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A B S T R A C T

Trehalose, mannitol and arabitol are the main saccharides of extant fungal metabolism, but their occurrence and
distribution in geological materials have rarely been considered. Here, we identify these sugars in Miocene lig-
nites and for the first time in Late Cretaceous mudstones and coals. The co-occurrence of trehalose, mannitol
and arabitol in the sedimentary rocks investigated suggests their fungal origin, because these three saccharides
are major compounds present in most modern fungi, including the very common mycorrhizal and wood-rotting
groups. Therefore, we conclude that these sugars should be treated as new fungal biomarkers (biomolecules)
present in geological rocks. Trehalose and mannitol are major compounds in total extracts of the samples and a
sum of their concentration reaches 4.6μg/g of sample. The arabitol concentrations do not exceed 0.5μg/g, but in
contrast to trehalose, the concentration correlates well with mannitol (R⁠2 =0.94), suggesting that they have the
same, translocatory role in fungi. Based on the trehalose vs. mannitol and arabitol distributions in Cretaceous
samples and their comparison with data for modern fungi, we preliminarily conclude that the coal seams from
the Rakowice Małe section were formed during warmer climatic periods than the overlying sediments. Further-
more, no DNA could be isolated from the samples of lignites and overlying sediments, whereas it was abundant
in the control samples of maple, birch and oak wood degraded by fungi. This indicates an absence of recent fungi
responsible for decay in lignites and implies that the saccharide origin is connected with ancient fungi.

Other sugar alcohols and acids like D-pinitol, quinic acid and shikimic acid, were found for the first time in
sedimentary rocks, and their source is inferred to be from higher plants, most likely conifers. The preservation of
mono- and disaccharides of fungal origins in pre-Palaeogene strata implies that compounds previously thought
as unstable can survive for tens to hundreds of millions of years without structural changes in immature rocks
unaffected by secondary processes.

1. Introduction

Biomolecules, natural products of living organisms are relatively
rare in sedimentary organic matter (OM). This is mainly connected with
the fact that their low stability leads to early metabolic and diage-
netic destruction or conversion. Nevertheless, in favorable conditions
(low maturation, reducing redox potential, no secondary processes) bio-
molecules can be preserved hundreds of millions of years, and were
occasionally reported from sediments across the Mesozoic and Ceno

zoic (e.g. Otto and Simoneit, 2001; Otto et al., 2002; Marynowski et al.,
2007a, 2007b; Talbot et al., 2016; Rybicki et al., 2017).

Saccharides, ubiquitous biomolecules in both plant and animal king-
doms, are common in marine and terrestrial environments (Klok et al.,
1984; Moers et al., 1989; Hernes et al., 1996; Wakeham et al., 1997;
Amon and Benner, 2003; Comont et al., 2006; Jia et al., 2008), but
were only incidentally described from geological materials older than
Holocene (e.g. Moers et al., 1994; Fabbri et al., 2009). However, in
euxinic conditions polysaccharides can be preserved through sulfur
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Table 1
Concentration of saccharides identified in the Rakowice Małe section (μg/g of sample, and μg/g TOC in parentheses).

Sample TOC [%] Arabitol α-Glucose Mannitol β-Glucose Sucrose Trehalose Shikimic acid Pinitol

Rc3 3.7 0.003 (0.10) 0.03 (0.81) 0.01 (0.28) 0.04 (1.08) 0.03 (0.81) 0.20 (5.41) – 0.03 (0.81)
Rc4A 1.7 – 0.03 (1.76) – 0.03 (1.76) 0.03 (1.76) 0.03 (1.76) – –
Rc5A 10.6 0.05 (0.47) 0.01 (0.09) 0.03 (0.28) 0.03 (0.28) 0.03 (0.28) 0.14 (1.32) – –
Rc6A 5.2 0.08 (1.54) 0.03 (0.58) 0.02 (0.38) 0.04 (0.77) 0.06 (1.15) 0.15 (2.88) – –
Rc7 3.6 0.01 (0.28) 0.04 (1.11) 0.03 (0.83) 0.06 (1.67) 0.04 (1.11) 0.78 (21.7) – –
Rc8B 11.0 0.06 (0.55) 0.03 (0.27) 0.10 (0.91) 0.16 (1.45) 0.04 (0.36) 0.29 (2.64) – –
Rc9B 49.0 0.31 (0.63) 0.05 (0.10) 2.09 (4.27) 0.07 (0.14) – 0.06 (0.12) – –
Rc10B 8.0 – 0.06 (0.74) 0.14 (1.75) 0.09 (1.13) 0.03 (0.38) 1.09 (13.6) – –
Rc10BW 38.5 0.45 (1.18) 0.14 (0.36) 4.28 (11.1) 0.16 (0.42) 0.09 (0.23) 1.95 (5.06) – –
Rc11 2.3 – 0.05 (2.17) 0.02 (0.87) 0.08 (3.48) 0.06 (2.61) 1.49 (64.8) – –
Rc12 0.3 – 0.04 (13.3) 0.01 (3.33) 0.05 (16.7) 0.27 (90) 1.32 (440) 0.20 (66.7) –
Rc13 2.5 – 0.01 (0.40) – 0.01 (0.40) – 0.29 (11.6) – –
Rc14C 1.9 – 0.02 (1.05) 0.01 (0.53) 0.03 (1.58) 0.02 (1.05) 0.03 (1.58) – –
Rc14CK 2.5 – 0.06 (2.40) 0.01 (0.40) 0.01 (0.40) 0.06 (2.40) 0.41 (16.4) – –
Rc15C 24.5 – 0.04 (0.16) – 0.08 (0.33) – – – –
Rc16C 0.8 – 0.03 (3.75) – 0.03 (3.75) 0.05 (6.25) 0.02 (2.50) – –

Fig. 1. Mass fragmentogram (m/z 191) showing an example of the hopane distribution (sample Rc15C). Hopanes are marked by a shortened notation indicating their stereochemistry at
the C-17 and C-21 positions and total number of carbon atoms.

ization processes. Experimental study has shown that the reaction of
glucose and cellulose with H⁠2S leads to formation of organic sulfur com-
pounds (Moers et al., 1988). Later, van Kaam-Peters et al. (1998) and
Sinninghe Damsté et al. (1998) demonstrated using isotope and mole-
cular studies that sulfurized carbohydrates can constitute an important
part of kerogen.

Nonetheless, not all data can be considered as credible. Reports
from the sixties about occurrence of sugars in Precambrian and Cam-
brian rocks should be treated as historical studies showing the detection
of contamination by saccharides dissolved and migrated in water (e.g.
Palacas et al., 1960; Swain et al., 1970). Only recently Marynowski et
al. (2018) identified primary α- and β-glucose in a middle Jurassic fossil
wood and over a dozen mono- and disaccharides in Miocene detritic lig-
nites and xylites. The disaccharides occurrence (sucrose and trehalose)
is especially of interest, because this shows that the glycosidic bond be-
tween saccharide monomers can survive for millions of years.

The source of saccharides in the geological record is not clear. It
is likely, that glucose found in Mesozoic wood and sedimentary rocks
could be a remnant of cellulose degradation (Rybicki et al., 2017;
Marynowski et al., 2018). Other mono- and disaccharides from Miocene
lignites can be degradation products of biopolymers such as hemicellu-
lose and cellulose, but would potentially also occur as free sugars pre-
served in xylites and detritic coals (Marynowski et al., 2018).

Here we demonstrate the co-occurrence of mannitol, arabitol, tre-
halose, and other sugars in the Late Cretaceous sections from the
Rakowice Małe area (SW Poland), as well as their presence in some
Miocene detritic lignites and xylites. We propose that these compounds,
when present as dominant saccharides, can be used as indicators of fun-
gal metabolism, as is typical for many modern fungi (e.g. Koide et al.,
2000; Simoneit et al., 2004; Hybelbauerová et al., 2008).

2. Geological settings

The Late Cretaceous sedimentary rocks, exposed in the Rakowice
Małe area (sandstone quarry “Rakowiczki”) contain the youngest (San-
tonian) part of the structural depression of the North-Sudetic Basin.
This sedimentary basin comprises rocks of ages from Carboniferous to
Cretaceous, and is strictly connected with a suite of structural depres-
sions, which accompanied the European Variscide orogen (Chrząstek
and Wojewoda, 2011). The Santonian sedimentary rocks belong to
the Czerna Formation (Milewicz, 1997), where the oldest part is the
Nowogrodziec Member. The Nowogrodziec Member is represented by
clays, mudstones and sandstones with coal intercalations. These sedi-
mentary rocks are described as swamp and lagoon deposits formed in a
subtropical climate (Milewicz, 1997; Leszczyński, 2010). Generally, the
Czerna Formation is represented mainly by sandstones with coal and
clay intercalations. This formation has an origin in a river delta located
near the front of the Variscian orogen (Milewicz, 1997). The section in
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Fig. 2. GC–MS data for a total extract of a detritic coal sample: (A) Total ion current (TIC) trace with mannitol and trehalose as important compounds, and (B) summed mass chro-
matogram m/z 204+217+361 of the same (Rc10BW) sample.

the Rakowiczki quarry exposes the Coniacian sandstone, of the
Nowogrodziec Member sedimentary rock series, as well its contact with
the main sedimentary series of the Czerna Formation (Leszczyński,
2010).

Additionally, other sampling sites are the Konin area (outcrops
Jóźwin IIB and Drzewce) and the Jaroszów Mine. Jóźwin IIB and
Drzewce are outcrops of exploited Miocene lignites located in the Konin
area. In the Jaroszów Mine the exploited rocks are clays with two thin
lignite beds. Currently, only the younger lignite bed is exposed on the
surface. Its age is correlated the same as the lignites from Konin. For
details regarding the Konin area see Widera (2016) and regarding the
Jaroszów Mine see Urbański et al. (2011).

3. Samples and methods

3.1. Samples

Two groups of samples were investigated using geochemical meth-
ods. The first group was Late Cretaceous (Coniacian/Santonian) samples
from the inoperative “Rakowiczki” sandstone quarry (51°9′56.57”N;
15°32′33.85″E). Series of Santonian sedimentary rocks are exposed
above the exploited deposit of Coniacian sandstone, and between them
is an erosion hiatus. The thickness of the Santonian sedimentary rocks
is 13m at the sampling location, and they consist mostly of sand-
stones, dark grey mudstones and shales with coal (lignite) intercala-
tions and some fossil plant debris. In summary, 23 samples were col-
lected from the section and 16 were selected for geochemical analysis.

The detailed description of the section and location map was given by
Leszczyński (2010).

The second group was Miocene lignites from the Konin area, central
Poland (Jóźwin IIB - 52°25′41.10”N; 18°10′10.20″E and Drzewce mines)
and the Jaroszów mine (50°59′39.00”N; 16°27′31.50″E), SW Poland.
These coals have a low maturity (huminite reflectance for the Konin
coals is between 0.16 and 0.22% R⁠r; Fabiańska and Kurkiewicz, 2013),
and the xylites have an abundant (holo)cellulose content (Bechtel et al.,
2007; Fabbri et al., 2009; Marynowski et al., 2018). Two xylite samples
and two detritic coals were selected.

Three control samples of wood (maple, birch and oak trunks) de-
graded by fungi were sampled for DNA tests. Moreover, five extant
wood-degrading fungi were sampled and analyzed.

3.2. Total organic carbon content

The total carbon (TC) and total inorganic carbon (TIC) contents were
determined using an Eltra CS-500 IR-analyzer with a TIC module at the
Faculty of Earth Sciences, Sosnowiec. The TC was determined by using
an infrared cell detector for CO⁠2, which evolved from the combustion
of organic matter under an oxygen atmosphere with the simultaneous
thermal decomposition of carbonates. The TIC content was determined
by an infrared detector for CO⁠2 that was derived from the carbonates
by reaction with 15% warm hydrochloric acid. The total organic carbon
(TOC) was calculated as the difference between the TC and TIC. The in-
strument was calibrated utilizing the Eltra standards.
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Fig. 3. Agarose gel electrophoresis of probes obtained after attempts of total DNA isolation from all the samples examined (2–16), bacterial 16SrRNA PCR products (17–30) and fungal
28SrRNA PCR products (31–45). 1. DNA 1kb marker; 2. blank sample 1 (1.7ng/μl); 3. blank sample 2 (3.6ng/μl); 4. rotten birch wood (39.9ng/μl); 5. rotten maple wood (87.6ng/μl);
6. rotten oak wood (63.6ng/μl); 7. RC 6A⁠1 (2.6ng/μl); 8. RC 6A⁠2 (4.6ng/μl); 9. RC 7⁠1 (2.6ng/μl); 10. RC 7⁠2 (1.9ng/μl); 11. RC 9B⁠1 (1.6ng/μl); 12. RC 9B⁠2 (1.5ng/μl); 13. RC 10B⁠1
(7.7ng/μl); 14. RC 10B⁠2 (4.9ng/μl); 15. RC 14CK⁠1 (1.6ng/μl); 16. RC 14CK⁠2 (1.8ng/μl); 17. blank sample 1; 18. rotten birch wood; 19. rotten maple wood; 20. rotten oak wood; 21. RC
6A⁠1; 22. RC 6A⁠2; 23. RC 7⁠1; 24. RC 7⁠2; 25. RC 9B⁠1; 26. RC 9B⁠2; 27. RC 10B⁠1; 28. RC 10B⁠2; 29. RC 14CK⁠1; 30. RC 14CK⁠2; 31. blank sample 1; 32. blank sample 2; 33. rotten birch wood;
34. rotten maple wood; 35. rotten oak wood; 36. RC 6A⁠1; 37. RC 6A⁠2; 38. RC 7⁠1; 39. RC 7⁠2; 40. RC 9B⁠1; 41. RC 9B⁠2; 42. RC 10B⁠1; 43. RC 10B⁠2; 44. RC 14CK⁠1; 45. RC 14CK⁠2; 46. DNA 1kb
marker.

3.3. DNA tests

A PowerSoil DNA isolation kit (MoBio Laboratories, Carlsbad, CA)
was used to isolate total DNA from selected samples of the Rakow-
ice Małe section (RC6A, RC7, RC9B, RC10B, RC14CK). Modern rot-
ten trunks of birch, maple and oak were used as a control material
(a positive control). DNA was extracted and purified according to the
manufacturer's protocol with some modifications. The 350–400mg sam-
ples of the rock or the rotten wood were placed into bead tubes for
extraction in duplicate. Two bead tubes did not contain any sample
(blanks). All tubes were incubated at 65 °C for 10min and then shaken
horizontally in a MoBio vortex adapter for 20min at maximum speed.
The remaining steps were performed as directed by the manufacturer.
The final samples of extracted DNA were stored at −20 °C. The pres-
ence of DNA was checked by agarose gel electrophoresis and its con-
centration was measured with a Thermo Scientific™ NanoDrop 2000C.
Using the total DNA isolated from the microbial community as tem-
plate, (i) the full-length bacterial 16S rRNA gene fragments were am-
plified by polymerase chain reaction (PCR) using PCR Mix Plus (A&A
Biotechnology) with the universal primers 27F (5’-AGAGTTTGATCCTG-
GCTCAG-3′) and 1492R (5’-GGTTACCTTGTTACGACTT-3′); and (ii) a
fragment of the 28S rRNA gene was amplified using the primer pair
NL1 (5’ GCA TAT CAA TAA GCG GAG GAA AAG 3′)/NL4 (5′ GGT CCG
TGT TTC AAG ACG G 3′) for detection of fungi (Cui et al., 2013). For
the primer pair NL1/NL4 the following amplification conditions were
used: 94 °C for 2min, followed by 30cycles of 94 °C for 30s, 52 °C for
30s and 72 °C for 1min, with a final extension at 72 °C for 7min. For
the primers 27F and 1492R the following amplification conditions were
used: 95 °C for 5min, followed by 20cycles of 95 °C for 30s, 53 °C for

30s, 72 °C for 90s; and then 15cycles of 95 °C for 30s, 46 °C for 30s,
72 °C for 1.5min; with a final extension at 72 °C for 10min. The PCR
products were submitted to agarose gel electrophoresis. Tests were pro-
vided at the Institute of Biochemistry and Biophysics, PAN, Warszawa.

3.4. Organic petrology

Five samples rich in TOC (Rc7, Rc8B, Rc9B, Rc10BW, Rc15C) were
selected as a representative group for organic petrological studies. Ran-
dom reflectance measurements were carried out on 100 points accord-
ing to the procedures described in ISO 7404-5 (2009) on polished chips.
All the petrographic observations and analyses were carried using an
optical microscope Axio Imager.A2m at the Faculty of Earth Sciences,
Sosnowiec.

3.5. Extraction, separation and derivatization

Powdered samples (ca. 15g) were extracted using a dichloromethane
(DCM)/methanol mixture (1:1 v:v) with an accelerated Dionex ASE
350 solvent extractor. Column chromatography was performed using
activated silica gel (110 °C for 24h) and extract aliquots were sepa-
rated into aliphatic, aromatic and polar fractions by modified column
chromatography (Bastow et al., 2007). The eluents used for collec-
tion of the three fractions were: n-pentane (aliphatic), n-pentane and
DCM (7:3, aromatic), and DCM and methanol (1:1, polar). All spec-
troscopically pure solvents were of super-dehydrated grade. Aliquots
of the polar fractions and total extracts were converted to trimethylsi-
lyl (TMS) derivatives by reaction with N,O-bis-(trimethylsilyl)trifluo-
roacetamide (BSTFA), 1% trimethylchlorosilane, and pyridine for 3h
at 70 °C. An Internal standard (ethyl vanillin)
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Fig. 4. Summed mass chromatograms m/z 204+217+361 of: (A) the mudstone (Rc10B) where trehalose is the dominant sugar, and (B) coal seam (Rc10BW) within the Rc10B mudstone
where mannitol dominates.

was added to the total extracts before derivatization. The excess reagent
was evaporated off under a stream of dry nitrogen gas and the sample
mixture dissolved in an equivalent volume of n-hexane. A blank sample
(silica gel) was analyzed using the same procedure (including extraction
and separation on columns). Saccharides were not detected in the blank
sample. In case of wood-degrading fungi, total extracts were analyzed
using the same method as rock extracts.

3.6. Gas chromatography - mass spectrometry

Gas chromatography - mass spectrometry (GC–MS) analyses were
carried out with an Agilent Technologies 7890A gas chromatograph and
Agilent 5975C Network mass spectrometer with Triple-Axis Detector
(MSD) at the Faculty of Earth Sciences, Sosnowiec. Helium (6.0 Grade)
was used as a carrier gas at a constant flow of 2.6ml/min. Separa-
tion was obtained on a fused silica capillary column (J&W HP5-MS,
60m×0.25mm i.d., 0.25μm film thickness) coated with a chemically
bonded phase (5% phenyl, 95% methylsiloxane), for which the GC oven
temperature was programmed from 45 °C (1min) to 100 °C at 20 °C/min,
then to 300 °C at 3 °C/min (hold 60min), with a solvent delay of 10min.

The GC column outlet was connected directly to the ion source of
the MSD. The GC–MS interface was set at 280 °C, while the ion source
and the quadrupole analyzer were set at 230 and 150 °C, respectively.
Mass spectra were recorded from 45 to 550 da (0–40min) and 50–700
da (> 40min). The MS was operated in the electron impact mode, with
an ionization energy of 70eV. All GC–MS analysis were performed at
the Faculty of Earth Sciences, Sosnowiec.

An Agilent Technologies MSD ChemStation E.02.01.1177 and the
Wiley Registry of Mass Spectral Data (9th edition) software were used
for data collection and mass spectra processing. Mono- and disaccha

rides were identified based on comparison of mass spectra and reten-
tion times with those of standards and data published by Medeiros
and Simoneit (2007). For identification of saccharides, the following
standards were used: (from Sigma-Aldrich) d-glucose, L-(−)-arabitol,
D-(+)-arabitol, mannitol, erythritol, threitol, sucrose, shikimic acid,
pinitol, quinic acid, tricarballylic acid and (from Fluka) trehalose. Ethyl
vanillin (Sigma-Aldrich) was used as internal standard.

4. Results

4.1. Vitrinite reflectance

The dominant maceral in all samples is vitrinite, preserved usually
as large but highly porous fragments. Inertinite was identified in one
sample only as compacted / shattered cells. Mean vitrinite reflectance
values measured for 5 samples (100 counts each) ranged from 0.39% to
0.45% Rr (Table S1 in Supplementary Material section). Such values are
characteristic for lignites to sub-bituminous coals, where the maximum
temperature influence on the OM never exceeded 50 °C (Hunt, 1995).

4.2. General geochemical data

Total organic carbon values for the Cretaceous samples are diverse
and range from 0.3 to 49% wt. (Table 1). In the Rakowice Małe sec-
tion one thin coal seam can be distinguished (Rc9B; 49% wt. TOC),
and one mudstone horizon (Rc10B) with coal intercalations (Rc10BW;
38.5% wt. TOC). The organic matter (OM) in the Rakowice Małe section
is immature (see section 4.1). The Carbon Preference Index (CPI) values
are >3 for all samples indicating not only terrestrial higher plant in-
put, but also supporting the immaturity of the OM (Table S2). Hopanes
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Fig. 5. TIC chromatogram of a Miocene detritic coal sample showing the distribution of saccharides (A), and the mass spectra of D-pinitol (B), quinic acid (C) and shikimic acid (D), as
the trimethylsilyl derivatives.

Fig. 6. Composite plot of the simplified Rakowice Małe section showing depth trends of the bulk TOC and the saccharide data. For the detailed section see Leszczyński (2010).

with the biological precursor 17β(H),21β(H) configuration and hopenes
predominate in all samples (Fig. 1), which is, together with the 22R-ho-
mohopane dominance [22S/(22S+22R) ~ 0.2; Table S2], character-
istic for immature OM (Peters et al., 2005). The limited range of the
hopanes (C⁠27, C⁠30 and C⁠31 high) with hopenes is typical of an origin
from degraded terrestrial vegetation as in peats and soils (Quirk et al.,
1984; Ries-Kautt and Albrecht, 1989). Moreover, the samples contain
conifer biomolecules like ferruginol, dehydroabietic acid, and callitrisic
acid (Fig. 2A) which typically occur only in immature OM (Marynowski
et al., 2007a, 2007b). Other compounds characteristic for coniferous
higher plants identified in these samples are dehydroabietane, simonel-
lite and retene, while tetracyclic diterpenoids were scarce or not pre-
sent. Tricarballylic (1,2,3-propanetricarboxylic) acid was identified in
two TOC-rich samples (Rc9B and Rc10BW).

The Miocene lignites have very low maturities and the details were
described by Marynowski et al. (2018).

4.3. DNA tests

The results of the DNA manipulation performed in this study are
shown in Fig. 3. Lanes 2–16 present the electrophoretic separation of
probes obtained after attempts of total DNA isolation from all the Cre-
taceous and blank samples analyzed. No detectable DNA bands were
obtained from the rock samples (Fig. 3, lanes 7–16). The DNA con-
centration measured by the NanoDrop spectrophotometer in the Cre-
taceous samples (lanes 7–16) were comparable to those of the blanks
(Fig. 3, lanes 2, 3), and resulted from contamination and the high sen-
sitivity of the analytical method (see the legend of Fig. 3). The samples
of rotten wood of birch, maple and oak constituted a positive control
for the experiment. In this case 39.9ng/μl, 87.6ng/μl and 63.6ng/μl
of DNA were obtained, respectively, and DNA bands were observed af-
ter electrophoretic separation (Fig. 3, lanes 4–6). Next, all the samples

after DNA isolation were used as templates to the PCR reaction to detect
and distinguish bacterial and fungal DNA. The results clearly show that
the samples of the rotten wood contain both fungal and bacterial DNA,
indicating the presence of bacteria and fungi in the examined material.
Lanes 18–20 and 33–35 in Fig. 3 present, respectively, the PCR products
specific for bacteria and fungi. On the contrary, no DNA bands and con-
sequently no PCR product bands were obtained from the rock samples
after electrophoretic separation (Fig. 3, lanes 21–30 and 36–45).

4.4. Saccharide distribution and concentration

The saccharides and saccharols detected in the samples of Miocene
coals and Cretaceous sedimentary rocks are: glycerol, α- and β-glucose,
sucrose, trehalose, erythritol, arabitol and mannitol (Figs. 2 and 4). In
addition, D-pinitol, quinic acid, and shikimic acid were identified in
two Cretaceous samples and one Miocene detritic coal from Jaroszów
(JR7z), based on co-elution with authentic standards and mass spectral
fragmentation patterns (Fig. 5). Their mass spectra are presented in Fig.
5B, C and D. The distribution of saccharides in the Cretaceous samples is
diverse. Trehalose is the major sugar (maximum concentration 1.95μg/
g of sample) in most of the samples, dominating over mannitol, sucrose
and glucose (Table 1). However, in the case of two organic-rich coal
samples (Rc9B and Rc10BW) mannitol is the main sugar at 2.09 and
4.28μg/g of sample (Figs. 2, 4 and 6 and Table 1). Glucose is present in
all samples at moderate to low concentrations, while sucrose was iden-
tified in some samples at usually low concentrations (Table 1). Arabitol
and erythritol are present only in some samples (not exceeding 0.5μg/g
of sample), but there is a good correlation (R⁠2 =0.95) between the ara-
bitol and mannitol concentrations in the Cretaceous rocks (Fig. S1). No
such correlation is observed between trehalose and mannitol (R⁠2 =0.2;
Fig. S1).
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Fig. 7. Summed mass chromatograms m/z 217+377 of: (A) sample Rc9B with saccharols and tricarballylic acid as major compounds, and (B) erythritol and threitol standards.

5. Discussion

5.1. Primary character of fungi in late cretaceous and Neogene samples

The confirmation of the primary origin of fungal saccharides in an
investigated geologic section is an important issue, because modern
fungi can potentially contaminate sedimentary rocks or even occur in
low rank coals (Haider et al., 2015).

That is why we attempted to isolate total DNA from the Cretaceous
rock samples and samples of rotten wood of birch, maple and oak as a
positive control. The results of the DNA tests clearly show the presence
of bacteria and fungi in the samples of rotten wood, whereas no de-
tectable DNA was obtained from the rocks. These results could indicate
that low numbers of microorganisms are present in the examined mate-
rial. Many efforts have been undertaken to examine autochthonous mi-
croflora of lignite (e.g. Strąpoć et al., 2008, 2011; Haider et al., 2015).
Culture-independent techniques were employed for molecular analyses
of fresh raw coal samples (Strąpoć et al., 2008, 2011). For example, en-
richment techniques were required in many approaches to detect and
find methanogenic Archaea (Green et al., 2008; Strąpoć et al., 2008,

2011; Opara et al., 2012; Barnhart et al., 2013). However, the identi-
fied sugars are major compounds in extracts of the TOC-rich Cretaceous
samples, and the lack of isolatable DNA suggests their primary origin,
connected with fungal ‘blooms’ during coal formation.

5.2. Origin of mannitol, trehalose and other saccharides in sedimentary
rocks

Perylene, detected in sedimentary rocks, is the compound com-
monly regarded as a biomarker for wood degrading fungi (e.g. Grice
et al., 2009; Marynowski et al., 2013). Its biological precursor accord-
ing to Itoh et al. (2012) is 4,9-dihydroxyperylene-3,10-quinone (DHPQ),
biosynthesized by Cenococcum geophilum Fr., an ectomycorrhizal fungus.

In contrast, saccharides of a fungal origin have never been identi-
fied in rock samples. It is widely known that trehalose, mannitol and
arabitol when present together, are characteristic for different fungi,
including mycorrhizas and mycorrhizal (Martin et al., 1988; Schubert
et al., 1992; Koide et al., 2000; Nehls et al., 2010), entomopathogenic
(Bidochka et al., 1990), wood-rotting (Croan, 2000; Hybelbauerová
et al., 2008), as well as root-rot (Asiegbu, 2000) species (see also
Solomon et al., 2007). Their role in fungi is still not fully recognized,
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but includes carbohydrate storage, reserve carbon source, as well as
membrane and macromolecule protectants toward different types of
stress (Thevelein, 1984; Asiegbu, 2000; Ruijter et al., 2003; Elbein et al.,
2003; Solomon et al., 2007; Ferreira et al., 2007). It is also noteworthy
that some types of fungi, i.e. white rot fungi, will degrade lignin relative
to carbohydrates (Robertson et al., 2008). Most recently Marynowski et
al. (2018) identified elevated levels of trehalose and mannitol in some
Miocene detritic coals and xylites, and preliminarily interpreted them as
fungal biomarkers. The presence of these compounds in the Late Creta-
ceous samples as major saccharides (Figs. 2 and 4) undoubtedly suggests
a fungal origin. Taking into account the ubiquitous occurrence of these
sugars in extant fungi (Table S3) and fungal spores, and their preserva-
tion potential in rocks as old as Cretaceous, we conclude that trehalose,
mannitol and arabitol should be treated as new fungal biomarkers (bio-
molecules). In addition, in samples enriched with mannitol and arabitol
(Rc9B and Rc10BW), tricarballylic acid was identified (Fig. 7). It is a
mycotoxin compound common in modern fungi (Freire and Sant'Ana,
2018).

5.3. Implications for differences in saccharide distribution and organic
matter preservation

Differences in the distributions of trehalose, mannitol and arabitol
were observed in the Rakowice Małe section. Mannitol and arabitol are
present at higher concentrations in the TOC-rich samples, while tre-
halose dominates in all other rock horizons (Table 1; Fig. 6). Differ-
ences in saccharide distribution were also noted in extant wood-degrad-
ing fungi (Table S3).

Koide et al. (2000) reported that the role of trehalose and mannitol is
diverse in fungi. Trehalose is a storage carbohydrate and its accumula-
tion rises in winter, while mannitol plays a translocatory role, increasing
in concentration during warmer seasons. The good correlation between
mannitol and arabitol for the Rakowice Małe samples, also observed for
airborne fungal spores (Bauer et al., 2008), suggests that their role in
fungi would be similar. If the trehalose, mannitol and arabitol concen-
trations reflect colder vs. warmer periods, then the coal seams of the
Rakowice Małe section formed during warmer climatic stages, which
seems reasonable. Generally, the correlation of the saccharide distrib-
ution with temperature may be useful in paleoclimate reconstruction,
but that requires additional study, especially since diverse sugar distri-
butions are also dependent on fungi types (e.g. P-type vs. S-type; see
Asiegbu, 2000). Moreover, Bondarenko et al. (2017) found that some
alkaliphilic fungi change their carbohydrate composition at a very high
pH (glucose is substituted by mannitol and arabitol). The high concen-
tration of fungal biomarkers in this Late Cretaceous section suggests
their important role in this period of time. The Cretaceous is generally
considered a time of warm climate (e.g. Steuber et al., 2005), which to-
gether with increased humidity would have enhanced fungal ‘blooms’.
The swamp to lagoonal sedimentary environment of this rock section
(Leszczyński, 2010) would also have provided excellent conditions for
intensified growth of both wood-rot and mycorrhizal fungi. It is worth
mentioning that arbuscular mycorrhizal colonies are typical representa-
tives of modern peat swamps (e.g. Tawaraya et al., 2003), and thus po-
tentially responsible for the occurrence of fungal sugars in coal samples.

The occurrence of trehalose as a major saccharide and the pres-
ence of sucrose in some samples imply that disaccharides can sur-
vive in sedimentary rocks as old as the Cretaceous. Other compounds
like: isoprenoidal GDGTs (Schouten et al., 2003; Littler et al., 2011;
Jenkyns et al., 2012), sterols (Melendez et al., 2013), hypericinoid pig-
ments (Wolkenstein et al., 2008; Wolkenstein, 2015), polyketide-de-
rived spiroborate pigments (Wolkenstein et al., 2015), or polar diter-
penoids (Marynowski et al., 2007b) have been reported in Palaeo-
zoic and Mesozoic sedimentary deposits. These are other groups of
compounds

previously thought as unstable which were preserved in pre-Palaeogene
strata. This indicates that under favorable conditions (immature OM,
lack of secondary processes like oxidation, biodegradation etc.) not only
simple biological compounds like fatty acids, but also labile, polar nat-
ural products, can survive tens or even hundreds of millions of years
without structural alteration.

5.4. Other sugars and their origin

In addition to fungal saccharides some of the Cretaceous and
Miocene samples contain sugar alcohols and acids (i.e., D-pinitol, quinic
acid and shikimic acid) (Fig. 5; Table 1), not previously described in
sedimentary rocks. These compounds are natural products often pre-
sent in modern plants that form peat bogs. For instance, D-pinitol is a
well-known metabolite common in conifers (e.g. Savidge and Förster,
2001). Also, quinic and shikimic acids were identified in Pinus radiata
(Cranswick and Zabkiewicz, 1979) and Ginkgo biloba (Singh et al., 2008)
extracts, reflecting their common occurrence in the higher plant king-
dom. These compounds supplement the list of saccharides identified in
lignites and other sedimentary rocks (Rybicki et al., 2017; Marynowski
et al., 2018; see Medeiros and Simoneit, 2007).

Erythritol and threitol are two natural tetrols (saccharols) with a
similar structure and mass spectra (see Medeiros and Simoneit, 2007).
However, they can be distinguished by the slightly different retention
time on the DB-5 capillary column. Here we compared authentic stan-
dards of both compounds with the Miocene and Cretaceous samples. In
both cases erythritol is present in the samples (Fig. 7). Emygdio et al.
(2018) reported the identification of threitol besides arabitol and man-
nitol in São Paulo, Brazil ambient air particles and connected that with
a fungal origin. It is highly probable, that the identified compound by
Emygdio et al. (2018) is in fact erythritol, also described from some
modern fungi (e.g. Gunde-Cimerman et al., 2009; Rakicka et al., 2016).

6. Conclusions

Trehalose, mannitol and arabitol were identified in Late Cretaceous
and Miocene sedimentary rocks using GC–MS analysis. Their origin was
interpreted as fungal, based on correlation with diverse types of mod-
ern fungi. We believe that the co-occurrence of these three saccharides
in sediments indicates fungal metabolism and they can be regarded as
fungal biomarkers (biomolecules). Other saccharols and sugar acids in-
cluding: D-pinitol, quinic acid and shikimic acid were found in geolog-
ical materials for the first time. The origin of these compounds is inter-
preted to be from conifers and other higher plants. Based on the tre-
halose, mannitol and arabitol distributions we preliminarily conclude
that the coal seams of the Rakowice Małe section (Cretaceous) were de-
posited during warmer climatic periods. Preservation of mono- and dis-
accharides in pre-Palaeogene strata suggests that under favorable sedi-
mentary conditions, compounds previously thought as unstable can sur-
vive unchanged for tens to hundreds of millions of years.
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