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Abstract: 

Cis-prenyltransferase (cis-PTase) catalyzes the rate-limiting step in the synthesis of glycosyl carrier lipids 

required for protein glycosylation in the lumen of endoplasmic reticulum. Here we report the crystal 

structure of the human NgBR/DHDDS complex, which represents the first atomic resolution structure for 

any heterodimeric cis-PTase. The crystal structure sheds light on how NgBR stabilizes DHDDS through 

dimerization, participates in the enzyme’s active site through its C-terminal -RXG- motif, and how 

phospholipids markedly stimulate cis-PTase activity. Comparison of NgBR/DHDDS with homodimeric 

cis-PTase structures leads to a model where the elongating isoprene chain extends beyond the enzyme’s 

active site tunnel, and an insert within the 3 helix helps to stabilize this energetically unfavorable state to 

enable long chain synthesis to occur. These data provide unique insights into how heterodimeric cis-PTases 

have evolved from their ancestral, homodimeric forms to fulfill their function in long chain polyprenol 

synthesis.  

 

Significance Statement:  

The enzyme, cis-prenyltransferase (cis-PTase) composed of two subunits, NgBR and DHDDS, is essential 

for protein glycosylation reactions in all higher eukaryotes.  Here we report the heterodimeric crystal 

structure of the complex and show novel features that impacts the stability, activity and lipid sensing of 

enzyme complex.  Moreover, the structure rationalizes mutations that cause genetic disorders of 

glycosylation leading cognitive dysfunction, epilepsy  and Parkinson’s disease.  
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Introduction 

Most members of the highly conserved cis-prenyltransferase (cis-PTase) family catalyze the sequential 

condensation of an allylic pyrophosphate with a variable number of 5-carbon isopentenyl pyrophosphates 

(IPPs), resulting in the formation of polyprenol pyrophosphates with cis-double bonds (1-4). In eukaryotes, 

the endoplasmic reticulum (ER) associated cis-PTase is the first enzyme committed to the synthesis of 

dolichol phosphate (DolP) (4-8), an indispensable lipid carrier for protein N-glycosylation, O-

mannosylation, C-mannosylation and GPI-anchor formation (9, 10). In contrast to mammalian cis-PTase, 

undecaprenyl pyrophosphate synthase (UPPS), a bacterial cis-PTase, is essential for cell wall synthesis 

(11). Eukaryotic cis-PTases have the extraordinary ability to synthesize long-chain (14-24 C5 isoprene 

units) or very-long-chain (>2,000 C5) products (12), whereas bacterial, some protistic, archaeal and plant 

enzymes mainly produce medium-chain (9-11 C5), or short-chain (2-5 C5), products (2, 3, 10, 13-16). 

Although the structure and mechanism of homodimeric, bacterial cis-PTases, have been extensively 

studied (1, 17-22), the eukaryotic enzyme’s unique mechanism has remained elusive until recently. 

Dehydrodolichyl diphosphate synthase (DHDDS) or its yeast orthologues Rer2 and Srt1, retain most of the 

active site residues in common with bacterial cis-PTase (4-6), however, as purified, have very little 

enzymatic activity (23). The full activity of cis-PTase requires the interaction of DHHDS with an additional 

subunit, originally identified as NgBR (Nogo-B receptor) or Nus1 in yeast (24-31). Within eukaryotic cells, 

DHDDS is stabilized by the association with NgBR (24). Part of NgBR shares sequence and structural 

homology with bacterial cis-PTase (30, 32, 33), but lacks most catalytic residues. Outside the cis-PTase 

homology domain, NgBR has a N-terminal membrane-binding region (24) (Fig. 1A). Various roles have 

been proposed for NgBR and NgBR-like proteins in the membrane association and function of eukaryotic 

cis-PTases and a subgroup of archaeal enzymes that share this heteromeric arrangement (24, 33-37). We 

have previously shown that NgBR and Nus1 are is indispensable for cis-PTase activity in humans and in 

yeast, respectively  (25, 33). 
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Exome sequencing of patients with congenital disorders of glycosylation (CDG) has identified a 

number of disease-causing mutations in both DHDDS and NgBR (25, 38-42). A homozygous mutation in 

NgBR at Arg-290 (NgBR R290H mutation), occurs in a conserved C-terminal -RXG- motif that is shared 

amongst NgBR orthologs as well as in bacterial homodimeric cis-PTases, but is absent in DHDDS and its 

orthologs, suggesting that the C tail of NgBR participates in cis-PTase function. Biochemical 

characterization of the R290H mutant revealed this mutation impairs IPP binding and markedly reduces 

catalytic activity but does not influence its interaction with DHDDS (25, 33) raising the possibility that 

NgBR could directly contribute to substrate binding and catalysis through its -RXG- motif (21, 43, 44). 

Another recent exome sequencing study identified multiple mutations in NgBR that appear to cause 

Parkinson’s disease (45), although it is uncertain whether these mutations affect cis-PTase activity. 

Here, we report the first crystal structure of a heteromeric, human cis-PTase NgBR/DHDDS 

complex solved at 2.3 Å resolution. Besides proving a catalytic role of NgBR’s -RXG- motif, structural-

functional analyses have unveiled several unique attributes of the complex that were not predicted based 

on the structures of UPPS. This includes a unique C-terminal clamp in DHDDS that contributes to 

heterodimerization;  the mechanistic basis for a Parkinson’s disease causing, loss of function mutation; a 

novel N-terminal membrane sensor critical for lipid activation of cis-PTase activity and a critical structural 

feature in DHDDS that impacts product polyprenol chain length.  Thus, our crystal structure provides 

unique insights into how heterodimeric mammalian cis-PTases have evolved from their ancestral, 

homodimeric forms to synthesize long chain polyprenols and dolichol, lipids essential for protein 

glycosylation reactions. 
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Results and Discussion 

The core catalytic domain of NgBR/DHDDS complex. The rate-limiting step in dolichol biosynthesis 

in the ER is catalyzed by cis-PTase, which consists of NgBR and DHDDS subunits (24, 25). Unlike 

homodimeric cis-PTase found in bacteria that synthesizes a medium-chain-length polyprenol 

pyrophosphate (e.g., E. coli UPPS; 11 isoprene units), human cis-PTase preferentially catalyzes the 

condensation of sixteen IPP molecules with a single farnesyl pyrophosphate (FPP), generating a long-chain 

reaction product (i.e. 19 isoprene units see Supporting Information (SI) in the SI appendix, Fig. S1) (10, 

11). To facilitate structural and mechanistic characterization of the heteromeric cis-PTase, we co-expressed 

a polyHis- and SUMO-tagged human NgBR (46), which has the N-terminal 78 amino acids deleted (Fig. 

1A), with full-length human DHDDS in E. coli, and purified the protein complex to homogeneity in 

milligram quantities (Fig. 1B). Consistent with the model where NgBR’s N-terminal region mainly 

functions as a membrane anchor (24), the N terminal truncated NgBR/DHDDS complex is as active 

enzymatically as the full-length protein complex purified from mammalian cells (33).  Also like the full-

length protein, the activity of the truncated NgBR/DHDDS was potently stimulated by phosphatidylinositol 

(PI), a phospholipid abundantly present in the ER membrane (Fig. 1C) (33). Reverse phase thin layer 

chromatography (RPTLC) confirmed that NgBR N-terminal truncation did not alter the range, or relative 

abundance, of various long-chain polyprenols generated from the in vitro reaction (see below). 

 

The heterodimeric structure. The core catalytic domain of the NgBR/DHDDS complex was crystallized 

in the presence of IPP and Mg2+. The crystal belongs to space group R32, and the asymmetric unit contains 

a single NgBR79-293/DHDDS heterodimer (hereinafter referred to as NgBR/DHDDS). The structure was 

determined by molecular replacement using E.coli UPPS (PDB entry 1X06) and S. cerevisiae Nus1 (PDB 

entry (6JCN) as search probes for DHDDS and NgBR, respectively (Fig. 2A; SI appendix, Table S1) (32, 

47). Clear electron densities enabled us to model several functionally important elements that were absent 
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in the search probes (SI appendix, Fig. S2-5). In NgBR, these structural elements include an N-terminal -

helix ( 1, residues 82-93) and an extended C-terminal segment (residues 286-293) that contains the 

catalytically essential -RXG- motif. Furthermore, the two outermost -strands ( C, C’) observed in Nus1 

are disordered (residues 230-244; SI appendix, Fig. S4). The peptide segment following the -strands forms 

a new helix ( 4, residues 179-186) and partially covers the hydrophobic cavity previously proposed to 

constitute the binding site for farnesylated Ras (48). In DHDDS, the additional structures include a 

conserved N-terminal segment (residues 1-24) that reaches into the hydrophobic tunnel of the active site, 

and a pair of long -helices (residues 251-333) toward the C-terminus that wrap around the protein 

complex.  

The crystal structure of a heterodimer is consistent with earlier predictions that the two proteins 

stabilize each other (24, 25) and that the central region of the NgBR/DHDDS interface is similar to that 

observed in prokaryotic UPPS and yeast Nus1 homodimers (SI appendix, Fig. S6) (32, 47). In contrast to a 

recent modeling study (23), the crystal structure reveals that DHDDS’s C-terminus wraps around the protein 

complex and makes additional contact with NgBR.  To test the nature of the interaction between the two 

subunits, partial proteolysis experiments were performed.  As seen in Fig 2B; (and in SI appendix, Fig. S7) 

the initial cleavage of NgBR occurs prior to cleavage of DHDDS consistent with the proteins stabilizing 

each other.  Moreover, mutations of several amino acids at the interface clearly weaken the binding between 

NgBR and DHDDS when the constructs were transfected into HEK293T cells and proteins 

immunoprecipitated (Fig. 2C, SI appendix, Fig. S8). To study the contribution of DHDDS’s  extended C-

terminus  in vivo, two DHDDS truncation mutants ( 256, 289), where part of 7 and the entire 8 helix 

was deleted, and a triple mutant (R306A/F313A/L317A), which disrupts the packing of the two helices, 

were generated  (SI appendix, Fig. S3B). Both deletion mutants failed to support growth of 

rer2Δ/srt1Δ/nus1Δ yeast cells (lacking endogenous genes critical for cis-PTase, (25), whereas the triple 

mutant delayed growth (Fig. 2D) implying a critical functional role for the C tail of DHDDS. 
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The active site of the NgBR/DHDDS complex. Both NgBR and DHDDS subunits are required for a 

functional cis-PTase  (24, 25). Although NgBR, and its yeast homolog Nus1, have a similar fold as DHDDS 

and members of the homodimeric cis-PTase family, they lack multiple key catalytic residues and have a 

distorted “active site” unable to accommodate substrate. As we recently demonstrated in a functional study 

with purified human complex, the NgBR subunit contributes to cis-PTase activity through its C-terminal -

RXG- motif, which is conserved amongst hetero- and homodimeric enzymes (33) and this critical -RXG- 

motif is disordered in the reported homodimeric Nus1 structure (32). Here, based on clear electron densities, 

we modeled the entire C-terminal region of NgBR, as well as two IPP molecules, one (IPP1) occupying the 

allylic substrate binding site S1, and the other (IPP2) occupying the homoallylic site S2, and a bridging 

Mg2+ ion (Fig. 3A; SI appendix, Fig. S2B, S5 and S9). The C-terminus of NgBR has an extended 

conformation and traverses the dimeric interface to complete the active site (Fig. 3B): the mainchain amide 

groups of Leu-291 and Gly-292 of the -RXG- motif form critical hydrogen bonds with homoallylic substrate 

IPP2’s β-phosphate, while the side chain of Arg-290 interacts with a water molecule that coordinates the 

Mg2+ ion. Gly-292 of the -RXG- motif enables the peptide to make a tight turn over IPP2 and further 

stabilizes the turn by forming a hydrogen bond with Arg-85, a conserved DHDDS residue that also 

participates in the binding of the allylic substrate. The function of the -RXG- motif is thus equivalent to 

that of the P-loop, which binds the -phosphate group of the allylic substrate FPP. 

The binding interactions within the S1 site are highly conserved within the cis-PTase family (SI 

appendix, Fig. S10). Despite weak electron density, we were confident in modeling IPP1 in such a way that 

its isopentenyl group is pointed toward the hydrophobic tunnel where the elongating product is bound (Fig. 

3A). Unlike the S1 site, in previous studies, substrate binding to the S2 site was less consistent among 

various crystal structures (SI appendix, Fig. S11) and clear from our study. Some differences were caused 

by mutations introduced into the active site, but differences may also result from crystallization conditions 

that destabilized the -RXG- motif since the disordered motif is almost always associated with poorer 

occupancy of the S2 site, or with misplaced pyrophosphate groups. Amongst known cis-PTase structures, 



8 
 

the binding mode of IPP2 is most similar to that observed in the complex between MlDPPS and substrate 

analogs (SI appendix, Fig. S11). In both structures, the pyrophosphate is tightly bound by three conserved 

arginine residues (DHDDS Arg-85, Arg-205, Arg-211), a conserved serine (Ser-213), and the -RXG- motif 

from the dimerization partner. The magnesium ion is coordinated by phosphate groups from both allylic 

and homoallylic substrates, a conserved aspartate from the “P-loop” (Asp-34), and two water molecules. A 

conserved asparagine (Asn-82) is identically positioned near IPP’s C2 group for proton extraction during 

catalysis. These structural similarities reinforce the notion that hetero- and homo- dimeric cis-PTases share 

the same catalytic mechanism. 

The majority of CDG-causing missense mutations in DHDDS (R37H, R38H, R211Q) and NgBR 

(R290H) affects active site residues directly involved in substrate binding and catalysis (SI appendix, Fig. 

S12A). Although uncharacterized biochemically, the DHDDST206A mutation could also perturb the active 

site because the threonine hydroxyl is simultaneously hydrogen-bonded to the backbone amide and 

carbonyl of the metal-binding Asp-34 (SI appendix, Fig. S12B (49)).  The only exception to this pattern is 

DHDDSK42E, which affects ~17% of Ashkenazi Jewish patients diagnosed with retinitis pigmentosa (42, 

50).  It was previously unclear how this mutation could affect enzyme activity because the corresponding 

residue in E. coli UPPS (Lys-34) is exposed and does not interact with any other residue that could link the 

mutation to the active site. Here, we show that instead of pointing toward solvent, Lys-42 forms a salt 

bridge with the highly conserved Glu-234 (Fig. 3C); and this interaction is equivalent to that between Trp-

31 and Asp-223 in E. coli UPPS. Therefore, this charge reversal mutation could be disruptive to protein 

structure, affecting the short helix ( 1) that contains Lys-42. Given the role of 1 and the preceding P-loop 

in FPP binding, this interpretation is consistent with the observation that K42E mutation increases the KM 

for FPP, decreases kcat, but has no effect on IPP binding (33). K42E also causes product chain shortening 

(25, 49), which will be discussed below. 
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NgBR mutations and Parkinson’s disease. Recently, a number of mutations in the NUS1 gene were 

discovered by exome sequencing in patients with Parkinson’s disease (PD) (45). Amongst the 15 missense 

mutations, 11 occur in the region that we now have structural information for (Fig. 4A). In contrast to CDG-

causing mutations, which cluster around the active site, most PD mutations are scattered throughout the 

three-dimensional structure and do not appear to have any direct effect on protein folding (7 of the 11 

mutated residues are solvent-exposed; Fig. 4D), heterodimerization with DHDDS, or substrate binding. 

Therefore, for these mutations, it remains uncertain whether they altered cis-PTase activity in vivo, or 

impacted another biochemical mechanism involving NgBR that is unrelated to cis-PTase or dolichol 

function. It is not yet known whether any of the PD patients had symptoms overlapping with the CDG 

spectrum earlier in life (45), or if CDG patients with mild DHDDS mutations, e.g., K42E, could have a 

higher risk for developing Parkinson’s disease. 

One PD mutation (NgBRG91C), however, could indirectly affect the enzyme’s active site through 

the -RXG- motif. As alluded to earlier, the NgBR structure has an N-terminal helix ( 1) that is absent in 

either yeast Nus1 or bacterial UPPS structures (highlighted in green in Fig. 4A).  A lysine residue (Lys-96) 

at the end of this helix plays an important structural role in stabilizing the NgBR’s C-terminal segment by 

forming two critical hydrogen bonds with the backbone carbonyl of Tyr-284 and the side chain of Gln-289 

(Fig. 4B). Gly-91 mediates the contact between 1 and the rest of the protein and introducing a cysteine at 

this position would be incompatible with the packing of the helix and could perturb, through Lys-96, the 

C-terminal segment that harbors the -RXG- motif. To investigate this possibility, we generated and 

biochemically characterized the NgBRG91C mutant. The purified, G91C complex had a ~40% reduction in 

the enzyme’s specific activity in vitro (Fig. 4C). In comparison, the CDG mutation DHDDSK42E causes an 

80% reduction in enzyme activity compared to wildtype activity. This finding is significant and raises the 

possibility that subtle changes of cis-PTase activity could contribute to the pathogenesis of PD. These data 

are consistent with the observation that a splice variant of NgBR reducing its mRNA levels by 50%  also 

increases PD risk (45). Dolichol is the most abundant lipid associated with neuromelanin, a dark pigment 
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enriched in catecholaminergic neurons that are selectively vulnerable in Parkinson’s disease (51, 52). The 

genetic finding of mutations affecting a critical component of the enzyme complex responsible for dolichol 

synthesis, and our biochemical characterization of one such mutation, suggest a possible link between 

dolichol metabolism and age-related neurodegeneration. 

 

Regulation of enzyme activity by membrane binding. Heterodimeric cis-PTases are invariably found to 

be peripherally associated with large hydrophobic structures like membrane bilayers, lipid droplets and 

rubber particles (12, 24, 53). Two hydrophobic segments within the N-terminal region of NgBR is 

responsible for stable anchoring of the NgBR/DHDDS complex to the ER membrane. Our crystallographic 

analysis of the core catalytic domain reveals a unique N-terminal structure within DHDDS that is absent in 

bacterial UPPS. The N-terminal segment consists of a random coil (residues 1-10) and a short -helix ( 0; 

residues 11-21). The coil starts from the gap between 2 and 3. A bulky side chain (Trp-3) is inserted 

between the two helices, constricting the hydrophobic tunnel that is predicted to house the polyisoprenyl 

chain (Fig. 5A, left pane; Fig. 5B). A conformational change displacing the coil from the tunnel is thus 

required to enable product elongation (Fig. 5A, right panel). The short helix ( 0) lies alongside 7 and 

forms the outermost tip of the entire protein complex. Intriguingly, the side of 0 that is exposed to the 

solvent contains three hydrophobic residues (Trp-12, Phe-15, Ile-19). Sequence analysis indicates that this 

continuous hydrophobic patch is conserved in all DHDDSs, raising the possibility that 0 may have evolved 

specifically for membrane binding (Fig. 5C). We generated a triple DHDDS mutant (W12A/F15A/I19A) 

to examine the role of the hydrophobic patch in enzyme function. The mutant has similar activity as the 

wildtype enzyme in the absence of phospholipid. However, W12A/F15A/I19A is no longer potently 

activated by the addition of phosphatidylinositol (Fig. 5D) and the dominant polyprenol generated by the 

W12A/F15A/I19A mutant is also three isoprene units longer (Fig 5E). We hypothesize that membrane 

binding would trigger a conformational change that results in the unblocking of the hydrophobic tunnel 

during chain elongation and destabilizing the enzyme:product complex to facilitate product release (see 
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below).    Therefore, DHDDS’s 0 may function as a membrane sensor, contributing to enzyme activation 

by phospholipid and to the release of polyisoprenyl product of the appropriate chain length.  

 

The mechanism determining product chain length. Eukaryotic heterodimeric cis-PTases differ 

categorically from bacterial homodimeric enzymes in that they not only generate products with longer chain 

lengths but also tend to generate a range of products. The human NgBR/DHDDS complex preferentially 

synthesizes C95, but as Fig. 5E illustrates, C95 is one of many polyprenols that differ by single isoprene unit 

and are present in varying amounts. Here we examine the mechanistic basis for this biochemical 

phenomenon in light of the new crystal structure. 

 The size of the hydrophobic tunnel cannot explain the longer product (C95) generated by the 

NgBR/DHDDS complex. After manually removing the N-terminal coil that blocks the hydrophobic tunnel 

(Fig. 5A), we used 3V web server to calculate the volume of DHDDS’s tunnel to be around 1,300 Å3 (54), 

which is comparable in size to that (1,200 Å3) of E. coli UPPS (Fig. 5B; UPPS generates C55 product).  

Therefore, as polyprenol intermediates are formed, either the protein tunnel has to expand significantly, or 

the tail of the polyprenol chain needs to be pushed out of the tunnel. A model of protein conformational 

change that involves a large movement of helix 3 has been proposed (55). This type of movement, 

however, is unlikely to occur during product elongation because 3’s N-terminal half is involved in binding 

the allylic substrate’s pyrophosphate group, and thus essential for subsequent rounds of reaction. We favor 

the second possibility where a large portion of the polyprenol chain exits the active site tunnel and becomes 

exposed on the protein surface. Mutagenesis studies performed on E. coli UPPS suggested that Leu-137, 

equivalent to DHDDS’s Cys-148, located near the end of the tunnel could function as the barrier to such an 

exit since the UPPSL137A mutant synthesizes a range of long-chain products (up to C75) in the absence of 

detergent (Fig. 5B) (19). 
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 Sequence alignment revealed that all eukaryotic heterodimeric cis-PTases carry a short insertion 

(human DHDDS Glu-107, Lys-108, Glu-109), in the middle of the 3 helix (Fig. 6A). The extra sequence 

creates a greater bulge in 3 but does not significantly increase the volume of the hydrophobic tunnel that 

lies beneath the helix (Fig. 5A; left panel and Fig. 6C). To examine the possibility that the insertion may 

impact product length, we generated an ΔEKE deletion mutant of DHDDS and transformed it and wildtype 

DHDDS into the S. cerivisiae triple deletion strain (rer2Δ/srt1Δ/nus1Δ) with wildtype NgBR. When 

expressed in yeast, the wildtype enzyme generated Dol-20 (C100) as the dominant product. Although the 

EKE mutant generated shorter products (Fig. 6B), it retained the two key characteristics of long chain cis-

PTase (i.e. chain length distribution of products and each product > C55). Therefore, the wider opening 

between 2 and 3 created by the sequence insert, per se, is not a required structural feature of the long-

chain enzyme.  

 If the tail of the elongating polyprenol product does exit the enzyme’s hydrophobic tunnel, this is 

expected to generate several consequences (Fig. 6D). (i) Since there is no longer a physical barrier, the 

polyprenol chain can grow indefinitely in theory. This distinguishes the long-chain cis-PTases from the 

short-chain and medium-chain cis-PTases. In the latter two, the product chain length is strictly determined 

by the size of the hydrophobic tunnel (19, 21). (ii) The stability of the enzyme complex with product 

intermediates likely plays a major role in determining when elongation reaction stops. The exposed portion 

of the hydrophobic polyprenol could be increasingly disruptive to the enzyme:product complex through 

various mechanisms, e.g., interaction with detergent micelles, membrane bilayers, or lipid droplets. In the 

example cited above, E. coli UPPSL137A mutant failed to produce long-chain product in the presence of 

TX100 (19). (iii) The insert in 3, we thus argue, plays a role in stabilizing the enzyme:product complex. 

One possibility, as schematically illustrated in Fig. 6D, is that the insert may confer greater conformational 

flexibility to the 3 helix and its surrounding regions. (iv) The subtle effect of the environment on the 

enzyme:product complex determines that the final product will invariably have a distribution of chain 

lengths, another defining feature of the long-chain cis-PTases. The most extreme example of a long chain 
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cis-PTase is rubber synthase, together with its protein cofactors, must have extraordinary stability in its 

product-bound form (12). 

 In summary, we provide the first atomic insights into how eukaryotes synthesize dolichol, the 

obligate carrier lipid for N-glycosylation, O- and C-mannosylation reactions and GPI anchor biosynthesis.   

The new features elucidated by this structure rationalize the stability of the heterodimeric complex, disease 

causing mutations and lipid regulation of cis-PTase activity. The mechanism suggested by the 

NgBR/DHDDS crystal structure provides a conceptual framework for understanding the unique enzymatic 

properties of the long-chain cis-PTases, including rubber synthase.  Obligate heterodimerization with a 

membrane-binding partner probably ensures that the long-chain product is only robustly synthesized in 

close vicinity to the membrane as elsewhere the exposed polyprenol could be harmful to the cell. 

 

METHODS  

Materials : Unless otherwise stated, all reagents were of analytical grade and purchased from Sigma-

Aldrich, Thermo Fisher Scientific, and Zymo Research (Irvine, CA). Restriction enzymes were from New 

England Biolabs (Ipswich, MA). [1-14C] IPP (50 mCi/mmol) was purchased from American Radiolabeled 

Chemicals (St. Luis, MO). Reverse phase thin layer chromatography (RP18-HTLC) plates were from 

MilliporeSigma (cat# 1.51161.0001). Primary antibodies used in this study include Anti-HA High Affinity 

antibody (Roche, 11867423001) and Monoclonal anti-Flag M2 antibody (Sigma, F3165). HiFi DNA 

Assembly method (NEBuilder®, NEB) was used to construct expression vectors and perform site-directed 

mutagenesis. List of plasmids is in supplementary Table 2-4. Primers used in cloning are listed in 

supplementary Table 5 and primers used for mutagenesis are listed in supplementary Table 6.  

 

Cloning and Purification of NgBR/DHDDS Complex: To express His-SUMO-NgBR79-293 and untagged, 

full length DHDDS (1-333) in bacteria, His-SUMO and NgBR overlapping PCR fragments were first 

assembled into pRSF-DUET1 vector cut with NdeI/XhoI restriction enzymes. DHDDS PCR fragment was 
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then assembled into pRSF-DUET1-HIS-SUMO-NgBR cut with NcoI/NotI. The Recombinant 

NgBR/DHDDS complex was expressed in Escherichia coli Rosetta (DE3) cells (Novagen) and induced 

with 0.7 mM IPTG (OD600 0.6) overnight at 18 ⁰C. Cells were harvested and then resuspended in lysis 

buffer containing 20 mM Tris-HCl pH 8.0, 500 mM NaCl, 20 mM imidazole, 10% glycerol, 0.5% triton X-

100 and 2 mM 2-Mercaptoethanol, cOmplete protease inhibitors (Roche), lysozyme (100 μg/ml) and DNase 

I (10 μg/ml). Three cycles of freeze/thaw were conducted using ethanol/dry ice bath and cells were 

sonicated in 50 ml falcon tube for 2 minutes total. The samples were clarified by centrifugation at 20,000 

rpm for 1 hour at 4 ⁰C. Supernatant was then applied to a 1 ml HisTrap (GE Healthcare) nickel affinity 

column, and the protein was eluted with 6 ml lysis buffer containing 400 mM imidazole. The sample was 

then applied to size exclusion column (Superdex 200, GE Healthcare) equilibrated with buffer containing 

(50 mM Tris-HCl pH 8.0, 150 mM NaCl, 1 mM MgCl2 and 2 mM TCEP). Fractions containing protein 

complex were collected and subjected to cleavage with SUMO protease overnight at 4⁰C to remove the His-

SUMO tag. The cleaved protein was then re-applied to a HisTrap column and the flow-through was 

collected. Protein sample was then passed through another size exclusion column equilibrated with 50 mM 

Tris-HCl pH 8.0, 150 mM NaCl, 2.5 mM MgCl2 and 2 mM TCEP. Fractions were collected and analyzed 

by 12% SDS-PAGE gel.  

 

Crystallization, Data Collection and Structural Determination:  The purified protein was concentrated 

to 3.2 mg/ml and incubated with 3.3 mM IPP (sigma) on ice for 2 hours. Crystallization screening was 

performed using the sitting-drop vapor diffusion method, and an initial hit was obtained from PEG screen 

(Hampton Research). Crystallization was optimized by grid screening and the best crystals were obtained 

by mixing 1 μl protein solution with 1 μl reservoir solution consisting of 0.1 M Bicine (pH 8.5), 10% v/v 

2-propanol, 22% PEG 1500. Crystals appeared within 2 days and grew to maximum size within one week 

at room temperature. Crystals were cryoprotected with the reservoir solution supplemented with 20% 

glycerol and flash frozen in liquid nitrogen. Diffraction Data were collected on beamline 24-ID-E of the 

Advanced Photon Source at Argonne National Laboratory and processed using HKL2000 (56). Although 
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individual reflections up to 2.2 Å resolution could be observed, after merging, CC1/2 quickly fell off beyond 

2.3 Å. The structure of the complex was determined by molecular replacement and refined to 2.3 Å 

resolution using CCP4i (supplementary Table 1) (57). The E. coli UPPs (PDB entry 1X06) and S. cerevisiae 

NUS1 (PDB entry 6JCN) were used as search probes for the DHDDS and NgBR subunits, respectively. 

Model building were performed using Coot (58). 

 

cis-PTase activity of NgBR/DHDDS: The steady state activity of purified NgBR/DHDDS complex was 

assayed as before with minor modifications (33). Briefly, a standard incubation mixture contained, in a final 

volume of 25 μl, 100 μM [1-14C] IPP, 20μM FPP, 50 mM Tris-HCl pH 8.0, 1 mM MgCl2, 10 mM KF, 20 

mM 2-mercaptoethanol, 1 mg/ml BSA ,1 % Phosphatidylinositol and 100 ng of purified enzyme. The 

mixture was incubated for 1 hour at 37 ⁰C and product was extracted with chloroform:methanol (3:2), 

followed by washing three times with 1/5 volume of 10 mM EDTA in 0.9% NaCl.  In order to determine 

the chain length of the cis-PTase products, polyprenol diphosphates were chemically dephosphorylated by 

incubation of the lipids at 90° in 1 N HCl for 1 hr. Dephosphorylated prenols were extracted three times 

with two volumes of hexane. The organic fraction was washed with 1/3 volume of water, hexane was 

evaporated under stream of nitrogen and   lipids were loaded onto HPTLC RP-18 precoated plates and run 

in acetone containing 50 mM H3PO4. The plates were exposed to film to visualize the products of IPP 

incorporation. As an internal and external standards Geranylgeraniol (Echelon Biosciences), Undecaprenol 

and Polyprenol 19 (Institute of Biochemistry and Biophysics, PAS the Collection of Polyprenols) and 

Prenols mixture (13-21) (Avanti Polar Lipids) were used. Prenol standards were visualized by exposing the 

TLC plate to iodine vapor.  

 

Limited Proteolysis  

20 ul of 0.2 mg/ml of purified NgBR/DHDDS enzyme was incubated with 5 ul of a protease including 

thermolysin (Sigma),  proteinase k (Sigma) and trypsin (Sigma) at different concentrations (0.005, 0.01, 

0.02, 0.04, 0.08, 0.16 mg/ml). The reaction mixture was incubated at room temperature for 30 minutes and 
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stopped with SDS buffer containing 5.2 mM PMSF and 5.2 mM EDTA. Samples were boiled for 5 minutes 

and analyzed by12% SDS-PAGE gel. 

 

Co-Immunoprecipitation  

HEK293T cell was transfected using lipofectamine 2000 (Invitrogen) according to the manufacturer’s 

protocol and harvested 48 hrs after transfection. Cells were collected and lysed in IP buffer (IP buffer: 

50mM HEPES, 150mM NaCl, 1mM EDTA, 1% Triton X-100, Complete Protease Inhibitors (Roche)). 

Lysates were cleared by centrifugation at 12000 rpm for 10 min and 10μl of anti-Flag M2 magnetic beads 

(Sigma) was used to pulldown the Flag-tagged protein from 0.5-1 mg of cell lysate. After incubation for 2 

hours at 4˚C, magnetic beads were washed with IP buffer, resuspended in 2X Laemmli sample buffer and 

boiled for 5 min before western blot analysis. 

 

Yeast Complementation Assay 

For yeast complementation analysis of cis-PTase, S. cerevisiae strains KG405 (nus1Δ rer2Δ srt1Δ), 

carrying the Glcis-PTase encoding gene on a plasmid with a URA3 marker was used (25). To 

phenotypically analyze human cis-PTase mutants, strain KG405 was transformed with vectors pKG-GW1 

carrying DHDDS variants (leucine selection) and pKG-GW2 carrying NgBR variants (methionine 

selection) in combination or empty vectors as negative control. Transformed yeast cells were grown 

overnight at 30 °C in synthetic defined medium or lacking uracil, methionine, and leucine were streaked 

onto synthetic defined medium containing all amino acids, nucleotide supplements, and 1% (w/v) 5-FOA 

(Zymo Research) and onto YPD plates. The plates were incubated for up to 5 days at 30 °C. Colonies 

growing on the 5-FOA plates were streaked on synthetic defined medium lacking uracil and incubated at 

30 °C for 3 days to verify the loss of the pNEV-Glcis-PTase plasmid. Yeast strain KG405 and its derivative 

carrying NgBR/DHDDS complex were cultured in 2% (w/v) Bacto peptone and 1% (w/v) yeast extract 

supplemented with 2% glucose (w/v) (YPD). Synthetic minimal media were made of 0.67% (w/v) yeast 

nitrogen base and 2% (w/v) supplemented with auxotrophic requirements. For solid medium, agar (BD 
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Biosciences, Sparks, MD) was added at a 2% (w/v) final concentration. Yeast cells were transformed using 

the Frozen-EZ yeast transformation II kit (Zymo Research). 

 

HPLC Analysis 

To estimate the chain length of dolichols produced by EKE deletion mutant, total lipids from 3 g of yeast 

cells grown overnight till late logarithmic phase of growth (OD 3-4) were extracted by the modified Folch 

method. Lipids extracted from yeast cells were hydrolyzed in hydrolytic solution containing toluene/7.5% 

KOH/95% ethanol (20:17:3, v/v/v) for 1h at 90°C. Nonsaponifiable lipids were then extracted four times 

with hexane, purified on silica gel 60 columns using isocratic elution with 10% diethyl ether in hexane, 

evaporated to dryness in a stream of nitrogen and dissolved in isopropanol. Extracts were analyzed by 

HPLC using a Waters dual-pump HPLC device coupled with a Waters Photodiode Array Detector 

(spectrum range: 210 - 400 nm) and ZORBAX XDB-C18 (4.6 × 75 mm, 3.5 μm) reversed-phase column 

(Agilent, USA). Polyisoprenoids were eluted using the solvent mixtures A - methanol/water, 9:1 (v/v) and 

B - methanol/isopropanol/hexane, 2:1:1 (v/v/v) combined as follows from 0% B to 75% B in 20 min, from 

75% B to 90% B in 5 min, from 90% B to 100% B in 2 min, 100% B maintained for 11 min, then from 

100% B to 0% B in 1min at a flow rate of 1.5 mL/min. The chain length and identity of lipids were 

confirmed by comparison with external standards of a polyprenol (Pren-10 – Pren-24) and dolichol (Dol-

17 – Dol-23) mixtures. 

 

Data Availability Statement: All data are available in the paper and in SI appendix. Unique reagents will 

be readily available to the scientific community.   
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Figure Legends 

Figure 1. The catalytic core domain of human cis-PTase. 

(A) Comparing the domain structure of NgBR, DHDDS and E.coli UPPS. The cis-PTase domain is colored 

yellow; N- and C-terminus of NgBR and DHDDS, gray; N-terminus of E.coli UPPS, blue. 

(B) Purification of NgBR/DHDDS complex. Left Panel: Coomassie-stained SDS/PAGE showing 

purification steps. Lane 1: uncleaved 6HIS-SUMO-NgBR/DHDDS complex, Lane 2: cleaved 

NgBR/DHDDS complex and SUMO, Lane 3: NgBR/DHDDS complex after removing SUMO. Right 

panel, Size exclusion chromatography profile of the purified complex after cleavage with SUMO protease. 

(C) Stimulation of cis-PTase activity of NgBR/DHDDS complex by phosphatidylinositol (PI). The values 

are means ±S.D. of eight independent measurements from two independent purifications. 

 

Figure 2. The overall structure of NgBR/DHDDS heterodimer. 

(A) Ribbon diagrams showing the front and back of the heteromeric complex. NgBR is colored in orange 

and DHDDS is colored in deep teal. Mg2+ ion is shown as a gray sphere, IPP molecules occupying S1 and 

S2 sites are shown in red and green, respectively. 

(B) Limited proteolysis of the core domain was performed by incubating the protein with increasing 

amounts of thermolysin (0.005, 0.01, 0.02, 0.04, 0.08, 0.16 mg/ml). Untreated protein sample is denoted as 

(U). In this gel, thermolysin co-migrates with the full-length DHDDS. 

(C) Co-immunoprecipitation of NgBR/DHDDS mutations introduced at the complex interface. HEK293T 

cells were co-transfected with NgBR-HA and Flag-DHDDS cDNAs; cells were lysed 48 hours post-

transfection and immunoprecipitation performed using anti-flag magnetic beads. The lysate was analyzed 

by western blotting. 

(D) Characterization of cis-PTase mutants in the C-terminal region of DHDDS using yeast 

complementation assay. The nus1Δ rer2Δ srt1Δ deletion strain expressing G. lamblia cis-PTase from 

URA3 plasmid was co-transformed with MET15 bearing wildtype (WT) NgBR and the LEU2 plasmid 

bearing either WT or mutant variants of DHDDS at the C-terminus. Three variants were analyzed including 
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a triple mutation (3A) corresponding to R306A, F313, L317 and two DHDDS truncation Δ256 and Δ289. 

The cells were streaked onto complete plates (YPD) or synthetic complete medium containing 1% FOA. 

The Ura3 protein, which is expressed from the URA3 marker converts FOA to toxic 5-fluorouracil, forcing 

the cells to lose the G. lamblia cis-PTase plasmid. Cell growth was monitored over time to assess 

phenotypic differences. 

 

Figure 3. The active site of the NgBR/DHDDS complex. 

(A) Omit difference map, countered at 3.0 σ level, showing the two IPP molecules and Mg2+ ion bound at 

the active site. IPP1 is assigned to IPP molecule bound at S1 site, and IPP2 to that at S2 site. The oxygen 

atoms are colored red and phosphorus atoms are colored orange. The carbon atoms of IPP1 are colored 

salmon and those of IPP2 are in green. 

(B) Detailed view of the -RXG- motif and the active site. The carbon atoms of NgBR -RXG- motif residues 

are colored orange and labeled, and those for DHDDS are colored cyan. Nitrogen atoms are colored blue 

and oxygen atoms are colored red. IPP1 and IPP2 are colored red and green, respectively. Mg2+ is shown 

as a gray sphere, and its co-ordination is indicated by the dashed lines. A coordinating water molecule is 

shown as red sphere.  

(C) The K42E retinitis pigmentosa mutation in DHDDS. A cartoon representation indicating the locations 

of Lys-42 and Glu-234 relative to the P-loop and bound substrates. DHDDS is colored in deep teal, IPP1 

in red, IPP2 in green and Mg2+ is shown as a gray sphere.   

 

Figure 4. Missense NgBR mutations associated with Parkinson’s disease. 

(A) NgBR mutations related to Parkinson’s disease are shown as purple spheres and labeled. DHDDS is 

colored in gray and NgBR is colored in orange except for the N-terminal helix (α1) which is shown in 

green.  
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(B) Detailed view showing the location of G91C disease mutant within NgBR colored orange except for 

α1 helix, shown in green. Gly-91 is involved in hydrophobic packing against Val-127. Lys-96 forms 

hydrogen bonds with Tyr-248 and Gln-289, which stabilize the C-terminal -RXG- motif.  

(C) cis-PTase activity was measured using purified wildtype and NgBR disease mutant, G91C. The mutant 

exhibits ~ 40% reduction in cis-PTase activity compared to wildtype enzyme. The values are the mean 

±S.D. of three independent measurements. 

(D) The majority of the mutated residues is solvent-exposed. The solvent accessible surface area (Å2) were 

calculated using GETAREA server.  

 

Figure 5. DHDDS’s helix 0 functions as a membrane sensor. 

(A) A cartoon representation of DHDDS subunit colored in deep teal. The hydrophobic cavities of DHDDS 

before (left) and after (right) N-terminal loop deletion (residues 1-10) are shown in yellow. The N-terminal 

loop and 0 helix are shown in red; the side chains of the three exposed hydrophobic residues are shown 

and labeled. The hydrophobic cavity was generated using the 3V web server (54).  

(B) A cartoon representation of E.coli UPPs (PDB entry 1X06) monomer colored in purple. The 

hydrophobic cavity is shown in yellow. Leu-137 involved in chain length control in UPPS is located at the 

end of the cavity.  

(C) Sequence alignment showing the conservation of three hydrophobic amino acids at the N-terminal helix 

0 among DHDDS orthologs (highlighted in red). Conserved residues are highlighted in yellow. Proteins 

represented in this alignment are orthologs of human DHDDS cis-PTase subunit as follows: hDHDDS 

(human, UniProtKB  Q86SQ9-1), XlDhdds (Xenopus laevis;  UniProtKB Q7ZYJ5), DrDhdds ( Danio 

rerio, UniProtKB Q6NXA2),  CeDHDDS (Caenorhabditis elegans, UniProtKB Q5FC21), ScRer2 

(Saccharomyces cerevisiae, UniProtKB P35196), ScSrt1 (Saccharomyces cerevisiae, UniProtKB  

Q03175), SpRer2 (Schizosaccharomyces pombe, UniProtKB O14171), TrRER2 (Trichoderma reesei, 

UniProtKB - G0ZKV6), AfRer2 (Aspergillus fumigatus UniProtKB - Q4WQ28 ), SlCPT3 (Solanum 
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lycopersicum, UniProtKB K7WCI9), AtCPT3 (Arabidopsis thaliana, UniProtKB Q8S2T1), AtCPT4 

(Arabidopsis thaliana, UniProtKB Q8LAR7), AtCPT5 (Arabidopsis thaliana, UniProtKB Q8LED0) 

(D) Phospholipid stimulation of wildtype and W12A/F15A/I19A triple mutant is shown. Stimulation was 

compared by measuring cis-PTase activity of purified wildtype and DHDDS triple mutant in the presence 

and absence of 1% phosphatidylinositol (PI). The values are the mean ±S.D. of five to eight independent 

measurements. 

(E) Reverse phase TLC separation of dephosphorylated products from cis-PTase activity of WT and 

DHDDS triple mutation (W12A/F15A/I19A) denoted as MUT. Numbers correspond to the dominant 

polyprenols in each sample are shown at the bottom of the plate. The position of the polyprenol standards 

is shown on the left. 

 

Figure 6. Mechanism of chain elongation by heteromeric cis-PTases. 

 (A) Multiple amino acid sequence alignment comparing α3 helix between DHDDS orthologs and 

homodimeric cis-PTases. Highly conserved residues are highlighted in red and less conserved ones are 

shown in yellow. Region corresponding to DHDDS EKE insert is highlighted in blue; the region is missing 

in homodimeric enzymes and a gap is present instead. Proteins represented in this alignment are: single 

subunit cis-PTs: EcUPPS (Escherichia coli, UniProtKB P60472), MlDPPS (Micrococcus luteus, 

UniProtKB O82827), SaUPPS (Sulfolobus acidocaldarius, UniProtKB Q9HH76). Orthologues of human 

DHDDS cis-PTase subunit: hDHDDS (human, UniProtKB  Q86SQ9-1), XlDhdds (Xenopus 

laevis,  UniProtKB Q7ZYJ5), DrDhdds ( Danio rerio, UniProtKB Q6NXA2), CeDHDDS (Caenorhabditis 

elegans, UniProtKB Q5FC21), ScRer2 (Saccharomyces cerevisiae, UniProtKB P35196), SpRer2 

(Schizosaccharomyces pombe, UniProtKB O14171), SlCPT3 (Solanum lycopersicum, UniProtKB 

K7WCI9), AtCPT3 (Arabidopsis thaliana, UniProtKB Q8S2T1), AtCPT4 (Arabidopsis thaliana, 

UniProtKB Q8LAR7), AtCPT5 (Arabidopsis thaliana, UniProtKB Q8LED0)  
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(B) HPLC analysis of chain length of dolichol generated by WT and ΔEKE DHDDS mutant in yeast cells. 

The dolichol peaks were identified and labeled on top of the chromatogram. The WT cells yielded the main 

compound Dol-20 compared to Dol-17 in ΔEKE mutant. The chain length and identity of lipids were 

confirmed by comparison with external standards of a polyprenol (Pren-10 – Pren-24) and dolichol (Dol-

17 – Dol-23) mixtures.  

(C) Structural comparison between E. coli UPPS (PDB ID 1X06) monomer and human DHDDS subunit. 

The EKE insert within α3 helix of DHDDS creates a bigger bulge that may contribute to the stabilization 

of the enzyme:product complex during chain elongation. 

(D) Schematic diagram illustrating the proposed chain elongation mechanism for cis-PTases. Red arrow 

indicates the direction of product elongation. Exposed hydrophobic isoprene units may increasingly 

destabilize the enzyme:product complex by interacting with detergent micells (blue) or lipid bilayers (grey). 
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