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SNF1-RELATED PROTEIN KINASES 2 (SnRK2) are important components of early osmotic and salt stress signaling pathways
in plants. The Arabidopsis (Arabidopsis thaliana) SnRK2 family comprises the abscisic acid (ABA)–activated protein kinases
SnRK2.2, SnRK2.3, SnRK2.6, SnRK2.7, and SnRK2.8, and the ABA-independent subclass 1 protein kinases SnRK2.1, SnRK2.4,
SnRK2.5, SnRK2.9, and SnRK2.10. ABA-independent SnRK2s act at the posttranscriptional level via phosphorylation of
VARICOSE (VCS), a member of the mRNA decapping complex, that catalyzes the first step of 59mRNA decay. Here, we
identified VCS and VARICOSE RELATED (VCR) as interactors and phosphorylation targets of SnRK2.5, SnRK2.6, and
SnRK2.10. All three protein kinases phosphorylated Ser-645 and Ser-1156 of VCS, whereas SnRK2.6 and SnRK2.10 also
phosphorylated VCS Ser-692 and Ser-680 of VCR. We showed that subclass 1 SnRK2s, VCS, and 59 EXORIBONUCLEASE 4
(XRN4) are involved in regulating root growth under control conditions as well as modulating root system architecture in
response to salt stress. Our results suggest interesting patterns of redundancy within subclass 1 SnRK2 protein kinases, with
SnRK2.1, SnRK2.5, and SnRK2.9 controlling root growth under nonstress conditions and SnRK2.4 and SnRK2.10 acting mostly in
response to salinity. We propose that subclass 1 SnRK2s function in root development under salt stress by affecting the transcript
levels of aquaporins, as well as CYP79B2, an enzyme involved in auxin biosynthesis.

Soil salinity is one of the biggest constraints of
modern agriculture, severely affecting crop productiv-
ity (Fita et al., 2015). Plant acclimation to saline condi-
tions relies on early activation of signaling cascades,
which trigger protective mechanisms. Crucial compo-
nents of salt and osmotic signaling pathways are pro-
tein kinases (Boudsocq and Laurière, 2005). One group
of protein kinases recognized as pivotal regulators of
responses to osmotic stress is the plant-specific SnRK2
family (SNF1-RELATED PROTEIN KINASE 2). Except
for SnRK2.9, all other nine Arabidopsis (Arabidopsis
thaliana) SnRK2 protein kinases have been shown to
have an increased kinase activity upon treatment with
either abscisic acid (ABA), osmotic stress, or salt stress,
whereas differential responsiveness was observed for
individual SnRK2 protein kinases (Boudsocq et al.,

2004). The Arabidopsis SnRK2 protein kinase subfam-
ily comprises three groups: subfamily 1 includes the
ABA-independent kinases (SnRK2.1/SRK2G, SnRK2.4/
SRK2A, SnRK2.5/SRK2H, SnRK2.9/SRK2J, SnRK2.10/
SRK2B), group 2 consists of those involved in drought
responses (SnRK2.7/SRK2F and SnRK2.8/SRK2C), and
group 3 kinases are strongly activated by ABA
(SnRK2.2/SRK2D, SnRK2.3/SRK2I, SnRK2.6/SRK2E/
OST1; Kulik et al., 2011). Members of the plant SnRK2
subfamily have also been identified in tobacco (Kelner
et al., 2004), rice (Kobayashi et al., 2004), sorghum
(Li et al., 2010), maize (Huai et al., 2008), wheat (Zhang
et al., 2016), bean (Li and Assmann, 1996), soybean
(Monks et al., 2001), and tomato (Yang et al., 2015).
Activity of SnRK2 protein kinases relies on their

autophosphorylation; however activation by another
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protein kinase acting upstream has been also proposed
(Boudsocq et al., 2007; Fujii et al., 2009). Two crucial
residues, Ser-171 and Ser-175, have been found to be
phosphorylated independently in the ABA-dependent
SnRK2.6 protein, whereas activation of ABA-
independent SnRK2.10 relied on sequential phospho-
rylation of Ser-154 followed by phosphorylation of
Ser-158 (Vlad et al., 2010). Members of the ABA-
dependent subclass 3 have been most extensively
studied so far. SnRK2.2, SnRK2.3, and SnRK2.6 are
components of the core ABA signaling pathway (Cutler
et al., 2010). Several protein phosphatases from the
PP2C cladeA family have been shown to act as negative
regulators of ABA-dependent SnRK2 kinases (Merlot
et al., 2001; Ma et al., 2009; Park et al., 2009;
Nishimura et al., 2010). In the absence of ABA, PP2Cs
dephosphorylate SnRK2 to maintain their inactive
state. ABA triggers the interaction of PP2Cs with ABA
receptors PYR/PYL/RCAR (PYRABACTIN RESIS-
TANCE 1/PYR1-LIKE/REGULATORY COMPO-
NENT OF ABA RECEPTOR), thus releasing SnRK2
from their inhibited state (Merlot et al., 2001; Ma et al.,
2009; Park et al., 2009; Nishimura et al., 2010). Members
of subclass 2, SnRK2.7 and SnRK2.8, interacted with
PP2Cs in vitro, whereas interactions in planta with one
of the PP2Cs, ABI1 (ABSCISIC ACID INSENSITIVE 1),
have been recently shown for SnRK2.8 and also the
subclass 1 isoform SnRK2.4, but not for SnRK2.10
(Vlad et al., 2010; Umezawa et al., 2013; Krzywi�nska
et al., 2016). SnRK2.4 and SnRK2.10 can be de-
activated by members of the phosphoprotein phos-
phatase family (Krzywi�nska et al., 2016). Activity of all
ten SnRK2 protein kinases is negatively regulated by
SCS (SnRK2-INTERACTING CALCIUM SENSOR;
Bucholc et al., 2011). SnRK2.4 and SnRK2.10 have been
shown to bind to the phospholipid second messenger

phosphatidic acid; however, the effect of this interac-
tion on protein kinase activity remains unknown
(Testerink et al., 2004; Julkowska et al., 2015).

Several downstream targets have been identified for
subclass 2 and 3 SnRK2s. SnRK2.6 phosphorylates the
anion channel SLAC1, the potassium channel KAT1,
Atrboh NADPH oxidases, and aquaporin PIP2;1,
thereby mediating ABA-dependent stomatal closure.
The snrk2.6 knock-out mutant is impaired in closing
stomata in low humidity conditions and has a wilting
phenotype (Mustilli et al., 2002; Yoshida et al., 2002;
Geiger et al., 2009; Lee et al., 2009; Sato et al., 2009;
Sirichandra et al., 2009; Grondin et al., 2015). SnRK2.6,
as well as SnRK2.2 and SnRK2.3, can phosphorylate
ABA RESPONSIVE ELEMENTS-BINDING FACTORS
AREB1, AREB2, and ABF3, bZIP transcription factors
that bind to ABA-responsive elements in promoters of
ABA-dependent genes (Furihata et al., 2006; Fujii et al.,
2007). The snrk2.2/snrk2.3/snrk2.6 triple mutant is in-
sensitive to ABA and has low tolerance to drought,
confirming the role of SnRK2 subclass 3 kinases
as major regulators of ABA responses (Fujii and
Zhu, 2009; Fujita et al., 2009). SnRK2 subclass 3 and/
or kinase(s) downstream of this group of SnRK2s
can also phosphorylate mitogen-activated protein ki-
nases MPK1, MPK2, and MPK6, another class of ABA-
activated protein kinases (Droillard et al., 2002;
Umezawa et al., 2013; Wang et al., 2013). A recent
phosphoproteomics study identified many putative
SnRK2 subclass 3 targets that are involved in DNA and
RNA binding and microRNA regulation, but their di-
rect phosphorylation by these kinases still needs to be
confirmed (Umezawa et al., 2013, Wang et al., 2013).
SnRK2.8 phosphorylated ABF3 (redundantly to SnRK2
subclass 2 proteins) and additionally targeted EEL,
another ABF transcription factor (Mizoguchi et al.,
2010). Moreover, SnRK2.8 phosphorylated three 14-3-
3 proteins, adenosine kinase, glyoxylase I, and ribose 5-
phosphate isomerase, which links its function to the
regulation of metabolic processes (Shin et al., 2007).

Recently subclass 1 SnRK2 protein kinases have been
shown to regulate plant responses to osmotic stress at
the posttranscriptional level. SnRK2.1, SnRK2.4,
SnRK2.5, SnRK2.9, and SnRK2.10 phosphorylated VCS
(VARICOSE), a member of the mRNA decapping
complex and crucial component of 59 mRNA decay
pathways (Soma et al., 2017). Also, two dehydrins,
ERD10 and ERD14, have been found as a direct phos-
phorylation targets of SnRK2.10 in responses to salt
stress (Maszkowska et al., 2019). Moreover, SnRK2.4
and SnRK2.10 are involved in reactive oxygen species
homeostasis upon salt stress, but the mechanism of this
regulation remains unknown (Szyma�nska et al., 2019).

In Arabidopsis roots, SnRK2.4 and SnRK2.10 are ac-
tivated within 30 s of exposure to salt and both were
shown to function as positive regulators of root growth
under saline conditions (McLoughlin et al., 2012).
snrk2.4 knock-out mutants showed a decreased main
(primary) root length in the presence of salt, whereas
snrk2.10 knock-out mutants exhibited reduced lateral
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root density (McLoughlin et al., 2012). Consistent with
this phenotype, SnRK2.10 was expressed in the vascu-
lature at the sites of lateral root formation, whereas
SnRK2.4 was localized tomost of the tissues in the main
root (McLoughlin et al., 2012).
Here, we set out to identify the molecular mechanism

by which subclass 1 SnRK2 protein kinases control root
growth and development under salt and osmotic stress.
We confirmed that VCS is a phosphorylation target for
ABA-independent subclass 1 SnRK2 protein kinases
and possibly for ABA-dependent SnRK2.6 and identi-
fied phosphorylation sites targeted by these protein
kinases. Root phenotyping showed the involvement of
subclass 1 SnRK2s, VCS, and 59 EXORIBONUCLEASE
4 (XRN4) in root growth in nonstress conditions as well
as in reshaping of root system architecture under salt
stress. Our study suggests that SnRK2.1, SnRK2.5, and
SnRK2.9 play a role in main root growth under control
conditions, whereas under salt stress all subclass
1 SnRK2s are likely to modulate lateral root growth.
We propose that in response to salt stress, subclass
1 SnRK2s modulate root system architecture by regu-
lation of the expression of aquaporins PIP2;3 and PIP2;5
as well as the auxin biosynthesis enzyme CYP79B2.

RESULTS

SnRK2.4 and SnRK2.10 Physically Interact with Proteins
Involved in mRNA Metabolism

In order to identify putative up- and downstream
SnRK2.4 and SnRK2.10 interactors, tandem affinity
purification (TAP) using N- and C-terminal GS-rhino
tag fusions of SnRK2.4 or SnRK2.10 expressed under
control of the CaMV 35S promoter as baits was per-
formed from Arabidopsis PSB-D (dark) cell suspension
cultures (Van Leene et al., 2015). Commonly occurring
proteins were treated as a background and were sub-
tracted from the list of significant proteins (Van Leene
et al., 2015). Eight proteins—VCS, VCR (VARICOSE
RELATED), DCP2 (DECAPPING 2), RRP44B (RRP44
HOMOLOG B), XRN4, SnRK2.7, PAT1H1 (TOPOISO-
MERASE II-ASSOCIATED PROTEIN), and SnRK2.5—
were copurified with both SnRK2.4 and SnRK2.10,
whereas AREB3 was specific for SnRK2.4. ELP2
(ELONGATOR PROTEIN 2) and SnRK2.9 interacted
only with SnRK2.10 (Table 1; Supplemental Table S1).
A similar approach reported recently by Soma et al.
(2017) for SnRK2.1 also identified VCS and VCR, and
further confirmed VCS as a phosphorylation target of
SnRK2 subclass 1 protein kinases. VCS and DCP2 are
part of the decapping complex, involved in removal of
the 59mRNA cap, and other putative interactors iden-
tified here also function in mRNA metabolism pro-
cesses. VCR, XRN4, and PAT1H1 have been previously
shown to localize in cytoplasmic protein foci called
processing bodies (P bodies), which are a site of mRNA
degradation and sequestration (Xu et al., 2006; Weber
et al., 2008; Roux et al., 2015). SnRK2.4 and SnRK2.1

relocalize to P bodies upon osmotic and salt stress, thus
indicating involvement of mRNA decay or RNA se-
questration from the translation machinery in response
to salinity and osmotic stress (McLoughlin et al., 2012;
Soma et al., 2017).
Peptides of identified interactors of SnRK2.4 and

SnRK2.10 were searched for possible phosphorylation
events in the purified complex. Eleven and six phos-
phopeptides were identified for VCS and VCR cop-
urified with SnRK2.4, respectively. In a complex with
SnRK2.10, we found seven VCS and two VCR phos-
phopeptides (Table 2; Supplemental Fig. S1). Among
these, phosphorylation of six sites for VCS and two
for VCR have been shown to be up-regulated by os-
motic and/or salt stress (Table 2; Stecker et al., 2014;
Maszkowska et al., 2019). No phosphopeptides were
identified for the other proteins copurified with
SnRK2.4 and SnRK2.10 (Table 1), suggesting that VCS
and VCR are possible phosphorylation targets of
SnRK2.4 and SnRK2.10, whereas other identified pro-
teins are likely functioning in the same complex
(Table 2).

VCS Is a Direct Target of SnRK2.10, SnRK2.5,
and SnRK2.6

In order to identify the phosphorylation sites of
SnRK2 subclass 1 protein kinases targets, we performed
in vitro kinase activity assays. We selected VCS, VCR,
and DCP2 for verification, because they were previ-
ously found to by phosphorylated upon osmotic stress
(Stecker et al., 2014). Purified recombinant protein ki-
nases SnRK2.4 and SnRK2.10 were used for the in vitro
phosphorylation reactionswith synthetic peptides from
VCS, VCR, and DCP2 proteins. Synthetic peptides were
designed to contain the phosphopeptides identified in
the TAP experiment and shown previously to be reg-
ulated by osmotic and/or salt stress (Table 2; Stecker
et al., 2014; Maszkowska et al., 2019). Each protein ki-
nase was incubated with a mixture consisting of three
peptides representing the VCS sequence, and one
peptide each from VCR and DCP2. In a separate reac-
tion, MBP (myelin basic protein) was used as a positive
control. SnRK2.4 did not phosphorylate itself nor any of
the tested peptides; however, it was able to phosphor-
ylate MBP, possibly because of its overall lower activity
comparing with SnRK2.10 (Table 3; Supplemental
Tables S2 and S3). Autophosphorylation of SnRK2.10
and phosphorylation of all three peptides from VCS
and a peptide from VCR, but not from DCP2, were
detected (Table 3; Supplemental Fig. S2; Supplemental
Table S4).
To investigate whether other members of SnRK2

family can phosphorylate the same peptides as
SnRK2.10, SnRK2.5 from the same subclass as SnRK2.4
and SnRK2.10, as well as SnRK2.6, from subclass 3 were
tested. SnRK2.6 phosphorylated all the peptides,
whereas SnRK2.5 phosphorylated VCR and two out of
three VCS peptides. (Table 3; Supplemental Tables S5
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and S6). Because the peptide corresponding to the
DCP2 protein was hardly detectable, probably due to
its low solubility, full-lengthDCP2 recombinant protein
was purified and tested in an in vitro kinase assay. Also,
full-length DCP2 was not phosphorylated in the pres-
ence of SnRK2.10, confirming it is not a direct substrate
of this kinase in vitro (Supplemental Table S7). We
conclude that VCS and VCR are direct targets of
SnRK2.5, SnRK2.6, and SnRK2.10 and hypothesize that
these protein kinases might be partially redundant.

Components of SnRK2 Subclass 1-Regulated 59 mRNA
Decay Pathway Contribute to Root Development and root
System Architecture Responses to Salt Stress

SnRK2.4 and SnRK2.10 were shown previously to
have a positive role in elongation of the main root and
in lateral root emergence under salt stress, respectively
(McLoughlin et al., 2012). Here, we tested the root
system architecture of a quintuple knock-out mutant
snrk2.1/2.4/2.5/2.9/2.10 impaired in all SnRK2 subclass I
protein kinases (Fujii et al., 2011). Salt-induced changes
in root growth were tested by transferring 4-d-old
seedlings germinated on half-strength Murashige-
Skoog medium to media supplemented with 0, 75,
and 125 mM NaCl. At 6 d after transfer, we observed
genotype-dependent changes in main root length
(MRL). The quintuple mutant snrk2.1/2.4/2.5/2.9/2.10
displayed shorter MRL than ecotype Columbia-0 (Col-
0) on all conditions tested. (Fig. 1A; Supplemental Fig.
S3, A and D; Supplemental Dataset S1). Due to these
differences in the MRL, lateral root growth was
assessed by quantification of lateral root density (LRD)
and aLRLperMRL (average lateral root length per main
root length). Although no differences were observed
regarding LRD at any condition tested, the response of
aLRLperMRL to salinity differed between Col-0 and the
snrk2.1/2.4/2.5/2.9/2.10 mutant, as indicated by two-
way ANOVA testing the genotype by salt interaction
(Supplemental Fig. S3D). The snrk2.1/2.4/2.5/2.9/2.10
mutant showed a higher aLRLperMRL on 125mMNaCl
(Fig. 1A; Supplemental Fig. S3, A and D; Supplemental
Dataset S1). Altogether this suggests that SnRK2 sub-
class 1 protein kinases promote main root growth re-
gardless of the conditions, whereas under high salinity
they inhibit lateral root elongation.

Identification of VCS as a direct substrate of SnRK2
subclass 1 protein kinases, and the emerging role
of mRNA metabolism factors in osmotic and salt
stress responses, suggests that VCS, similarly to sub-
class 1 SnRK2s, might be involved in stress-regulated
modulations of root system architecture (Kawa and
Testerink, 2017; Soma et al., 2017). Therefore, we
tested two artifical micro RNA (amiRNA) lines target-
ing VCS (VCS2 and VCS4; Soma et al., 2017) and two
loss-of-function mutants in XRN4 (xrn4-5 and xrn4-6;
Souret et al., 2004; Gy et al., 2007) in the same experi-
mental set up as for snrk2.1/2.4/2.5/2.9/2.10. For both
VCS amiRNA lines, their response to salt stress in main

root and lateral root growth differed from Col-0
(Fig. 1B; Supplemental Fig. S3, B–D; Supplemental
Dataset S2). Although changes in MRL varied in two
amiRNA VCS lines tested, which could be attributed to
the differences in the level of VCS expression in these
lines, VCS had little effect on main root growth
(Supplemental Fig. S4A). Both lines showed increased
aLRLperMRL under control conditions, whereas under
salt stress no differences were detected (Fig. 1C).

The observed decreased MRL, LRD, and aLRL-
perMRL of the xrn4-6 mutant under all conditions
tested was dependent on genotype as well as on the
interaction between genotype and the salt stress treat-
ment. The xrn4-5 mutant had a shorter main root,
whereas its decrease in LRD and aLRLpMRL in the
presence of salt was dependent on the genotype-
salinity interaction (Fig. 1C; Supplemental Fig. S3, C
and D; Supplemental Dataset S3). Using reverse tran-
scription quantitative PCR (RT-qPCR), we tested the
expression of a possible XRN4 mRNA fragment, using
primers located upstream of the transfer DNA insertion
in both lines. No expression was detected for xrn4-6,
confirming it is a true knock-out, whereas the same
product was expressed two times higher in the xrn4-5
line than in Col-0 (Supplemental Fig. S4B). Both lines
were previously shown to be loss-of-function mutants,
producing truncated XRN4 proteins. Because the
transfer DNA insertion in xrn4-5 is downstream of the
one in xrn4-6, we cannot exclude the possibility that
there is some remaining XRN4 activity in xrn4-5,which
could explain the weaker phenotype of that line. We
conclude that XRN4 has a positive role in lateral root
formation and elongation under control and saline
conditions.

Together, these results suggest that SnRK2 subclass
1 protein kinases, VCS, and XRN4 contribute to root
growth under nonstress conditions as well as in re-
modeling root system architecture upon salt stress.

Impact of SnRK2 Subclass 1 Protein Kinases on the
Salt-Induced Transcriptome in Arabidopsis Seedlings

To further investigate a functional link between
SnRK2 subclass 1 protein kinases, mRNA decay path-
ways and salt stress, transcriptome profiling of Col-0,
snrk2.4, double snrk2.4/2.10 (McLoughlin et al., 2012),
and quintuple snrk2.1/2.4/2.5/2.9/2.10 (Fujii et al., 2011)
knock-out mutants was performed. To select the most
suitable duration of salt stress, a time-course experi-
ment with Col-0 seedlings was performed. Seedlings
(10 d old) grown in liquid half-strength MS media were
treated with buffer (mock) or 150 mM NaCl. Kinase
activity in the crude extract of proteins from whole
seedlings was assessed by in-gel kinase assay using
MBP as a substrate. Salt treatment resulted in rapid
induction of SnRK2.4 and SnRK2.10 activity (37 kD
band) within 30 s, which was reduced after 5 min and
increased again after 24 h (Supplemental Fig. S5), sim-
ilar to dynamics observed before for roots grown in
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hydroponics (McLoughlin et al., 2012). The changes in
mRNA levels that we are interested in are likely the
consequence of the action of the potential substrates of
SnRK2 and may not be observed immediately after
SnRK2 activation. Hence, a 1-h salt treatment was
chosen for transcriptome profiling (measuring steady
state transcript levels by RNA sequencing (RNA-seq) of
Col-0, snrk2.4, double snrk2.4/2.10, and quintuple
snrk2.1/2.4/2.5/2.9/2.10 mutants.
Because multiple members of the SnRK2 family in

rice, wheat, and maize have been shown to be tran-
scriptionally up-regulated by salt and osmotic stress
(Kobayashi et al., 2004; Huai et al., 2008; Mao et al.,
2010; Zhang et al., 2010, 2011), we checked whether
the mRNA abundance of Arabidopsis SnRK2 is regu-
lated by salt stress. The 1-h treatmentwith 150mMNaCl
resulted in a small up-regulation of only SnRK2.5,
suggesting that under these conditions most of the
Arabidopsis SnRK2 protein kinases are only regulated
at the posttranscriptional level; yet we cannot exclude
the possibility that they may be transcriptionally reg-
ulated at other time points (Supplemental Fig. S6).
We first investigated the effect of the mutations in

genes encoding subclass 1 SnRK2 protein kinases under
nonstress conditions (Supplemental Fig. S7A). We
identified 44, 68, and 485 genes differentially expressed
in snrk2.4, snrk2.4/2.10, and snrk2.1/2.4/2.5/2.9/2.10, re-
spectively, as compared with Col-0 (Supplemental
Table S8; Supplemental Fig. S8, A and C). Biological
processes and molecular functions enriched among
genes with altered expression in snrk2.1/2.4/2.5/2.9/2.10
indicate that subclass 1 SnRK2 protein kinases partici-
pate in responses to biotic and abiotic stress as well
as secondary metabolite processes (Supplemental Fig.
S8B). This suggests that subclass 1 SnRK2s are partially
activated under control conditions used here, or have a
function in their nonactive state.
Next, we investigated the effect of salt stress in Col-0.

Differential gene expression analysis revealed that 1-h
treatment of Col-0 seedlings with 150mMNaCl resulted
in a change in expression of more than two times in
1292 genes, among which 913 were up- and 379 were

down-regulated (Supplemental Table S9). To assess
the consequences of the mutations in SnRK2 subclass
1 protein kinases for the salt responses, for each snrk
mutant tested, we checked which genes regulated
by salt in Col-0 either (1) remain unaffected in mutant
or (2) are affected to a different degree (the ratio of
the fold change in response to salt stress is two times
higher or lower in the mutant as compared with Col-
0; genes up-regulated by salt in Col-0 are down-
regulated in the mutant; genes down-regulated by
salt in Col-0 are up-regulated in the mutant). To as-
sess the impact of SnRK2 subclass 1 protein kinases
specifically on the salt-induced transcriptome, genes
for which expression was already altered in the mu-
tant lines in control conditions were subtracted
(Supplemental Fig. S7B).
Out of 1292 genes regulated by salt, abundance of

356, 426, and 434 was affected in snrk2.4, snrk2.4/2.10,
and snrk2.1/2.4/2.5/2.9/2.10, respectively (Fig. 2, A and
C; Supplemental Tables S10–S15). Salt response of 160
genes was altered in single, double, and quintuple
mutants (Fig. 2C; Supplemental Table S16). Together,
684 genes were found in at least one mutant tested,
suggesting that around 50% of the regulation observed
in Col-0 depends on at least some of the subclass
1 SnRK2, whereas the other 50% implies existence of
other regulatory pathways acting in parallel to them or
a more complex mechanism (Fig. 2, A and C).
Among GO (gene ontology) categories enriched

within salt stress–regulated genes with altered abun-
dance in mutants tested, we found biotic and abiotic
stress responses shared by all three mutants (Fig. 2B).
Interestingly, kinase activity was enriched among
genes affected by the snrk2.4 mutation, suggesting that
SnRK2.4 alone can regulate, directly or indirectly, ex-
pression of other kinases; yet this was not the case for
the higher order subclass 1 SnRK2s mutants (Fig. 2B).
Several categories (responses to stress, secondary met-
abolic process, cell death) were enriched among both
salt stress–regulated genes and genes with altered
mRNA abundance in snrk2.1/2.4/2.5/2.9/2.10 under
control conditions.

Table 3. SnRK2.5, SnRK2.6, and SnRK2.10 phosphorylate VCS peptides

Summary of the in vitro kinase activity assays performed with recombinant protein kinases and synthetic peptides. Position of start and end of the
peptides used is relative to the first amino acid in the protein sequence. MBP is a known substrate for SnRK2 protein kinases and was used as a
positive control. –, denotes no phosphorylation detected; NA, not applicable.

Substrate Protien Kinase

Protein
Peptide

Start

Peptide

End
Peptide SnRK2.5 SnRK2.6 SnRK2.10

VCS 636 668 KTSGLPSQTSGAGSAYATLPQLPLSPRLSSK T644/S645 T644/S645 S645
686 701 LGGKTPSADYSVDRQM – S692 S692

1147 1170 LKESITSASSVAQALSRELAETQR S1156 S1156 S1155/S1156
VCR 674 689 LGGKTSSADYFYVRQT – S680 S680
DCP2 265 291 CVWNARTSVGGNGTATVESQNRKSELR – – –
MBP NA NA NA 1 1 1
Protein Kinase
Autophosphorylation

NA NA NA T159 S29 T159
– S175/T176 T269
– – S354

Plant Physiol. Vol. 182, 2020 367

SnRK2s and Their Targets Shape Root Architecture

http://www.plantphysiol.org/cgi/content/full/pp.19.00818/DC1
http://www.plantphysiol.org/cgi/content/full/pp.19.00818/DC1
http://www.plantphysiol.org/cgi/content/full/pp.19.00818/DC1
http://www.plantphysiol.org/cgi/content/full/pp.19.00818/DC1
http://www.plantphysiol.org/cgi/content/full/pp.19.00818/DC1
http://www.plantphysiol.org/cgi/content/full/pp.19.00818/DC1
http://www.plantphysiol.org/cgi/content/full/pp.19.00818/DC1
http://www.plantphysiol.org/cgi/content/full/pp.19.00818/DC1
http://www.plantphysiol.org/cgi/content/full/pp.19.00818/DC1
http://www.plantphysiol.org/cgi/content/full/pp.19.00818/DC1
http://www.plantphysiol.org/cgi/content/full/pp.19.00818/DC1
http://www.plantphysiol.org/cgi/content/full/pp.19.00818/DC1


Expression of several osmotic stress-induced genes
previously described to be dependent on SnRK2.2,
SnRK2.3, and SnRK2.6 (RD29A, RD29B, RD26,
NCED3, PKS5, KIN2, AREB1, HAI1, COR15A,
DREB2A, ABI1; Yoshida et al., 2002; Fujita et al., 2009;
Fujii et al., 2011) was not affected by any of the mu-
tations tested here, indicating a separation of the effect
of subclass 1 and 3 SnRK2 kinases in the regulation of
the expression of, at least, these genes (Supplemental
Tables S10–S15).

Given that SnRK2 subclass 1 protein kinases function
upstream of the 59 mRNA decay machinery, we ana-
lyzed the overlap of our transcriptome data with pre-
viously published data on mRNA decay rates and
putative targets of VCS (Narsai et al., 2007; Perea-Resa
et al., 2016; Sorenson et al., 2018). Out of 684 genes

acting downstream of one or more subclass 1 SnRK2s in
responses to salinity, 246 were covered in a microarray
study by Narsai et al. (2007) and mRNA half-life of 127
of them was shorter than 3 h (Supplemental Table S17),
suggesting that these transcripts have low stability.
Moreover, 457 of the 684 identified here as SnRK2-
dependent candidate genes were recently identified as
potential targets of VCS (Sorenson et al., 2018;
Supplemental Table S18;) and 29 genes had altered re-
sponse to dehydration in VCS amiRNA lines (Soma
et al., 2017; Supplemental Table S19). Additionally,
salinity-dependent regulation of 92 of our candidates
was found to be perturbed in the lsm1 (the Sm-like
protein 1) mutant (Supplemental Table S20), a mem-
ber of the decapping activator complex (Perea-Resa
et al., 2016).

Figure 1. Components of SnRK2 sub-
class 1-regulated 59 mRNA decay
pathways contribute to root develop-
ment and root system architecture re-
sponses to salt stress. Root system
architecture of quintuple snrk2.1/2.4/
2.5/2.7/2.9/2.10, amiRNA lines VCS#2
and VCS#4, xrn4-5, and xrn4-6. Seed-
lings (10 d old) were transferred to 0
and 125 mM NaCl at the 4-d-old stage.
Main root length, average lateral root
length per main root length, and lateral
root density of Col-0, snrk2.1/2.4/2.5/
2.7/2.9/2.10 (A), amiRNA lines VCS2
and VCS4 (B), xrn4-5 and xrn4-6 (C) on
media supplemented with 0 or 125 mM

NaCl are shown. Boxplots denotes span
from 25th to the 75th percentile and are
centered to the data median. Asterisk
denotes p-value of pairwise compari-
son by least square method:
***,0.001, **,0.01, *,0.05, n . 30.
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In order to select genes for further validation, we
focused on those with salt stress–regulated expression
altered in single, double, and quintuple mutants tested.
Although subclass 1 SnrK2 kinases are implicated in
multiple biological processes, because of the previously
found roles of SnRK2.4/2.10 in modulation of root ar-
chitecture in salt (McLoughlin et al., 2012), we selected
transcripts involved in root development. Out of 160
genes, we found 94 genes with a previously reported
role in root development, out of which 91 were associ-
ated specifically with lateral root development (Fig. 2C;
Supplemental Table S16; Péret et al., 2012; Voß et al.,
2015) and 73 of these are potential substrates of VCS
(Fig. 2C; Supplemental Table S16).

SnRK2 Subclass 1 Protein Kinases Regulate the Expression
of Aquaporins, b-Glucosidase, and a Cytochrome P450

Out of 73 genes that act downstream of subclass
1 SnRK2 protein kinases, are probable targets of VCS,
and have a potential role in the root development, we
selected four for further characterization. Expression
patterns of the four selected candidates were verified by
RT-qPCR using RNA extracted from an independent
biological experiment. Expression of selected genes was
up-regulated by salt stress in Col-0, whereas this in-
duction was not observed in at least one snrk2 mutant,
suggesting different levels of redundancy between in-
dividual SnRK2 subclass 1 protein kinases (Fig. 3A;

Figure 2. SnRK2 subclass 1 protein kinases
control various biological processes. A,
Salt stress regulated expression profiles in
Col-0 and snrk2.4, snrk2.4/2.10, and
snrk2.1/2.4/2.5/2.7/2.9/2.10. Heatmap
presents log2 fold changes (log2FC) in ex-
pression of the genes significantly affected
by 1-h 150 mM NaCl treatment in Col-0
and corresponding log2FC value in mu-
tants tested. Gray color indicates genes for
which expression was not significantly
changed (absolute value of log2FC. 1). B,
GO categories enriched among the salt
stress–regulated genes with altered ex-
pression in tested mutants. Heatmap pre-
sents corrected p-value (q-value) of the
enrichment. Categories that were not
enriched in individual genotypes are rep-
resented by gray squares (NA). C, Number
of salt stress–regulated genes with expres-
sion altered in the tested mutants (left).
Number of genes acting downstream of
subclass 1 SnRK2 protein kinases that are
substrates of VCS and have been reported
to participate in root development (right)
are shown. A detailed list of the genes is
presented in Supplemental Table S16.
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Supplemental Fig. S9). Salt stress–dependent induction
of the expression of the aquaporin PLASMA MEM-
BRANE INTRINSIC PROTEIN 2;5 (PIP2;5) was depen-
dent solely on SnRK2.4 (Fig. 3A; Supplemental Fig.
S9A). Induction of another aquaporin, PIP2;3, and
BETA GLUCOSIDASE 6 (BGLU6) required at least
SnRK2.10 (Fig. 3, B, C, and E; Supplemental Fig. S9, B,
C, and E). In response to salt, the induction of CYP79B2
(CYTOCHROME P450, FAMILY 79, SUBFAMILY B,
POLYPEPTIDE 2) transcripts was reduced to 50% of the
Col-0 response, despite only being present in a single
snrk2.4 (Fig. 3D; Supplemental Fig. S9D). This response
gradually decreased from single snrk2.4 to double
snrk2.4/2.10, to being totally absent in the quintuple
snrk2.1/2.4/2.5/2.9/2.10 mutant (Fig. 3D). This suggests
that all subclass 1 SnRK2s govern the up-regulation of
CYP79B2 by salt stress (Fig. 3D; Supplemental Fig.
S9D). To assess whether the observed expression pro-
files might be a consequence of exoribonuclease activity

of XRN4, we checked the steady state levels of selected
transcripts in the xrn4-5 mutant, as it displayed altered
root system architecture only under salt stress condi-
tions (Fig. 1C). Differences in the xrn4-5 mutant were
similar to those observed in snrk mutants for PIP2;5,
CYP79B2, and BGLU6, but not for PIP2;3 (Fig. 3;
Supplemental Fig. S9). We conclude that in response to
salt stress, subclass 1 SnRK2 protein kinases regulate
the expression of PIP2;3 PIP2;5, BGLU6, and CYP79B2.
This might occur via VCS phosphorylation by subclass
1 SnRK2s, and subsequent effects on decapping activ-
ity, but could also be an effect of phosphorylation of
proteins other than VCS.

DISCUSSION

SnRK2.4 and SnRK2.10 protein kinases are involved
in early responses to osmotic stress and salinity. Their

Figure 3. Salt-induced expression of PLASMA MEMBRANE INTRINSIC PROTEINS (PIP2;5, PIP2;3), BETA GLUCOSIDASE 6
(BGLU6), CYTOCHROME P450, FAMILY 79, SUBFAMILY B, POLYPEPTIDE 2 (CYP79B2) is dependent on SnRK2 subclass
1 protein kinases signaling. Expression of PIP2;5 (A), PIP2;3 (B), BGLU6 (C), CYP79B2 (D), as a ratio of the expression under salt
stress salt and control (left), under control conditions (middle), and upon salt treatment (right) in Col-0, snrk2.4, snrk2.4/2.10,
snrk2.1/2.4/2.5/2.9/2.10, and xrn4-5 lines is shown. Values present are averages of normalized expression levels of three bio-
logical replicates, and error bars denote SE. Statistical comparison was done by one-way ANOVA followed by LSD post hoc test
(P , 0.05). Different letters indicate significant differences.
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rapid activation within the first minutes after salt
treatment is independent of ABA, and SnRK2.4 and
SnRK2.10 have been shown to promote root growth in
the presence of salt (McLoughlin et al., 2012). To un-
derstand the ABA-independent mechanism of early salt
stress signaling leading to regulation of root growth, we
aimed to identify components of SnRK2.4 and
SnRK2.10 protein kinase pathways.
In planta copurification experiments showed that

both kinases can physically interact with several pro-
teins involved in 59 mRNA decay, among which VCS
and VCR were phosphorylated (Tables 1 and 2;
Supplemental Table S1). Degradation of mRNA from
its 59 end requires removal of the 59cap by the decapping
complex followed by the digestion by 59–.39 exoribo-
nuclease XRN4. Two of the proteins interacting with
SnRK2.4 and SnRK2.10, VCS and DCP2, are members
of the mRNA decapping complex (Xu et al., 2006). VCS
physically interacts with DCP2 as well as DCP1, which
is required for the activation of DCP2 decapping ac-
tivity and assembly of a functional decapping complex
(Xu et al., 2006; Goeres et al., 2007). Removal of 59cap
structure leaves the mRNA unprotected from the
exoribonucleitic activity of XRN4 (Kastenmayer and
Green, 2000). VCS and VCR were the most abundant
interactors of SnRK2.4 and SnRK2.10, implying very
stable interactions (Tables 1 and 2; Supplemental Table
S1). This suggests that, besides being substrates of
SnRK2.4 and SnRK2.10, VCS and VCR could be a part
of a larger complex involving other proteins (Table 1).
We hypothesize that other copurified proteins are not

substrates for SnRK2.4 and SnRK2.10, but rather indi-
rect interactors, that might stabilize the VCS-SnRK2.4/
2.10 complex; however, this still requires confirmation.
Similar copurification experiments reported by Soma
et al. (2017) also identified VCS, VCR, and DCP2 as
SnRK2.1 interactors and VCS as a phosphorylation
target of all subclass 1 SnRK2 protein kinases. More-
over, it is unlikely that VCS is the only phosphorylation
target of subclass 1 SnRK2 protein kinase, and other
substrates are yet to be discovered.
Here we mapped the phosphorylation sites in VCS

proteins that are targeted by subclass 1 SnRK2 protein
kinases (Table 3). Direct phosphorylation of Ser-645,
Ser-692, and Ser-1156 of VCS and Ser-680 of VCR
by SnRK2.10 was confirmed in in vitro kinase activ-
ity assays (Table 3). Another kinase from the SnRK2
subclass 1 subfamily, SnRK2.5, was also able to phos-
phorylate Ser-645 and Ser-1156 of the VCS peptides,
but not VCR, which could possibly be because its
lower activity compared with SnRK2.10 (Table 3;
Supplemental Table S5). A previous phosphoproteomic
study identified VCS as a putative substrate also for
ABA-dependent SnRK2 kinases, and VCS was weakly
phosphorylated by SnRK2.2 protein kinase upon os-
motic stress (Umezawa et al., 2013, Soma et al., 2017). In
our in vitro assay SnRK2.6 was able to phosphorylate
VCS and VCR at the same residues as SnRK2.10 (Ta-
ble 3). Phosphorylation of Ser-645, Ser-692, and Ser-
1156 of VCS and Ser-680 of VCR has been previously
shown to be up-regulated by osmotic and/or salt stress
in planta (Stecker et al., 2014; Maszkowska et al., 2019).

Figure 4. Mode of action of salt stress–inducedmodulations of root system architecture (RSA) governed by SnRK2 protein kinases.
SnRK2 protein kinases are autophosphorylated upon salt stress. Both ABA-independent (in yellow) and ABA-dependent (in pink)
SnRK2 protein kinases can phosphorylate VCS. Additional phosphorylation targets were already identified for SnRK2.6, and for
ABA-independent SnRK2s, other phosphorylation substrates remain unknown. Phosphorylation of VCS may affect proper
functioning of the decapping complex and lead to either inhibition or enhancement of 59mRNA decay. The abundance of PIP2;3,
PIP2;5, and CYP79B2 transcripts, among others, depends on the subclass 1 SnRK2s, yet it remains unknown whether it is a
consequence of the phosphorylation any of the kinase targets and whether it is direct or indirect regulation. PIP2;3 and PIP2;5
regulate formation and elongation of lateral roots (LR) via control of water fluxes in lateral root primordia (LRP) and CYP79B2 via
local auxin biosynthesis. XRN4 activity controls abundance of PIP2;3, PIP2;5, and CYP79B2 via an unknown mechanism.
Transcripts for which abundance is affected by salt stress and that modulate main root (MR) elongation remain unknown.
Drawings of proteins and processes were reproduced from the model published in Kawa and Testerink (2017). Dashed lines
indicate proposed processes that have not been experimentally validated.
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Thus, our data now identify both ABA-dependent and
independent SnRK2 protein kinases as protein kinases
targeting the VCS and VCR phosphosites phosphory-
lated in vivo. Moreover, two out of three VCS phos-
phorylation sites, Ser 645 and Ser-690, are located in
the intermediate VCS sequence (VCSm) region shown
to be phosphorylated by SnRK2.1 SnRK2.4, SnRK2.5,
and SnRK2.10 in vitro as well as in plants subjected
to osmotic or salt stress (Soma et al., 2017). To date,
the consequences of VCS phosphorylation remain un-
known, but it is possible that this posttranslational
modification can affect assembly of the decapping
complex or activity of DECAPPING 2. Since the re-
moval of the 59 cap exposes an RNA molecule to the
exoribonucleitic activity of XRN4, we hypothesize that
SnRK2 protein kinases, via phosphorylation of VCS,
control 59 mRNA decay by either enhancing or inhib-
iting its action. The VCS phosphorylation sites targeted
by subclass 1 SnRK2 protein kinases identified here can
help to understand the mechanism of this regulation.

Subclass 1 SnRK2s and components of their signaling
pathway, identified here as their phosphorylation
substrates or proteins acting further downstream, play
a role in root development and root responses to salt. At
least one of the SnRK2.1, SnRK2.5, or SnRK2.9 isoforms
promotes main root growth regardless of NaCl con-
centration (Fig. 1A; Supplemental Fig. S3, A–D). Ac-
tivity of SnRK2.4 and SnRK2.10 under salt stress
appeared higher than other members of subclass
1 (Supplemental Fig. S5), suggesting higher relevance
of SnRK2.4 and SnRK2.10 signaling in response to
salt stress over the other class 1 members. At the same
time, expression of several salt stress–regulated tran-
scripts was impaired in snrk2.1/2.4/2.5/2.9/2.10, but
not in single and double mutants, implying that
SnRK2.1, SnRK2.5, and SnRK2.9 signaling can also
govern salt-induced changes in gene expression (Fig. 2,
Supplemental Tables S10–S15). The decreased main
root growth observed here in the quintuple snrk2.1/2.4/
2.5/2.9/2.10 mutant regardless of NaCl concentration
was also reported for the quadruple snrk2.1/2.4/2.5/2.10
mutant (Soma et al., 2017) and single snrk2.4 mutant
(McLoughlin et al., 2012) exposed to salt stress. The
quintuple snrk2.1/2.4/2.5/2.9/2.10 mutant had also lon-
ger lateral roots under high salinity conditions, sug-
gesting that some of the SnRK2 subclass 1 protein
kinases inhibit lateral root growth in response to salt
stress (Fig. 1A), whereas interestingly, SnRK2.10 has
been shown previously to be a positive regulator of
lateral root formation under salt stress (McLoughlin
et al., 2012). This suggests that redundancy among
subclass 1 SnRK2 protein kinases depends on the en-
vironmental conditions and differs between main root
and lateral roots.

Among downstream components of the subclass
1 SnRK2s-dependent pathway, VCS inhibited lat-
eral root elongation under nonstress conditions, but
this effect was absent under salt stress (Fig. 1B;
Supplemental Fig. S3B), which may suggest that the
functioning of the decapping machinery is modulated

by the environment. The VCS amiRNA lines tested here
were previously reported to be more affected in main
root length than wild type after 15 d of exposure to
salinity (Soma et al., 2017). Here, during a shorter du-
ration of salt stress (6 d), we only observed mild alter-
ations in the main root growth (Fig. 1B; Supplemental
Fig. S3B). XRN4 promoted main root and lateral root
growth under control and salt stress conditions
(Fig. 1C; Supplemental Fig. S3C). Because the xrn4-5
mutant was previously shown to be hypersensitive to
ABA at early vegetative stages, it is plausible that ob-
served phenotypes are a consequence of altered ABA
sensitivity (Wawer et al., 2018).

Alteration in responses to salt stress in the tran-
scriptome of snrk2.4, snrk2.4/2.10, and snrk2.1/2.4/2.5/
2.9/2.10 mutants included genes involved in many bi-
ological processes (Fig. 2B; Supplemental Tables
S10–S15). Out of 160 genes affected in their responses to
salinity in the single, double, and quintuple mutants
tested, 110 are potential VCS substrates (Fig. 2C;
Supplemental Tables S16 and S18). Expression of only
29 genes had an altered response to 5 h dehydration in
VCS amiRNA lines (Supplemental Table S19; Soma
et al., 2017), indicating that VCS might target different
genes under osmotic and salt stress and this process
depends on the duration of stress exposure. Although
transcripts previously reported to be controlled by
SnRK2-regulated mRNA decapping had enhanced
mRNA decay rates (Soma et al., 2017), here we also
identified transcripts up-regulated by salt and show
that this pathwaymight also operate via stabilization of
another set of mRNAs (Fig. 3). It is still not clear
whether the regulation of the mRNA abundance of
PIP2;3, PIP2;5; BGLU6, and CYP79B2 are consequences
of the phosphorylation of VCS or other potential sub-
strates on subclass 1 SnRK2s (Fig. 4). Some changes in
transcript abundance in response to salt observed in
snrkmutants may be also linked to the activity of XRN4,
yet the mechanism of this control remains unclear
(Fig. 3; Supplemental Fig. S9). If these transcripts would
be direct targets of XRN4 59 exoribonuclease activity,
one would expect higher levels, rather than the ob-
served lower levels in the xrn4-5mutant comparedwith
Col-0, suggesting that the observed changes are a con-
sequence of the 59 decay of transcripts acting upstream
of PIP2;5, CYP79B2, and BGLU6. It is also plausible that
in the absence of XRN4, the exosome becomes the
dominant decay machinery (Zhang et al., 2015), but in
that case, targeted transcript levels in xrn4-5 mutant
would resemble ones in Col-0.

Out of 110 genes affected in their responses to salinity
in the single, double, and quintuple mutants tested and
previously described as potential VCS substrates, 73
have a role in root development (Fig. 2C; Supplemental
Table S16 and S18). Aquaporins have already been
shown to facilitate water transfer to the LR primordium
from its overlying tissues and thereby controlling LR
emergence, suggesting that the roles of PIP2;5, PIP2;3,
and SnRK2.10 overlap (Péret et al., 2012). Over-
expression of PIP2;5 in barley resulted in increased root
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growth under saline conditions (Alavilli et al., 2016).
Interestingly, yet another aquaporin, PIP2;1, was
phosphorylated by SnRK2.6 (Grondin et al., 2015),
suggesting that function of aquaporins can be regulated
by SnRK2 kinases via two mechanisms: ABA depen-
dent via direct phosphorylation and indirectly at the
transcript level by non-ABA dependent SnRK2s. Re-
cently the cytochrome P450 protein CYP79B2 was
shown to regulate lateral root formation and elongation
under salt stress (Julkowska et al., 2017), and natural
variation in salinity induced expression of CYP79B2
positively correlated with lateral root development
under salt stress (Julkowska et al., 2017). Remarkably,
CYP79B2 is expressed at the sites of lateral root for-
mation, a similar localization of which was found for
SnRK2.10 (Ljung et al., 2005; McLoughlin et al., 2012).
CYP79B2, via the conversion of Trp to indole-3-ace-
taldoxime, is involved in local biosynthesis of auxin, the
key hormone regulating root development (Mikkelsen
et al., 2000; Ljung et al., 2005). This, together with the
fact that the expression of PIP2;2 and PIP2;5 are regu-
lated by auxin (Péret et al., 2012), suggests that subclass
1 SnRK2s may modulate root development in response
to salinity via auxin-related processes. SnRK2.10 were
also required for salinity-dependent induction of the
flavonol glucosyltransferase BGLU6 (Fig. 3C), which by
regulation of flavonol metabolism can contribute to
scavenging reactive oxygen species accumulating upon
salt stress (Agati et al., 2012; Ishihara et al., 2016).
To summarize, our results suggest that both subclass

1 SnRK2 protein kinases and the 59 mRNA decay ma-
chinery can regulate root growth in the presence
of salinity, but it is unclear yet how exactly these
two pathways intersect. We propose that SnRK2.1,
SnRK2.5, SnRK2.9, VCS, and XRN4 control root system
architecture under control and salt stress conditions,
whereas the role of SnRK2.4 and SnRK2.10 is limited to
responses to salinity. mRNA abundance of genes en-
coding aquaporins PIP2;3 and PIP2;5 and cytochrome
P450 protein CYP79B2 depends on subclass SnRK2s;
yet whether they are under the control of mRNA
decapping remains unknown. Finally, identification of
phosphosites in VCS and VCR as SnRK2 targets, and
the extensive set of subclass 1 SnRK2-dependent tran-
scripts with roles in root system architecture modula-
tions by salt stress and other biological processes,
provide a foundation to further explore the role of
SnRK2 phosphorylation in these processes.

MATERIAL AND METHODS

Identification of SnRK2.4 and SnRK2.10 Interactors

The coding regions of SnRK2.4 and SnRK2.10 were cloned under the CaMV
35S promoter for fusion with GSrhino tag in pH7m24GW2 vector for N- and
pH7m34GW2 for C-teminal fusionwithMultisite Gateway cloning as described
by Van Leene et al. (2015). Arabidopsis (Arabidopsis thaliana) PSB-D cell sus-
pension cultures were transformed and TAP of SnRK2.4 and SnRK2.10 protein
complexes was performed according to the protocol described by Van Leene
et al. (2015). Eluted proteins were identified on linear trap quadrupole (LTQ)
OrbitrapVelos with two technical replicates per bait. Proteins identified with at

least two peptides were considered as significant. The most abundant back-
ground proteins were subtracted, and final list of the putative interactors is
presented in Table 1.

Protein Expression and Purification

Glutathione S-transferase fusions were obtained by cloning the full-length
coding sequences of SnRK2.4, SnRK2.5, SnRK2.6, and SnRK2.10 into pGEX4T1
and DCP2 into pGEX-KG Gateway vector. All constructs were transformed to
E. coli BL21 DE3 and their expression was induced for 3 h with 1 mM iso-
propylthio-b-galactoside at 18°C. Recombinant proteins were purified with
glutathione S-transferase-Sepharose beads (GE Healthcare) as described in
Julkowska et al. (2015).

In Vitro Kinase Activity Assays

Peptides harboring putative phosphorylation sites were synthesized by
GenScript (www.genscript.com). Sequences of used peptides can be found in
Table 3. Each peptide (1 mM) was incubated with 0.1 mM of recombinant protein
kinase in kinase reaction buffer (50 mM Tris-HCl, pH 7.5; 2 mM MgCl2; 1 mM

dithiothreitol [DTT]; 1 mM ATP) in a final volume 60 mL for 6 h in 30°C. Then
20 mL of each reaction was used for direct trapping and collection of the syn-
thetic peptides on 8 mg capacity OMIX RP tip (Agilent Technologies). The
trapped peptides were eluted in 10mL 50% (v/v) acetonitrile (ACN), 0.1% (v/v)
trifluoroacetic acid (TFA), and a 3–5 mL fraction was dried in a speedvac and
reconstituted in 6 mL 2% (v/v) ACN, 0.1% (v/v) TFA for liquid
chromatography-mass spectrometry (LC-MS) analysis. The remaining 40 mL of
each reaction was used for in-solution digestion. Samples were reduced with
10 mM DTT for 30 min at 60°C followed by alkylation with 20 mM iodoaceta-
mide for 30 min at room temperature in darkness. An overnight digestion with
2 mg trypsin (Sigma) was performed at 37°C, stopped with TFA; peptides were
collected with 50% (v/v) ACN, 0.1% (v/v) TFA on 8 mg capacity OMIX RP tip
(Agilent Technologies), dried and reconstituted in 6 mL 2% (v/v) ACN, 0.1%
(v/v) TFA for the analysis with LC-MS. For the kinase activity assays with full-
length protein as a substrate, 0.4 mg of recombinant protein kinase and 2 mg of
the substratewere used for the same reactions aswith peptides in a total volume
of 30 mL, digested with trypsin, collected, and analyzed as described above.
MBP was used as a substrate for a positive control of protein kinase activity.

Mass Spectrometry Analysis

Mass spectrometry analyseswere donewith the amaZon Speed Iontrapwith
a CaptiveSpray ion source (Bruker) coupled to an EASY-nLC II (Proxeon,
Thermo Fisher Scientific) chromatographic system. Peptide samples were in-
jected and separated with an eluent flow of 300 nL 3 min21 on an Acclaim
PepMap100 (C18 75 mM 25 cm Dionex, Thermo Fisher Scientific) analytical
column combined with an Acclaim PepMap100 precolumn (C18 100 mM 2 cm
Dionex, Thermo Fisher Scientific) using a 30-min gradient of 0% to 50% (v/v)
ACN and 0.1% (v/v) formic acid. Peptide precursor ions above a predefined
threshold ion count were selected for low-energy collision-induced dissociation
to obtain fragmentation spectra of the peptides. Technical replicates were
performed with electron-transfer dissociation (ETD). Tandem mass spectrom-
etry (MS/MS) data were processed with Data Analysis software (Bruker), and
used for database searching with Mascot software (Version 2.5.1) in a custom-
made database containing all SnRK protein kinases, MBP, and the synthetic
peptides sequence information. Searches were simultaneously performed
against a common contaminants database (compiled byMax Planck Institute of
Biochemistry, Martinsried) to minimize false identifications. Mascot search
parameters were as follows: a fixed modification of carbamidomethyl for Cys,
variable modification of oxidized Met and Phospho(ST), trypsin with the al-
lowance of one missed cleavage, peptide charge state 12, 13, and 14. Peptide
andMS/MSmass error toleranceswere 0.3 D for electrospray ionization-trap or
electron-transfer dissociation-trap. For the sample with synthetic peptides no
fixed modification was applied. The identified phosphopeptides were verified
by manual inspection of MS/MS spectra in the raw data using the Data
Analysis software.

Root System Architecture Assay

Seedswere surface sterilizedwith 20mldilute bleach and 600mL 37.5% (v/v)
HCl for 3 h followed by 1.5 h in laminar flow to evaporate chlorine gas. Seeds
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were stratified in 0.2% (w/v) agar at 4°C in the dark for 72 h. Seeds were ger-
minated on half-strength Murashige-Skoog medium supplied with 0.5% (w/v)
Suc, 0.1% (w/v) MES monohydrate, and 1% (w/v) agar with pH 5.8 (adjusted
with KOH). Seeds were germinated on vertically positioned plates (70° angle)
under long-day conditions (21°C, 70% humidity, 16/8h light/dark cycle). The
4-d-old seedlings of similarmain root lengthwere transferred to 0.53MSmedia
supplementedwith 0, 75, or 125mMNaCl. Root SystemArchitecture of 10-d-old
seedlings from control and salt stress conditions, respectively, was quantified
with Smartroot Software (Lobet et al., 2011). Two independent biological ex-
periments with 20 replicates per condition were performed. Individuals with
main root length and lateral root number values outside the 3rd quartile were
identified as outliers and removed from dataset. Statistical analysis was per-
formed with ANOVA with experiment number as factor followed with pair-
wise genotype*treatment comparison by least square means test.

In-Gel Kinase Activity Assay

Arabidopsis seeds were surface sterilized with 20 mL dilute bleach and
600 mL 37.5% (v/v) HCl for 3 h and then placed for 1.5 h in laminar flow to
evaporate chlorine gas. Seeds were stratified for 72 h at 4°C and grown under
long-day conditions (21°C, 70% humidity, 16/8 light/dark cycle) in 100 mL
liquid media containing 0.53 Murashige-Skoog basal salt, 0.5% (w/v) Suc, 1%
(w/v) MES monohydrate, pH 5.8 (KOH) with shaking (120 rpm). The 10-d-old
seedlings were treated with 150 mM NaCl in 0.13Murashige-Skoogmedia (salt
stress) or 0.13 Murashige-Skoog media (control) for 0, 0.5, 1, 2, 5, 10, and
30 min; 1, 6, and 24 h. Two independent biological experiments with four in-
dividual seedlings liquid cultures were performed. Seedlings were dried with
paper towel and snap frozen in liquid nitrogen. Tissue was grounded and
proteins were extracted with 1:3 (v/w) lysis buffer (50 mM Tris-HCl, pH 7.5;
5 mM EDTA; 5 mM EGTA; 2 mM DTT; 25 mM NaF; 1 mM Na3VO4; 50 mM

b-glycerophosphate; 13 complete protease inhibitor cocktail; Promega) and
spun down at 26,000 g for 30 min. Protein concentrations were determined by
the Bradford protein assay (Bio-Rad). Crude protein extract (50 mg) was sepa-
rated on 12% (w/v) polyacrylamide gel containing 0.2 mg/mL of MBP (Up-
state). Gels were washed three times for 30 min at room temperature with
washing buffer (25 mM Tris-HCl, pH 7.5; 0.5 mM DTT; 0.1 mM Na3VO4; 5 mM

NaF; 0.5 mg/mL bovine serum albumin, 0.1% [v/v] Triton X-100) and then
twice for 30 min and overnight at 4°C in renaturation buffer (25 mM Tris-HCl,
pH 7.5; 0.5 mM DTT; 0.1 mM Na3VO4, 5 mM NaF). Gels were incubated in re-
action buffer (25 mM Tris-HCl, pH 7.5; 2 mM EGTA; 12 mM MgCl2; 1 mM DTT;
0.1 mM Na3VO4) for 30 min at 37°C and then brought to reaction buffer con-
taining 25 mM ATP and 50 mCi 32P g-ATP for 1 h. Gels were washed 6 times in
1% (w/v) Na2H2P2O7, 5% (w/v) trichloroacetic acid (TCA), incubated for
30 min in 3% (v/v) glycerol, dried overnight, exposed to Storage Phospho
Screen (Fuji) for 2 weeks, and scanned using a phosphoimager (Typhoon FLA
7000, GE Healthcare).

Transcriptome Profiling and RT-qPCR Validation

Arabidopsis seedswere surface sterilizedwith 20ml dilue bleach and 600mL
37.5% (v/v) HCl for 3 h and then placed for 1.5 h in laminar flow to evaporate
chlorine gas. Seeds were stratified for 72 h at 4°C and grown under long-day
conditions (21°C, 70% humidity, 16/8 light/dark cycle) in 100 mL liquid media
containing 0.53 Murashige-Skoog basal salt, 0.5% (w/v) Suc, 1% (w/v) MES
monohydrate, pH 5.8 (KOH) with shaking (120 rpm). The 10-d-old seedlings
were treated with 150 mM NaCl in 0.13Murashige-Skoog media (salt stress) or
0.13 Murashige-Skoog media (control) for 1 h. Three individual seedlings liq-
uid cultures were used per each genotype and treatment combination. Seed-
lings were dried with paper towel and snap frozen in liquid nitrogen. Tissue
(100 mg) was ground, and total RNAwas extracted using Plant RNA extraction
kit (Qiagen) according to the manufacturer’s instructions. RNA quality deter-
mination, library preparation, and sequencing with Illumina HiSeq 2500 was
performed by Eurofins Genomics (Germany). The quality of the libraries was
assessed before and after read processing with FastQC and Trimmomatic and
then aligned to the Col-0 genome from The Arabidopsis Information Resource
(TAIR) 10.30 database using TopHat algorithm (Kim et al., 2013). Transcripts
were assembled, and their abundance was quantified using Cufflinks where
significant changes in transcript abundance between samples were detected
with Cuffdiff (Trapnell et al., 2012). Differentially expressed geneswere selected
based on a false discovery rate, 0.05 and absolute value of log2(fold change).
1. GO categories enrichments were performed with agriGO analysis toolkit (Du
et al., 2010) using TAIR10 annotation as a backgroundwith hypergeometric test

and Hochberg multitest adjustment method (false discovery rate), significance
level threshold 0.01, maximum number of mapping entries 5, and Plant GO
Slim ontology. For the selected candidates, expression levels were confirmed by
RT-qPCR on RNA extracted from an independent biological experiment per-
formed under the same conditions as used for RNA-seq analysis. Comple-
mentary DNA was synthesized with ReverAid Kit (Fermentas) with oligo(dT)
primer and 5mLwere used for each reactionwith Eva-Green kit (Solis Biodyne).
Three biological replicates were used per line and two technical replicates were
made. The sequences of primers are indicated in Supplemental Table S21. The
transcript level was normalized by expression of the reference gene MON1
(At2G28390) according to the following formula: DCt 5 2(Ct candidate gen)/2(Ct
reference gene).

Statistical Analysis

Statistical analysis of the root systemarchitecture assayswas performedwith
two-way ANOVA in R. A summary of the statistics can be found in
Supplemental Datasets S1–S3.

Accession Numbers

The transcriptomic data from this article has been deposited in the Array
Express (http://www.ebi.ac.uk/arrayexpress) under the accession E-MTAB-
8073.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Spectra of the phosphorylated peptides identi-
fied in SnRK2.4 and SnRK2.10 TAP experiments.

Supplemental Figure S2. Spectra of the phosphorylated synthetic peptides
identified in in vitro kinase activity assays.

Supplemental Figure S3. Components of SnRK2 subclass 1-regulated 59
mRNA decay pathways contribute to root development and root system
architecture responses to salt stress.

Supplemental Figure S4. Expression of VCS (VARICOSE) and XRN4 (59
EXORIBONUCLEASE 4) in amiRNA lines VCS #2 and VCS#4 and in
T-DNA insertion lines xrn4-5 and xrn4-6.

Supplemental Figure S5. Rapid activation of SnRK2.4 and SnRK2.10 in
Arabidopsis seedlings.

Supplemental Figure S6. Salt stress induced changes in mRNA abundance
of genes encoding SnRK2 protein kinases.

Supplemental Figure S7. Overview of the process of the selection of salt
stress regulated genes that are dependent on subclass 1 SnRK2 protein
kinases.

Supplemental Figure S8. SnRK2 subclass 1 protein kinases regulate gene
expression under nonstressed conditions.

Supplemental Figure S9. Salt-induced expression of PLASMA MEM-
BRANE INTRINSIC PROTEINS (PIP2;5, PIP2;3), BETA GLUCOSIDASE
6 (BGLU6), CYTOCHROME P450, FAMILY 79, SUBFAMILY B, POLY-
PEPTIDE 2 (CYP79B2) is dependent on SnRK2 subclass 1 protein kinases
signaling.

Supplemental Table S1. Protein identification details obtained with the
LTQ Orbitrap Velos (Thermo Fisher Scientific) and Mascot Distiller soft-
ware (version 2.5.0, Matrix Science) combined with the Mascot search
engine (version 2.5.0 for SnRK2.4, and version 2.5.1 for SnRK2.10, Matrix
Science) using the Mascot Daemon interface and database TAIRplus
(Van Leene et al., 2015).

Supplemental Table S2. Recombinant SnRK2.4 protein phosphorylates
MBP, yet is activity is too low to detect its autophosporylation and
phosphorylation of VCS, VCR and DCP2 peptides.

Supplemental Table S3. Peptides identified with MS/MS analysis of the
in vitro kinase activity assay with SnRK2.4 and MBP as a substrate.
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Supplemental Table S4. Peptides identified with MS/MS analysis of the
in vitro kinase activity assay with SnRK2.10 and MBP as a substrate.

Supplemental Table S5. Peptides identified with MS/MS analysis of the
in vitro kinase activity assay with SnRK2.5 and MBP as a substrate.

Supplemental Table S6. Peptides identified with MS/MS analysis of the
in vitro kinase activity assay with SnRK2.6 and MBP as a substrate.

Supplemental Table S7. Peptides identified with MS/MS analysis of the
in vitro kinase activity assay with SnRK2.10 and DCP2 as a substrate.

Supplemental Table S8. List of differentially expressed genes found in
snrk2.4, snrk2.4/10 or snrk2.1/4/5/9/10 in ten days old seedlings.

Supplemental Table S9. List of genes with expression changed by salt. Ten
days old seedlings grown in liquid cultures were treated with mock or
150 mM NaCl for 1 h.

Supplemental Table S10. List of genes with expression changed in Col-0
upon 1 h treatment with 150 mM NaCl, but not affected in snrk2.4
mutant.

Supplemental Table S11. List of genes with expression changed in Col-0
upon 1 h treatment with 150 mM NaCl, but not affected in snrk2.4/2.10
mutant.

Supplemental Table S12. List of genes with expression changed in Col-0
upon 1 h treatment with 150 mM NaCl, but not affected in snrk2.1/2.4/2.5/
2.9/2.10 mutant.

Supplemental Table S13. List of genes which expression was regulated in
snrk2.4 mutant, but to a different degree or in an opposite manner than
in Col-0.

Supplemental Table S14. List of genes which expression was regulated in
snrk2.4/10 mutant, but to a different degree or in an opposite manner
than in Col-0.

Supplemental Table S15. List of genes which expression was regulated in
snrk2.1/4/5/9/10 mutant, but to a different degree or in an opposite man-
ner than in Col-0.

Supplemental Table S16. Overlap of the genes with expression altered in
salt stress in snrk2.4, snrk2.4/10 and snrk2.1/4/5/9/10.

Supplemental Table S17. List of the genes overlapping between our can-
didate genes acting downstream of SnRK2 subclass 1 protein kinases
and transcripts reported to have half-life shorter than 3 h as reported
in Narsai et al. (2007).

Supplemental Table S18. List of the genes overlapping between our can-
didate genes acting downstream of SnRK2 subclass 1 protein kinases
and transcripts reported to be targets of VCS (Sorenson et al., 2018).

Supplemental Table S19. List of the genes overlapping between our can-
didate genes acting downstream of SnRK2 subclass 1 protein kinases
and transcripts with altered response to drought in amiRNA VCS lines
(Soma et al., 2017).

Supplemental Table S20. List of the genes overlapping between our can-
didate genes acting downstream of SnRK2 subclass 1 protein kinases
and transcripts reported to be dependent on LSM1 signaling (Perea-
Resa et al., 2016).

Supplemental Table S21. List of the primers used for RT-qPCR.

Supplemental Dataset S1. ANOVA tables for RSA assays with snrk2.1/4/5/
9/10.

Supplemental Dataset S2. ANOVA tables for RSA assays with VCS ami
RNA lines.

Supplemental Dataset S3. ANOVA tables for RSA assays with xrn4-5 and
xrn4-6.
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