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Abstract: Nostocyclopeptides (Ncps) constitute a small class of nonribosomal peptides, exclusively
produced by cyanobacteria of the genus Nostoc. The peptides inhibit the organic anion transporters,
OATP1B3 and OATP1B1, and prevent the transport of the toxic microcystins and nodularin into
hepatocytes. So far, only three structural analogues, Ncp-A1, Ncp-A2 and Ncp-M1, and their linear
forms were identified in Nostoc strains as naturally produced cyanometabolites. In the current work,
the whole genome sequence of the new Ncps producer, N. edaphicum CCNP1411 from the Baltic
Sea, has been determined. The genome consists of the circular chromosome (7,733,505 bps) and
five circular plasmids (from 44.5 kb to 264.8 kb). The nostocyclopeptide biosynthetic gene cluster
(located between positions 7,609,981–7,643,289 bps of the chromosome) has been identified and
characterized in silico. The LC-MS/MS analyzes of N. edaphicum CCNP1411 cell extracts prepared
in aqueous methanol revealed several products of the genes. Besides the known peptides, Ncp-A1
and Ncp-A2, six other compounds putatively characterized as new noctocyclopeptide analogues
were detected. This includes Ncp-E1 and E2 and their linear forms (Ncp-E1-L and E2-L), a cyclic
Ncp-E3 and a linear Ncp-E4-L. Regardless of the extraction conditions, the cell contents of the linear
nostocyclopeptides were found to be higher than the cyclic ones, suggesting a slow rate of the
macrocyclization process.

Keywords: cyanobacteria; nostocyclopeptides; Nostoc; ncp gene cluster; nonribosomal peptide
synthetase

1. Introduction

Secondary metabolites produced by cyanobacteria of the genus Nostoc (Nostocales) are
characterized by a high variety of structures and biological activities [1–6]. On the basis of chemical
structure, these compounds are mainly classified to peptides, polyketides, lipids, polysaccharides
and alkaloids [7]. Abundantly produced cyanopeptides with anticancer, antimicrobial, antiviral
and enzyme-inhibiting activity, have attracted attention of many research groups [6,8–12]. Some of
the metabolites, such as nostocyclopeptides (Ncps) or cryptophycins are exclusively produced by
the cyanobacteria of the genus Nostoc (Figure 1A). Ncps constitute a small class of nonribosomal
peptides. Thus far, only three analogues of the compounds and their linear forms have been discovered.
This includes Ncp-A1 and Ncp-A2 detected in Nostoc sp. ATCC53789 isolated from a lichen collected
at Arron Island in Scotland [13]. The same peptides were detected in Nostoc sp. ASN_M, isolated
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from soil samples of paddy fields in the Golestan province in Iran [14] and in Nostoc strains from
liverwort Blasia pusilla L. collected in Northern Norway [15]. A different analogue, Ncp-M1, was found
in Nostoc sp. XSPORK 13A, the cyanobacterium living in symbiosis with gastropod from shallow
seawaters at the Cape of Porkkala (Baltic Sea) [16].
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Ncps are composed of seven residues and a unique imino linkage formed between C-terminal
aldehyde and an N-terminal amine group of the conserved Tyr1 (Figure 1B) [13,16]. The presence
of modified amino acid residues, e.g., 4-methylproline, homoserine and D-configured glutamine,
indicated the nonribosomal biosynthetic pathway of the molecules. Genetic analysis of Nostoc sp.
ATCC53789 revealed the presence of the 33-kb Ncp gene cluster composed of two genes, ncpA and ncpB,
encoding NcpA1-A3 and NcpB1-B4 modules. These proteins catalyze the activation and incorporation
of Tyr, Gly, Gln, Ile and Ser into the Ncp structure [17]. They show high similarity to NosE and NosF
which take part in the biosynthesis of nostopeptolides in Nostoc sp. GSV224 [18]. The ncpFGCDE
fragment of the Ncp gene cluster is involved in the synthesis of MePro (ncpCDE), transport (ncpF) and
proteolysis (ncpG) of the peptides. The characteristic features of the Ncp enzymatic complex in Nostoc sp.
ATCC53789 is the presence of the epimerase domain (NcpA3) responsible for D-configuration of
glutamine, and the unique reductase domain at C-terminal end of NcpB which catalyze the reductive
release of a linear peptide aldehyde [19,20].

The activity of Ncps have been explored [13] and their potential as antitoxins, inhibiting the
transport of hepatotoxic microcystin-LR and nodularin into the rat hepatocytes through the organic
anion transporter polypeptides OATP1B1/1B3 was revealed [21]. As OATP1B3 is overexpressed in
some malignant tumors (e.g., colon carcinomas) [22], Ncps, as inhibitors of this transporter protein,
are suggested to be promising lead compounds for new drug development.

In our previous studies, Nostoc edaphicum CCNP1411 (Figure 1A) from the Baltic Sea was found to
be a rich source of cyanopeptolins, the nonribosomal peptides with potent inhibitory activity against
serine proteases [6]. In the current work, the potential of the strain to produce other bioactive metabolites
was explored. The whole-genome sequence of N. edaphicum CCNP1411 has been determined, and the
nostocyclopeptide biosynthetic gene cluster has been identified in the strain and characterized in silico
for the first time. Furthermore, the new products of the Ncp gene cluster have been detected and their
structures have been characterized by LC-MS/MS.

2. Results and Discussion

2.1. Analysis of N. edaphicum CCNP1411 Genome

Total DNA has been isolated from N. edaphicum CCNP1411, and the whole genome sequence
has been determined. Identified replicons of N. edaphicum CCNP1411 genome consist of the circular
chromosome of 7,733,505 bps, and five circular plasmids (Table 1). Within the total size of 8,316,316 bps
genome (chromosome and plasmids, Figure 2), we have distinguished, according to annotation,
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the total number of 6957 genes from which 6458 potentially code for proteins (CDSs), 415 are classified
as pseudo-genes and 84 are coding for non-translatable RNA molecules. Pseudo-genes can be divided
into subcategories due to the shift in the coding frame (180), internal stop codons (77), incomplete
sequence (228), or occurrence of multiple problems (63). Genes coding for functional RNAs consist of
those encoding ribosomal (rRNA) (9), transporting (tRNA) (71) and regulatory noncoding (ncRNA) (4),
all embedded on the chromosome. Out of total coding and pseudo-genes sequences (6873), the vast
majority (5846) initiates with the ATG start codon, while GTG and TTG occur less frequently (561 and
217 times, respectively). The frequencies of stop codons were set out as follows: TAA (3455), TAG
(1750), TGA (1526). Coding and pseudo-genes sequences are distributed almost equally on the leading
and complementary strand, including 3408 and 3465 sequences, respectively.

Table 1. Composition and coverage of N. edaphicum CCNP1411 genome.

Replicon Accession
Number

Length
(bp) Topology G+C

Content (%)
Coverage (x)

Nanopore Data
Coverage (x)

Illumina Data

pNe_1 CP054693.1 44,503 Circular 42.3 115.5 244.8
pNe_2 CP054694.1 99,098 Circular 40.2 168.4 135.3
pNe_3 CP054695.1 120,515 Circular 41.3 256.4 177.1
pNe_4 CP054696.1 53,840 Circular 41.6 102.4 211.5
pNe_5 CP054697.1 264,855 Circular 41.0 226.3 160.7

chr CP054698.1 7,733,505 Circular 41.6 160.7 116.9
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Figure 2. Map of the N. edaphicum CCNP1411 genome where chromosome (chr) and five plasmids
(pNe_1–5) are presented. The ORFs are indicated with grey arrows split into two rings outermost
showing ORFs on direct strand and inner showing complementary strand ORFs. The middle circle
shows GC content (black) and the innermost circle shows GC skew (green and purple). Genes for
putative NRPS/PKS are marked on the chromosome in their proper position (red within a black
circle), with closeup on NRPS in position 7,609,981–7,643,289 putatively coding for Ncp biosynthetic
gene cluster.
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2.2. Non-Ribosomal Peptide Synthetase (NRPS) Gene Cluster of Nostocyclopeptides

Having the whole genome sequence of N. edaphicum CCNP1411, we have analyzed in detail the
non-ribosomal peptide synthetase (NRPS) cluster, containing potential genes coding for enzymes
involved in the synthesis of nostocyclopeptides. To establish correct spans for non-ribosomal peptide
synthetases, 35 complete nucleotide sequence clusters derived from Cyanobacteria phylum were aligned
resulting in hits scattered around positions 2,287,143–2,323,617 and 7,609,981–7,643,289 within the
N. edaphicum CCNP1411 chromosome (7.7 Mbp) (Figure 2). This method of characterization presented
the overall similarity of selected spans to micropeptin (cyanopeptolin) biosynthetic gene cluster [23] and
nostocyclopeptide biosynthetic gene cluster [17], respectively. To confirm these results, the antiSMASH
analysis was employed resulting in confirmation of previously defined NRPS spans and adding two
more regions 1,213,069–1,258,319 and 5,735,625–5,780,238, to small extent (12% and 30%, respectively)
similar to anabaenopeptin gene cluster [24]. For the purpose of this study, we focused on putative
nostocyclopeptide producing non-ribosomal peptide synthetase. Annotation of the selected region
revealed nine putative open reading frames (ORFs), transcribed in reverse (7) and forward (2) direction.
The identified cluster was arranged in a similar fashion to AY167420.1 (nostocyclopeptide biosynthetic
gene cluster from Nostoc sp. ATCC 53789), with the exception of two ORFs (>170 bp), intersecting
operon (ncpFGCDE) putatively encoding proteins involved in MePro assembly, efflux and hydrolysis
of products of the second putative operon ncpAB (Figure 3).
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Figure 3. Schematic alignment of genes coding for putative non-ribosomal peptide synthetase from N.
edaphicum CCNP1411 (red) and two related Ncp-producing synthetases AY167420.1 and CP026681.1
(white). The grey bar in the lower right corner shows the identity percentage associated with color of
the bars connecting homologous regions. The analysis was conducted at the nucleotide level.

Two sequences ORF1 (HUN01_34350) (837 bp) and ORF2 (HUN01_34355) (1107 bp) embedded
on 3′ end of nostocyclopeptide gene cluster resemble nosF and nosE genes, found in the nostopeptolide
(nos) gene cluster [18] with 96% nucleotide sequence identities in both instances, putatively encoding
for zinc-dependent long-chain dehydrogenase and a ∆1-pyrroline-5-carboxylic acid reductase. Further
upstream, there is an ORF3 (HUN01_34360) (798 bp) of 98% homology to unknown gene from
AF204805.2 gene cluster, suggested previously to be involved in 4-methylproline biosynthesis [17,25],
due to close proximity of downstream genes encompassing this reaction, but no experimental evidence
was presented. Alignment of the sequence of this putative protein have shown a sequence homology,
to some extent, to 4′-phosphopantetheinyl transferase, crucial for PCP aminoacyl substrate binding
(Figure 4) [26]. Moreover, partially present adenylate-forming domain within ORF4 (HUN01_34365)
(165 bp) belongs to the acyl- and aryl- CoA ligases family, and may putatively engage substrate for
post-translational modification of the PCP domain. Facing the same direction, an ORF5 (HUN01_34370)
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(1605 bp)-bearing putative domain classified as transpeptidase superfamily DD-carboxypeptidase and
ORF6 (HUN01_34375) (2010 bp) homologous to ABC transporter ATP-binding protein/permease may
be engaged in ncpAB peptide product transport [27]. Neither the ORF7 (HUN01_34780) Shine–Delgarno
(SD) sequence upfront translation start codon could be assigned nor the TA-like signal ~12 nucleotides
upstream could be found.
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Figure 4. Structure-based sequence alignment of 4′-phosphopantetheinyl transferase and partial ORF3.
Amino-acids highlighted in black color indicate conserved residues, whereas those in grey color indicate
conservative mutations.

The main part of the Ncp biosynthetic gene cluster is located on the forward strand comprising
two large genes which nucleotide sequences are homologous over 80% to ncpA and ncpB subunits
of the ncp cluster in Nostoc sp. ATCC53789 [17]. Both these genes code for proteins consisting of
repetitive modules incorporating single residue into elongating peptide. ORF 8 (HUN01_34785)
(11,334 bp) encompasses three of these modules, whereas ORF 9 (HUN01_34380) (14,157 bp) encodes
four modules. The core of one NRPS module consists of three succeeding domains: condensation (C),
adenylation (A) and peptidyl carrier protein (PCP). Moreover, adjacent to coding spans of extreme
modules, two tailoring domains were found within ORF8 and ORF9 genes (Figure 5).
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Figure 5. Schematic representation of conserved domains within ncpA and ncpB coding nucleotide
sequences. They are composed of repetitive modules condensation (C), adenylation (A) and peptidyl
carrier protein (PCP) domains adjacent to delineating docking, epimerization and reductase domains
aligned with two related synthetases AY167420.1 and CP026681.1. The analysis was conducted at the
nucleotide level.

Alignment of nucleotide sequences to the ncpAB operon revealed major differences in consecutive
NcpB3 and NcpB4 modules. Utilizing the selected spans conjoined with conserved domain search
allowed us to distinguish and compare C, A and PCP amino-acid sequences (Figure 6). Intrinsic
modules of NRPS, with an exception of NcpB3 adenylation domain sequence, were found homologous
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above 91%, whereas extremes have shown the biggest composition differences ranging from 13–15% to
24% in the NcpB4 adenylation domain (Figure 6).
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Figure 6. Heatmap of the highest (light blue) and lowest (black) percentage of similarities between NcpA
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The determination of the whole genome sequence of N. edaphicum CCNP1411 allowed us to
perform analyses of genes coding for enzymes involved in the synthesis of nostocyclopeptides.
The general analysis demonstrated homology of the NRPS/PKS clusters of N. edaphicum CCNP1411
to systems occurring in other cyanobacteria, however, with some differences. The non-ribosomal
consensus code [28,29] allowed to recognize and predict the substrate specificities of NRPS adenylation
domains: tyrosine (NcpA1), glycine (NcpA2), glutamine (NcpA3) for NcpA and isoleucine/valine
(NcpB1) serine (NcpB2) 4-methylproline/proline (NcpB3) phenyloalanine/leucin/tyrosine (NcpB4) for
NcpB (Table 2). This prediction was found to be in line with the structures of the Ncps detected in
N. edaphicum CCNP1411.

Table 2. Characterization of substrate binding pocket amino acid residues adenylation domains of
NcpA and NcpB modules based on gramicidin S synthetase (GrsA) phenylalanine activating domain.
Residues in brackets mark inconsistency with AY167420.1 residues.

NRPS
Module

Adenylation Domain Residue Position Proposed
Substrate235 236 239 278 299 301 322 330 331

NcpA1 D A S T [I] A A V C Tyr
NcpA2 D I L Q L G L I W Gly
NcpA3 D A W Q F G L I D Gln
NcpB1 D A F F L G V T F Ile/Val
NcpB2 D V W H I S L I D Ser
NcpB3 D V Q [F] I A H V A Pro/MePro
NcpB4 D A W [T] I G [A] V C Phe/Tyr/Leu

To devolve elongating product onto subsequent condensation domain, the studied synthetase
utilizes PCP domains, subunits responsible for thiolation of nascent peptide intermediates,
where post-transcriptional modification of conserved serine residue shifts the state of the domain
from inactive holo to active apo. Modification of this residue is related to PPTase which transfers
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a covalently-bound 4′-phosphopantetheine arm of CoA onto the PCP active site, enabling peptide
intermediates to bind as reactive thioesters. Case residue which undergoes a nucleophilic attack by the
hydroxyl group was conserved in every module within the PCP domain predicted at the front of the
second helix [30].

The stand-alone docking domain (D) (7,617,812–7,617,964 bp) found on N-terminus of NcpA
may be an essential component mediating interactions, recognition and specific association within
NRPS subunits. The potential acceptor domain, based on sequence homology of conserved residues to
C-terminal communication-mediating donor domains (COM), was found at the NcpB4 PCP domain
second helix, encompassing conserved serine residue within potential binding sequence [31]. Moreover,
this communication-mediating domain may putatively bind to C-terminus of NcpB3 and NcpB4
condensation (C) domains based on conserved motif LLEGIV, found by sequence homology to last
five amino-acids of C-terminal docking domains residues, key for their interactions [32]. Within the
same β-hairpin, a group of charged residues (ExxxxxKxR) putatively determines the binding affinity
of the N-terminal domain [33].

Two tailoring domains encoded at the 5′ ends of ncpA and ncpB genes were classified as
epimerization (E) (7,627,742–7,629,043 bp) domain and reductase (R) (7,642,183–7,643,238 bp) domain,
accordingly. Epimerization domain catalyzes the conversion of L-amino acids to D-amino acids,
a reaction coherent with D-stereochemistry of the peptide glutamine residue, where His of the conserved
HHxxxDG motif and Glu from the upstream EGHGRE motif raceB comprise an epimerisation reaction
active site [34]. Homologous HHxxxDG conserved motif sequence is found in condensation domains
(C), where a similar reaction is catalyzed within peptide bond formation, putatively by the second
His residue [35]. As in ncp cluster [17], module NcpA1 motif includes degenerate sequences in two
positions HQIVGDL with leucine instead of phenylalanine residue at the start of the helix. The second
histidine site-directed mutagenesis abolished enzymatic activity which might suggest that NcpA1
condensation domain is inactive [36].

Reductase domain (R) found at the C-terminus of NRPS was classified as oxidoreductase.
Despite 15% discrepancy in domain composition compared to NcpB core catalytic triad Thr-Tyr-Lys
and Rossmann-fold, a NAD (P) H nucleotide-binding motif GxxGxxG positions were not affected. The
mechanism driving this chain release utilizes NAD (P) H cofactor for redox reaction of the final moiety
of the nascent peptide to aldehyde or alcohol [37,38].

2.3. Structure Characterization of Ncps Produced by N. edaphicum CCNP1411

Thus far, only three Ncps, Ncp-A1, A2 and M1, and their linear aldehydes were isolated as pure
natural products of Nostoc strains [13,16]. Ncp-A3, with MePhe in the C-terminal position, was obtained
through aberrant biosynthesis in the Nostoc sp. ATCC53789 culture supplemented with MePhe [13].
The linear aldehydes of Ncp-A1 and Ncp-A2, with Pro instead of MePro, were chemically synthesized
and used to study the Ncps epimerization and macrocyclization equilibria [19,20]. In our work, ten
Ncps, differing mainly in position 4 and 7, were detected by LC-MS/MS in the N. edaphicum CCNP1411
cell extract (Table 3, Figure 1, Figure 7, Figure 8 and Figure S1–S7). These include five cyclic structures,
four linear Ncp aldehydes, and one linear hexapeptide Ncp. The putative structures of the six peptides,
which were found to be naturally produced by Nostoc for the first time, are marked in Table 3 in bold
(Ncp-E1, Ncp-E1-L, Ncp-E2, Ncp-E2-L, Ncp-E3 and Ncp-E4-L).
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Table 3. The putative structures of nostocyclopeptides (Ncps) detected in the crude extract of N.
edaphicum CCNP1411 and the structure of Ncp-M1 identified in Nostoc sp. XSPORK 13 A [16]. The new
analogues are marked in bold and the peptides detected in trace amounts are marked with [T]. The
variable residues in position 4 and 7 are marked in blue.

Compound Structure
m/z [M+H]+ Retention

Time [min]Cyclic Linear–COH

Ncp-A1 cyclo[Tyr+Gly+Gln+Ile+Ser+MePro+Leu] 757 7.1
Ncp-A1-L Tyr+Gly+Gln+Ile+Ser+MePro+Leu 775 5.8
Ncp-A2 cyclo[Tyr+Gly+Gln+Ile+Ser+MePro+Phe] 791 6.0

Ncp-A2-L Tyr+Gly+Gln+Ile+Ser+MePro+Phe 809 5.6
Ncp-E1 cyclo[Tyr+Gly+Gln+Ile+Ser+Pro+Phe] 777 [T] 7.2

Ncp-E1-L Tyr+Gly+Gln+Ile+Ser+Pro+Phe 795 5.7
Ncp-E2 cyclo[Tyr+Gly+Gln+Ile+Ser+Pro+Leu] 743 [T] 6.3

Ncp-E2-L Tyr+Gly+Gln+Ile+Ser+Pro+Leu 761 5.1
Ncp-E3 cyclo[Tyr+Gly+Gln+Val+Ser+MePro+Leu] 743 [T] 7.0

* Ncp-E4-L [Tyr+Gly+Gln+Ile+Ser+MePro] 677 [T] 6.0
** Ncp-M1 cyclo[Tyr+Tyr+HSe+Pro+Val+MePro+Tyr] 882 27.5

* Ncp-E4-L is the only linear Ncps analogue with carboxyl group in C-terminus. ** Identified in Nostoc sp.
XSPORK [16].
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Figure 7. Postulated structure and enhanced product ion mass spectrum of the linear
aldehyde nostocyclopeptide Ncp-E1-L; Tyr+Gly+Gln+Ile+Ser+Pro+Phe characterized based on
the following fragment ions: m/z 795 [M+H]; 777 [M+H−H2O]; 759 [M+H−2H2O]; 646
[M+H – Phe]; 614 [M+H – Tyr−H2O]; 575 [M+H−(Tyr+Gly)]; 549 [Tyr+Gly+Gln+Ile+Ser+H];
531 [Tyr+Gly+Gln+Ile+Ser+H−H2O]; 462 [Tyr+Gly+Gln+Ile+H]; 349 [Tyr+Gly+Gln+H]; 334
[Ser+Pro+Phe+2H]; 247 [Phe+Pro+H]; 229 [Phe+Pro+H]; 201 [Phe+Pro+H – CO]; 148 [Tyr−NH2]; 136
Tyr immonium; 129, 101 (immonium), 84 Gln; 70 Pro immonium.

The process of de novo structure elucidation was performed manually, based mainly on a series of
b and y fragment ions produced by a cleavage of the peptide bonds (Figures 7–9, Figures S1–S7), and on
the presence of immonium ions (e.g., m/z 70 for Pro, 84 for MePro, 136 for Tyr) in the product ion mass
spectra of the peptides. The process of structure characterization was additionally supported by the
previously published MS/MS spectra of Ncps [14]. The fragment ions that derived from the two amino
acids in C-terminus usually belonged to the most intensive ions in the spectra and in this study they
facilitated the structure characterization. For example, in the product ion mass spectrum of Ncp-A1
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(Figure S1) and Ncp-E3 (Figure S7), ions at m/z 209 [MePro+Leu+H] and m/z 181 [MePro+Leu+H−CO]
were present, while in the spectrum of Ncp-E2 (Figure S5) with Pro (instead MePro), the corresponding
ions at 14 unit lower m/z values, i.e., 195 and 167 were observed. The spectra of the linear Ncps contained
the intensive Tyr immonium ion at m/z 136. Based on the previously determined structures of Ncp-A1
and Ncp-A2 [13], we assumed that in Ncp-E2, the amino acids in position 4 and 7, are Ile and Leu,
respectively (Table 3; Figure S5). These two amino acids are difficult to distinguish by MS. Definitely,
the NMR analyses are required to confirm the structures of the Ncps. The presence of Val in position 4,
instead of Ile, distinguishes the Ncp-E3 from other Ncps produced by N. edaphicum CCNP1411. As it
was previously reported [17], and also confirmed in this study, the predicted substrates of the NcpB1
protein encoded by ncpB and involved in the incorporation of the residue in position 4 are Ile/Leu and
Val. However, the domain preferentially activates Ile, which explains why only traces of Val-containing
Ncps were detected in N. edaphicum CCNP1411 (Table 3).Mar. Drugs 2020, 18, x FOR PEER REVIEW 10 of 19 
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2.4. Production of Ncps by N. edaphicum CCNP1411 

Figure 8. Postulated tructure and enhanced product ion mass spectrum of a linear nostocyclopeptide
Ncp-E4-L [Tyr+Gly+Gln+Ile+Ser+MePro] characterized based on the following fragment ions:
m/z 677 [M+H]; 659 [M+H−H2O]; 642 [M+H−H2O−NH3]; 549 [Tyr+Gly+Gln+Ile+Ser+H]; 531
[Tyr+Gly+Gln+Ile+Ser+H−H2O]; 521 [Tyr+Gly+Gln+Ile+Ser+H−CO]; 462 [Tyr+Gly+Gln+Ile+H]; 434
[Tyr+Gly+Gln+Ile+H−CO]; 349 [Tyr+Gly+Gln+H]; 329 [Gln+Ile+Ser+H]; 312 [Ile+Ser+MePro+H];
221 [Tyr+Gly+H]; 193 [Tyr+Gly+H−CO]; 148 [Tyr−NH2]; 136 Tyr immonium; 86 Ile immonium; 84,
101 (immonium), 129 Gln; 84 MePro immonium.

Methylated Pro (MePro) in position 6 is quite conserved. MePro is a rare non-proteinogenic amino
acid biosynthesized from Leu through the activity of the zinc-dependent long chain dehydrogenases
and ∆1-pyrroline-5-carboxylic acid (P5C) reductase homologue encoded by the gene cassette
ncpCDE [17,18,25]. The genes involved in the biosynthesis of MePro were found in 30 of the 116 tested
cyanobacterial strains, majority (80%) of which belonged to the genus Nostoc [39]. The new Ncp-E1
and Ncp-E2, detected at trace amounts, are the only Ncps produced by N. edaphicum CCNP1411
which contain Pro (Table 3). The presence of m/z 84 ion in the fragmentation spectra of the two Ncps
complicated the process of de novo structure elucidation. This ion corresponds to the immonium ion
of MePro and could indicate the presence of this residue. However, the two ions m/z 101 and 129,
which together with ion at m/z 84, are characteristic of Gln, suggested the presence of this amino acid
in Ncp-E1 and Ncp-E2. The detailed characterization of Ncp fragmentation pathways is presented in
Figures 7–9 and in Supplementary Materials (Figures S1–S7).
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2.4. Production of Ncps by N. edaphicum CCNP1411 

Figure 9. Enhanced product ion mass spectrum of the cyclic nostocyclopeptide Ncp-E1
with putative structure cyclo[Tyr+Gly+Gln+Ile+Ser+Pro+Phe] characterised based on the
following fragment ions: m/z 777 [M+H]; 759 [M+H−H2O]; 741 [M+H−2H2O]; 690
[M+H−Ser]; 672 [M+H−Ser−H2O]; 662 [M+H−Pro−H2O]; 646 [M+H−Phe]; 628 [M+H−Phe−H2O];
575 [M+H−(Ser+Pro)−H2O]; 549 [Tyr+Gly+Glu+Ile+Ser+H]; 480 [Phe+Tyr+Gly+Gln+H]; 462
[Tyr+Gly+Gln+Ile+H]; 444 [Tyr+Gly+Gln+Ile+H−H2O]; 434 [Tyr+Gly+Gln+Ile+H−CO]; 392
[Pro+Phe+Tyr+H]; 352 [Phe+Tyr+Gly+H]; 335 [Phe+Tyr+Gly+H−H2O]; 316 [Ser+Pro+Phe+H]; 307
[Phe+Tyr+Gly+H−H2O -CO]; 298 [Ile+Ser+Pro+H]; 229 [Phe+Pro+H]; 201 [Phe+Pro+H−CO]; 158
[Gly+Gln+H−CO]; 132 Phe; 70 Pro immonium. Structure of the peptide is presented in Figure 1.

In addition to the heptapeptide Ncps, N. edaphicum CCNP1411 produces a small amount of the
linear hexapeptide, Ncp-E4-L, whose putative structure is Tyr+Gly+Gln+Ile+Ser+MePro (Table 3,
Figure 9). This Ncp was detected only when higher biomass of Nostoc was extracted. As the proposed
amino acids sequence in this molecule is the same as the sequence of the first six residues in Ncp-A1
and Ncp-A2, the hexapeptide can be a precursor of the two Ncps. The other option is that the cell
concentration of the Ncps is self-regulated and the Ncp-E4-L is released through proteolytic cleavage
of the final products. This hypothesis could be verified when the role of the Ncps for the producer
is discovered. In the ncp gene cluster, the presence of ncpG encoding the NcpG peptidase, with high
homology to enzymes hydrolyzing D-amino acid-containing peptides was revealed by Becker et al. [17]
and also confirmed in this study. Therefore, the in-cell degradation of Ncps by the NcpG peptidase is
possible, but it probably proceeds at D-Gln and gives other products than Ncp-E4-L.

2.4. Production of Ncps by N. edaphicum CCNP1411

Apart from the structural analysis, we also made attempts to determine the relative amounts
of the individual Ncps produced by N. edaphicum CCNP1411. To exclude the effect of the extraction
procedure on the amounts of the detected peptides, different solvents and pH were applied. As the
process of Ncp linearization during long storage of the freeze-dried material was suggested [16], both
the fresh and lyophilized biomasses were analyzed. Regardless of the extraction procedure, Ncp-A2-L
with Phe in C-terminus was always found to be the main Ncp analogue (Figure 10A–D). In addition,
when MePro and Pro-containing peptide were compared separately, the peak intensity of the linear
Ncps with Phe in C-terminus (i.e., Ncp-A2-L and Ncp-E1-L) was higher than the Ncps with Leu. These
results might indicate preferential incorporation of Phe into the synthesized peptide chain.
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Figure 10. Relative cell contents of nostocyclopeptides extracted from 10 mg of lyophilized (A,B,D)
or 500 mg fresh (C) biomass of N. edaphicum CCNP1411 with MilliQ water (A), 50% methanol in
water (B), and 20% methanol in water (C,D). The cell content was expressed as peak intensity in
LC-MS/MS chromatogram.

The study also showed that the cell contents of the linear Ncps are higher than the cyclic ones.
(Figure 10A–D and Figure S8). The release of Ncps from the synthetase as linear aldehydes is catalyzed
by a reductase domain, located in the C-terminal part of the NcpB [17]. This reductive release triggers
the spontaneous, and enzyme independent, macrocyclization of the linear peptide [19,20]. The reaction
leads to the formation of a stable imino bond between the C-terminal aldehyde and the N-terminal
amine group of Tyr [19,20]. In N. edaphicum CCNP1411 cells, depending on the Ncp analogue,
the analyzed material (fresh or lyophilized) and extraction solvent, the cyclic Ncps constituted from
even less than 10% (Ncp-A2, fresh biomass) to over 90% of the linear peptide (Figure 10A–D and
Figure S8). In case of Ncp-A1, with MePro-Leu in C-terminus, the contribution of the cyclic form was
always most significant, and at pH 8 it reached up to 91.7% of the linear peptide aldehyde (Ncp-A1-L)
(Figure 10A–D and Figure S8). The cyclic analogues, Ncp-E1 and Ncp-E3 were produced in trace
amounts and their spectra were sporadically recorded. It was proven that the macrocyclization process
of Ncps is determined by the geometry of the linear peptide aldehyde and the conformation of D-Gln
and Gly is crucial for the folding and formation of the imino bond [19]. As these two residues are
present in all detected Ncps, then, probably other elements of the structure affect the cyclization
process, as well. We hypothesize that due to the steric hindrances, the cyclization of Ncp-A1 with
Leu in C-terminal position is easier than the cyclization of Ncp-A2 with Phe. As a consequence, the
proportion of the cyclic Leu-containing Ncp-A1 to the linear form of the peptide is higher.

Thus far, Ncps synthesis was reported in few Nostoc strains, and the structural diversity of the
peptides was found to be low. Other classes of NRPs were detected in cyanobacteria representing
different orders and genera, and within one class of the peptides numerous analogues were detected. For
example, the number of naturally produced cyclic heptapeptide microcystins (MCs), is over 270 [40,41]
and in one cyanobacterial strains even 47 MCs analogues were detected [40]. Cyanopeptolins
are produced by many cyanobacterial taxa and so far more than 190 structural analogues of the
peptides have been discovered [41]. In this work, cyanopeptolin gene cluster was identified in N.
edaphicum CCNP1411 and thirteen products of the genes were previously reported [6]. These peptides
contain seven amino acids and a short fatty acid chain, and only one element of the structure,
3-amino-6-hydroxy-2-piperidone (Ahp), is conserved [6]. The structural diversity of NRPs is generated
by frequent genetic recombination events and point mutations in the NRP gene cluster. The changes in
gene sequences affect the structure and substrate specificity of the encoded enzymes. The tailoring
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enzymes can further modify the product, leading to even higher diversity of the synthetized
peptides [42]. In case of Ncps, both the number of the producing organisms and the structural
diversity of the peptides are limited. Ncp-M1 from Nostoc living in symbiosis with gastropod [16] is
the only Ncp with structure distinctly different from Ncp-A1, Ncp-A2 and other Ncps described in
this work.

The diversity within one class of bioactive metabolites offers a good opportunity for
structure-activity relationship studies, without the need to synthesize the variants. The studies
are of paramount importance when the efficacy and safety of a drug candidate are optimized.
Therefore, in our future work, when sufficient quantities of pure Ncps are isolated, the activity of
individual analogues against different cellular targets will be tested and compared, in order to select
the lead compound for further studies.

3. Materials and Methods

3.1. Isolation, Purification and Culturing of Nostoc CCNP1411

Nostoc strain CCNP1411 was isolated in 2010 from the Gulf of Gdańsk, southern Baltic Sea,
by Dr. Justyna Kobos. Based on the 16S rRNA sequence (GenBank accession number KJ161445)
and morphological features, such as the shape of trichomes, cell size (4.56 ± 0.30 µm wide and
4.12 ± 0.72 µm long) and lack of akinetes [43,44], the strain was classified to N. edaphicum species.
Purification of the strain was carried out by multiple transfers to a liquid and solid (1% bacterial
agar) Z8 medium supplemented with NaCl to obtain the salinity of 7.3 [45]. To establish the strain
as a monoculture, free from accompanying heterotrophic bacteria, a third-generation cephalosporin,
ceftriaxone (100 µg/mL) (Pol-Aura, Olsztyn, Poland) was used. In addition, the purity of the culture
was regularly tested by inoculation on LA agar (solid LB medium with 1.5% agar) [46] and on agar
Columbia +5% sheep blood (BTL Ltd. Łódź, Poland), a highly nutritious medium, recommended for
fastidious bacteria. Cyanobacteria cultures were grown in liquid Z8 medium (100 mL) at 22 ± 1 ◦C,
continuous light of 5–10 µmol photons m−2 s−1. After three weeks of growth, the cyanobacterial
biomass was harvested by passing the culture through a nylon net (mesh size 25 µm) and then
freeze-dried before further processing.

3.2. Isolation and Sequencing of Genomic DNA

Genomic DNA of N. edaphicum CCNP1411 was isolated using SDS/Phenol method as described
previously [47,48]. DNA quality control was performed by measuring the absorbance at 260/230 nm,
template concentration was determined using Qubit fluorimeter (Thermo Fisher Scientific, Waltham,
MA, USA), and DNA integrity was analyzed by 0.8% agarose gel electrophoresis and by PFGE using
Biorad CHEF-III instrument (BioRad, Hercules, CA, USA).

Paired-end sequencing library was constructed using the NEB Ultra II FS Preparation Kit
(New England Biolabs, Beverly, CA, USA) according to the manufacturer’s instructions. The library
was sequenced using an Illumina MiSeq platform (Illumina, San Diego, CA, USA) with 2 × 300
paired-end reads. Sequence quality metrics were assessed using FASTQC (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/) [49].

The long reads were obtained using the GridION sequencer (Oxford Nanopore Technologies,
Oxford, UK). Prior to long-read library preparation, genomic DNA was sheared into 30 kb fragments
using 26 G needle followed by size selection on Bluepippin instrument (Sage Science, Beverly, MA,
USA). DNA fragments above 20 kb were recovered using PAC30 kb cassette. 5 µg of recovered DNA
was taken for 1D library construction using SQK-LSK109 kit and 0.5 µg of the final library was loaded
into R9.4.1 flowcell and sequenced on MinION sequencer.

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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3.3. Genome Assembling

Raw nanopore data was basecalled using Guppy v3.2.2 (Oxford Nanopore Technologies,
Oxford, UK). After quality filtering using NanoFilt [50] and residual adapter removal using
Porechop (https://github.com/rrwick/Porechop), the obtained dataset was quality checked using
NanoPlot [50]. Long nanopore reads were then assembled using Flye v2.6 [51]. Flye assembled
contigs were further polished using Illumina sequencing reads and Unicycler_polish pipeline
(https://github.com/rrwick/Unicycler).

3.4. Genome and NRPS Alignment

Genome assembly was annotated using the NCBI Prokaryotic Genome Annotation Pipeline [52]
with the assistance of prokka [53] refine annotation, with additionally curated database comprised of
sequences selected by Nostocales order from NCBI non-redundant and refseq_genomes (280 positions)
databases, enriched by 35 NRPS/PKS clusters selected by cyanobacteria phylum. To create circular
maps of N. edaphicum CCNP1411 genome, the CGView Comparison Tool [54] was engaged with
additional GC skew and GC content analyses.

Selected span for potential NRPS cluster was confirmed with BLASTn, BLASTp [55] and
antiSMASH [56]. ORFs start codons within a putative cluster were verified by the presence of
ribosome binding sites, 4–12 nucleotides upstream of the start codon. Schematic comparison of
ORF BLASTn from relative synthetases, AY167420.1 and CP026681.1, was visualized by EasyFig
program (http://mjsull.github.io/Easyfig/files.html). Annotated regions of NRPS span were subjected
for NCBI Conserved Domain Database search [57] with a set e-value threshold (10−3), determining
evolutionarily-conserved protein domains and motifs against CDD v3.18 database. Recognized motifs
were selected using samtools v.1.9 and were subjected for protein structure and function prediction
by I-TASSER [58], and results were confirmed with literature reports, PKS/NRPS Analysis Web-site
prediction [59] and reevaluated using MEGAX suite [60]. Amino-acid sequence was visualized by
BOXSHADE 3.2 program (https://embnet.vital-it.ch/software/BOX_form.html). Determination of
domain ligand binding and active sites was achieved using COFACTOR and COACH part of I-TASSER
analyses confirmed by MUSCLE amino acid alignment from MEGA X.

3.5. Data Deposition

Genomic sequences generated and analyzed in this study were deposited in the GenBank database
under BioProject number: PRJNA638531.

3.6. Extraction and LC-MS/MS Analysis

For LC-MS/MS analyses of Ncps, the lyophilized (10 mg DW) biomass of N. edaphicum CCNP1411
was homogenized by grinding with mortar and pestle, and extracted in 1 mL of milliQ water, 20%
methanol (pH 3.5, 6.0 and 8.0) and 50% methanol in water. The pH was adjusted with 0.5 M HCl and
1.0 M NaOH. In addition, the fresh material (500 mg FW) was extracted in 20% methanol in water. The
samples were vortexed for 15 min and centrifuged at 14,000 rpm for 10 min, at 4 ◦C. The collected
supernatants were directly analyzed by LC-MS/MS system.

The LC-MS/MS was carried out on an Agilent 1200 HPLC (Agilent Technologies, Waldbronn,
Germany) coupled to a hybrid triple quadrupole/linear ion trap mass spectrometer QTRAP5500
(Applied Biosystems MDS Sciex, Concord, ON, Canada). The separation was achieved on a Zorbax
Eclipse XDB-C18 column (4.6 mm ID × 150 mm, 5 µm; Agilent Technologies, Santa Clara, CA, USA).
The extract components were separated by gradient elution from 10% to 100% B (acetonitrile with 0.1%
formic acid) over 25 min, at a flow rate of 0.6 mL/min. As solvent A, 5% acetonitrile in MilliQ water
with 0.1% formic acid was used. The mass spectrometer was operated in positive mode, with turbo ion
source (5.5 kV; 550 ◦C). An information-dependent acquisition method at the following settings was
used: for ions within the m/z range 500–1100 and signal intensity above the threshold of 500,000 cps

https://github.com/rrwick/Porechop
https://github.com/rrwick/Unicycler
http://mjsull.github.io/Easyfig/files.html
https://embnet.vital-it.ch/software/BOX_form.html
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the MS/MS spectra were acquired within the m/z range 50–1000, at a collision energy of 60 eV and
declustering potential of 80 eV. Data were acquired with the Analyst ® Sofware (version 1.7 Applied
Biosystems, Concord, ON, Canada).

4. Conclusions

Genes coding for subunits of the non-ribosomal peptide synthetase, in nostocyclopeptide-
producing N. edaphicum CCNP1411, revealed differences in nucleotide compositions, compared to
the previously described ncp cluster of Nostoc sp. ATCC53789. Although the analysis of fragments
of genes coding for active sites and ligand binding sites of the conserved protein domains derived
from N. edaphicum CCNP1411 and Nostoc sp. ATCC53789 indicated identical amino-acid compositions,
residues within adenylation domains and substrate binding sites were different between compared
sequences. This finding may highlight sites prone to mutations within regions accounted for structure
and substrate stability. Analysis of ncp gene products in N. edaphicum CCNP1411 led to the detection of
new nostocyclopeptide analogues. However, modifications in their structure were minor and limited
to three positions of the heptapeptides. Although the naturally produced nostocyclopeptides were
previously described as cyclic structures, in N. edaphicum CCNP1411 they are mainly present as linear
peptide aldehydes, indicating a slow cyclization process.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-3397/18/9/442/
s1. Figure S1: Structure and enhanced product ion mass spectrum of the cyclic nostocyclopeptide
Ncp-A1 cyclo [Tyr+Gly+Gln+Ile+Ser+MePro+Leu] identified based on the following fragment ions:
m/z 757 [M+H]; 739 [M+H−H2O]; 729 [M+H−CO]; 721 [M+H−2H2O]; 628 [M+H−MePro−H2O],
626 [M+H−Ile−H2O]; 594 [M+H−Tyr]; 549 [Tyr+Gly+Gln+Ile+Ser+H]; 541 [M+H−(Ser+MePro)−H2O],
446 [M+H−(Ile+Ser+MePro)]; 428 [M+H−(Ile+Ser+MePro)−H2O]; 386 [Gly+Gln+Ile+Ser+H]; 372
[MePro+Leu+Tyr+H]; 300 [Leu+Tyr+Gly+H−H2O]; 209 [MePro+Leu+H]; 181 [MePro+Leu+H−CO]; 86−Ile/Leu
immonium; 84 MePro immonium, Figure S2: Structure and enhanced product ion mass spectrum of
the linear peptide aldehyde Ncp-A1-L (linear aldehyde of Ncp-A1) Tyr+Gly+Gln+Ile+Ser+MePro+Leu
identified based on the following fragment ions: m/z 775 [M+H]; 757 [M+H – H2O]; 739
[M+H−2H2O]; 660 [M+H−Leu]; 549 [Tyr+Gly+Gln+Ile+Ser+H]; 531 [Tyr+Gly+Gln+Ile+Ser+H−H2O];
521 [Tyr+Gly+Gln+Ile+Ser+H−CO]; 532 [M+H−(MePro+Leu)−H2O]; 462 [Tyr+Gly+Gln+Ile+H]; 434
[Tyr+Gly+Gln+Ile+H−CO]; 386 [Gly+Gln+Ile+Ser+H]; 349 [Tyr+Gly+Gln+H]; 301 [Gln+Ile+Ser+H−CO];
227 [MePro+Leu+H]; 221 [Tyr+Gly+H]; 209 [MePro+Leu+H−H2O]; 181 [MePro+Ile+H−H2O−CO]; 148
[Tyr−NH2]; 136 Tyr immonium; 86−Ile/Leu immonium; 84, 101 (immonium),129 Gln; 84 MePro immonium,
Figure S3: Structure and enhanced product ion mass spectrum of the cyclic nostocyclopeptide Ncp-A2
cyclo[Tyr+Gly+Gln+Ile+Ser+MePro+Phe] identified based on the following fragment ions: m/z 791
[M+H]; 773 [M+H−H2O]; 763 [M+H−CO]; 755 [M+H−2H2O]; 745 [M+H−CO−H2O]; 678 [M+H−Ile]; 628
[M+H−Tyr]; 593 [M+H−(Ser+MePro)]; 549 [Tyr+Gly+Gln+Ile+Ser+H]; 531 [Tyr+Gly+Gln+Ile+Ser+H−H2O]; 480
[M+H−(Ile+Ser+MePro)]; 462 [Tyr+Gly+Gln+Ile+H]; 406 [MePro+Phe+Tyr+H]; 379 [MePro+Phe+Tyr+H−CO];
349 [Tyr+Gly+Gln+H]; 335 [Phe+Tyr+Gly+H−H2O]; 312 [Ile+Ser+MePro+H]; 307 [Phe+Tyr+Gly+H−H2O−CO];
243 [MePro+Phe+H]; 215 [MePro+Phe+H−CO]; 158 [Gly+Gln+H−CO]; 132 Phe; 84 MePro immonium, Figure
S4: Structure and enhanced product ion mass spectrum of the linear nostocyclopeptide aldehyde Ncp-A2-L
(linear aldehyde of Ncp-A2) Tyr+Gly+Gln+Ile+Ser+MePro+Phe identified based on the following fragment
ions: m/z 809 [M+H]; 791 [M+H−H2O]; 773 [M+H−2H2O]; 763 [M+H−CO−H2O]; 660 [M+H−Phe]; 628
[M+H−Tyr−H2O]; 549 [Tyr+Gly+Gln+Ile+Ser+H]; 531 [M+H−(MePro+Phe)−H2O]; 462 [Tyr+Gly+Gln+Ile+H];
434 [Tyr+Gly+Gln+Ile+H−CO]; 312 [Ile+Ser+MePro+H]; 261 [MePro+Phe+H]; 243 [MePro+Phe+H – H2O];
221 [Tyr+Gly+H], 193 [Tyr+Gly+ H−CO]; 148 [Tyr−NH2]; 136 Tyr immonium; 84, 101 (immonium), 129
Gln; 84 MePro immonium, Figure S5: Proposed structure and enhanced product ion mass spectrum
of cyclic nostocyclopeptide Ncp-E2 cyclo[Tyr+Gly+Gln+Ile+Ser+Pro+Leu] characterized based on the
following fragment ions: m/z 743 [M+H]; 725 [M+H−H2O]; 715 [M+H−CO]; 707 [M+H−2H2O]; 697
[M+H – H2O−CO]; 656 [M+H−Ser]; 638 [M+H−Ser−H2O]; 628 [M+H−Ser−CO]; 612 [M+H−Ile−H2O];
549 [Tyr+Gly+Gln+Ile+Ser+H]; 541 [M+H−(Ser+Pro)−H2O]; 531 [Tyr+Gly+Gln+Ile+Ser+H−H2O]; 428
[M+H−(Ile+Ser+Pro)−H2O]; 349 [Tyr+Gly+Gln+H]; 300 [Leu+Tyr+Gly+H−H2O]; 195 [Pro+Leu+H]; 167
[Pro+Leu+H−CO]; 84 Gln; 70 Pro immonium, Figure S6: Proposed structure and enhanced product ion
mass spectrum of the linear nostocyclopeptide aldehyde Ncp-E2-L (linear aldehyde of Ncp-E2) with general
structure Tyr+Gly+Gln+Ile+Ser+Pro+Leu characterized based on the following fragment ions: m/z 761 [M+H];
743 [M+H−H2O]; 725 [M+H−2H2O]; 549 [Tyr+Gly+Gln+Ile+Ser+H]; 532 [Tyr+Gly+Gln+Ile+Ser+H−H2O];
462 [Tyr+Gly+Gln+Ile+H]; 349 [Tyr+Gly+Gln+H]; 434 [Tyr+Gly+Gln+Ile+H−CO]; 300 [Ser+Pro+Leu+H]; 221
[Tyr+Gly+H]; 213 [Pro+Leu+H]; 195 [Pro+Leu+H−H2O]; 148 [Tyr−NH2]; 136 Tyr immonium; 84, 101 (immonium),
129 Gln; 70 Pro immonium, Figure S7: Proposed structure and enhanced product ion mass spectrum of cyclic
nostocyclopeptide Ncp-E3 cyclo[Tyr+Gly+Gln+Val+Ser+MePro+Leu] characterized based on the following
fragment ions: m/z 743 [M+H]; 725 [M+H−H2O]; 715 [M+H−CO]; 707 [M+H – 2H2O]; 697 [M+H−H2O−CO];
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645 [M+H−Val]; 580 [M+H−Tyr]; 527 [M+H−(Ser+MePro)−H2O]; 428 [M+H−(Val+Ser+MePro)−H2O];
410 [M+H−(Val+Ser+MePro)−2H2O]; 372 [Gly+Gln+Val+Ser+H]; 344 [Gly+Gln+Val+Ser+H−CO]; 300
[Leu+Tyr+Gly+H−H2O]; 233 [Leu+Tyr+H−CO]; 209 [MePro+Leu+H]; 181 [MePro−Leu+H−CO]; 84 MePro
immonium; 72 Val immonium, Figure S8: Relative contents of nostocyclopeptides extracted from 10 mg of
lyophilized biomass of N. edaphicum CCNP1411 with 20% MeOH of different pH (3.5, 6 and 8)
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