells and
the development of cancer stem cells. The concept that
cancer cells arise from embryonal-like stem cells was
first proposed in the nineteenth century. The progress
in oncology led to the discovery of aggressive plur-
ipotent cancer stem-like cells [138]. Such cells have the
key stem cell properties, including self-renewal, which
drives tumorigenesis and aberrant differentiation into
other cancer cells [139, 140]. Such cells are also more
resistant to chemotherapy than other cancer cells and
it has been shown, as well, that a high proportion of
stem cells signifies aworse prognosis [140].

Recent studies indicate that the metabolic repro-
gramming leading to the Warburg effect plays a sig-
nificant role in the ‘reversed aging’ and the
development of cancer stem-like cells (cancer stem
cells) [138]. Classical observations indicate that the
Warburg effect is evident during the early stages of
mammalian development. At the beginning of orga-
nogenesis, the embryo shows a high rate of anaerobic
glycolysis, typical of theWarburg effect. Later, a meta-
bolic shift toward oxidative respiration takes place
[141]. In recent years, significant progress in embryol-
ogy has been achieved as a result of the methodology
discovered for reprogramming somatic cells into plur-
ipotent embryonal-like stem cells [142]. It would
appear that the stimulation of aerobic glycolysis

Figure 5.The activation of apoptosis by cancer stresses. A picture imported fromwikipedia was used in thisfigure. (The following
image imported fromwikipedia was used in thisfigure: https://bg.wikipedia.org/wiki/%D0%9C%D0%B8%D1%82%D0%BE%
D1%85%D0%BE%D0%BD%D0%B4%D1%80%D0%B8%D1%8F#/media/File:Mito.png (public domain).)
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(Warburg effect) favors induced pluripotency [138].
Recent studies show similar phenomena in cancer
stem cells. Glucose in the environment induces a sig-
nificant increase in the percentage of stem-like cells in
the overall cancer cell population. Interestingly,
hypoxia can lead to the development of cancer stem
cells and cause some therapeutic approaches to back-
fire [128], as shown by Conley et al [143], who gener-
ated intratumoral hypoxia in human breast cancer
xenografts. The antiangiogenic agents, Sunitinib and
Bevacizumab, were found to increase the population
of aggressive cancer stem cells.

It has also been shown that the enhanced activity
of the hypoxia-inducible factors, HIF-1α and HIF-2α,
play crucial roles in the development of the stemness
phenotype. The activated HIFs may induce both the
glycolysis and pluripotency-associated transcription
factors (for a review, see [144]). This suggests that can-
cer stem cells may have a selection advantage when
cells cannot use oxidative cellular respiration.

As already mentioned, immortality is one of the
traits of a cancer cell. Recent studies suggest another
plausible explanation of the Warburg effect. A drug
candidate, dichloroacetate, shifts metabolism from
glycolysis to glucose oxidation and induces apoptosis
[145]. Thus, the Warburg effect may help cancer cells
inhibit apoptosis (see [146]). We should consider an
apoptotic explanation of the Warburg effect in which
malignant transformation leads to an inhibition of
apoptosis and additionally shiftsmetabolism from gly-
colysis to oxidative respiration.

6.2. Cancer, neuronal aging, and apoptosis
Asmentioned in chapter 5, neurodegenerative diseases
are caused by the aging process of neuronal cells.

Patients with a history of cancer have experienced
a reduced risk of Alzheimer’s and Parkinson’s diseases
[147–150]. This observation raises the question, do
somemechanisms link cancer to the aging of neurons?

One possible explanation is based on the differ-
ences in the metabolism of cancer and neuron cells. In
contrast to cancer cells, the predominant mode of
energy production in neurons is oxidative respiration.
Two important factors in the early pathology of neu-
rodegenerative diseases are mitochondrial dysfunc-
tion and oxidative stress. These lead to the creation of
the ‘inverse Warburg hypothesis,’ according to which
the regulation of mitochondrial respiration would
compensate for the mitochondrial dysfunction that
occurs during pathological aging. Studies supporting
this idea show that an early marker of neurons suscep-
tible to Alzheimer’s disease is an increase in mtDNA
and in levels of the cytochrome oxidase-1 protein. This
compensatory change enhances production of the free
radicals thought to cause metabolic perturbations (see
[151]). I suggest that the ‘inverseWarburg effect’ could
also be explained by a direct link between mitochon-
drial metabolism and apoptosis in which enhanced

mitochondrial respiratory activity leads to pathologi-
cal apoptosis and the degeneration of neurons. As
already mentioned, a link between mitochondrial
metabolism and cancer exists in the ‘Warburg effect’
where anaerobic respiration inhibits apoptosis. It is
well known that apoptosis is involved in the pathology
of bothAlzheimer’s and Parkinson’s diseases; there are
hallmarks of apoptosis in neuron cells that are dying
[152, 153].

7. Conclusions

Apoptosis is an ancient mechanism whose pathways
are shared by lineageswith ancient common ancestors.
We do not yet understand why apoptotic mechanisms
evolved andweremaintained in unicellular organisms.
Mitochondria play an important role in apoptosis, for
mitochondrial metabolism, respiration, and apoptotic
mechanisms are functionally connected by cyto-
chrome c and the AIFs (AIFs), which are involved in
mitochondrial respiration. That the mitochondrial
respiration of cancer cells is small relative to the
consumption of glucose—the Warburg effect—sug-
gests that the origin of apoptosis contains clues to the
understanding of intrinsic tumor-suppressormechan-
isms. Mitochondrial activity is crucial to tumor
suppression by apoptosis and to mitochondrial
respiration. There is also a link between pathological
aging during both Alzheimer’s and Parkinson’s dis-
eases and mitochondrial activity. Pathological aging
occurs in neurons, which rely on oxidative respiration.
According to the ‘inverse Warburg hypothesis,’ the
mitochondrial activity is involved in the pathological
process including pathological apoptosis in aging cells.

Several testable hypotheses follow from this view:
The ancient functional connection between

respiration and apoptosis indicates it is likely that the
deletion of apoptotic factors in hypoxia is beneficial to
unicellular organisms.

The altruistic suicide hypothesis can be tested
using experimental evolution. This hypothesis implies
that competition between closely and remotely related
unicellular organisms would have had an impact on
the evolution of apoptotic traits. The competition
between closely related conspecifics will favor the
maintenance of apoptotic mechanisms. In contrast,
competition between remotely related conspecifics
will favor their weakening.

The function of apoptosis in cellular aging is not
clear. I hypothesize here that apoptotic mechanisms
participate in the removal of the toxic remnants of
aged cells (cf the groups observed by Durand and
described above). This can be tested experimentally by
comparing the toxicity of the remnants of cells aging
due to programmed and accidental cell death and
could be particularly important in cases of neurode-
generative disease.
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As already mentioned, there have been many stu-
dies testing the hypothesis developed fromWarburg’s.
It has been shown that the stimulation of anaerobic
glycolysis often enhances the tumorigenic phenotype.
More research is still required.

On the other hand, there is little work testing the
‘inverse Warburg hypothesis.’ If cellular aging is
reverse tumorigenesis, then the stimulation of anaero-
bic glycolysis will protect neuronal cells during the
progress of a neurodegenerative disease. This hypoth-
esis should be tested in depth. The hypothesis also sug-
gests that diet will have an impact on the development
of neurodegenerative diseases in animal models. Diets
enriched in glucose should stimulate the glycolysis of
neuronal cells and postpone pathological aging, and
hypoxic conditions should have a beneficial effect on
neurodegenerative diseases.
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