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Abstract
Key message Some species synthesize larger amounts of polyprenols, which probably increase the plant’s ability to 
mitigate salt stress. Salt stress does not cause macronutrient deficiency in the leaves of urban trees. Ionic imbalance 
in the leaves caused by soil salinity worsens the health status of sensitive species.
Abstract Street trees are exposed to relatively high stress levels, and the average lifespan of street trees is shortened com-
pared to those of trees living under controlled natural conditions. Soil salinity adversely affects trees at all stages of growth 
and development. This study attempts to determine how the urban environment, with particular emphasis on salt stress, 
affects tree species with different levels of salinity sensitivity. The aim of this study was to identify the strategies of eight 
tree species for mitigating salt stress based on the determination of the chemical composition of the macroelements in the 
leaves, the ionic imbalance, and the ability of the trees to synthesize and accumulate polyprenols in the leaves. The obtained 
results suggest that individual species implemented different strategies in response to salt stress. The low sensitivity species: 
Q. rubra, R. pseudoacacia, G. triacanthos and A. campestre. blocked the uptake of Cl and Na to the leaves. The medium-
sensitivity species: P. x hispanica blocked the uptake of Cl and Na and G. biloba maintained very high contents of Cl and Na 
in its leaves without leaf damage and synthesized large amounts of polyprenols. G. triacanthos and A. campestre synthesized 
large amounts of polyprenols. The high-sensitivity species (T. x euchlora and A. platanoides) exhibited very high contents 
of Cl and Na in their leaves, which were significantly damaged and had a pronounced ionic imbalance. These effects were 
not compensated for by the increased synthesis of polyprenols. In conclusion, the accumulation of polyprenols in leaf tissue 
may be one of the strategies that increase the resistance of plants to salt stress. Plants have many other methods of mitigat-
ing salt stress.

Keywords Urban trees · Salt stress · Polyprenol · Ionic balance · Macronutrients

Introduction

Sustainable cities depend on urban green infrastructure 
and its ecological functions. Urban green infrastructure, 
such as parks, forests, street trees, green roofs, gardens, 
and cemeteries, is especially important in the urbanized 
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world, as it is the main carrier of ecosystem services and 
improves the quality of life for urban residents (Breuste 
et al. 2013; Lee and Song 2019). However, trees remain the 
largest component of urban greenery in most cities. Trees 
not only beautify the landscape but often play a major 
role in moderating the environmental impact of urban set-
tlements (Seamans 2013). The Economics of Ecosystems 
and Biodiversity report identifies 16 types of ecosystem 
services associated with urban greenery (TEEB 2011). The 
benefits and uses of urban forests and trees are: (i) cultural, 
(ii) social, (iii) esthetic and architectural, (iv) climatic and 
physical, (v) related to carbon storage and sequestration, 
(vi) ecological, and (vii) economic (Dadvand et al. 2016; 
Ekkel and de Vries 2017; Nowak et al. 2013; Tyrväinen 
et al. 2005). Trees in cities are important for their ability 
to provide ecosystem services. Only healthy and living 
trees can fulfill these needs. Urban trees, especially those 
growing along streets, are exposed to many stresses lim-
iting their possibility of performing ecosystem services 
(Martin et al. 2016; Hallett et al. 2018).

Street trees are exposed to relatively high stress lev-
els, and the average lifespan of these trees is short. The 
stresses include different agents (Paludan-Müller et al. 
2002; Pauleit 2003; Sæbø et al. 2003; Sieghardt et al. 
2005; Vogt et al. 2017): aspects of the urban climate, air 
pollution, constraints and peculiarities of urban hydrolog-
ical cycles, unfavorable physical soil properties, unbal-
anced nutrient supply, soil pollution, high pH, limited soil 
volume, and development of pests and diseases.

Deicing salt, mainly NaCl, has been used on streets and 
sidewalks in most European countries and in the USA, 
Canada and Southeast Asia since the 1960s (Pauleit et al. 
2002). This treatment not only increases the content of 
Cl and Na ions in the soil, but also causes a number of 
adverse soil changes that are unfavorable to trees, such as: 
alkalization, alteration of soil structure, decreased soil per-
meability and aeration, intensive erosion, and disturbance 
of mycorrhizae (Equiza et al. 2017; Ordóñez-Barona et al. 
2018). Alternative deicing chemicals, such as potassium 
formate (KFo; KCOOH) and calcium magnesium acetate 
(CMA;  Ca3Mg7(CH3COO)20), may have a less negative 
impact on the soil, but they are more expensive and may 
also have an adverse effect on plants (Hanslin 2011).

Soil salinity adversely affects plants at all stages of 
growth and development. However, assessment of this 
impact is difficult due to interactions with other environ-
mental factors. The response of woody plants to salinity 
also depends on the plant’s development phase, mainly 
on the species and variety (Sieghart et al. 2005). Salin-
ity reduces the osmotic potential in the soil–plant water 
system and hinders the uptake of water by the roots. This 
increases the plant energy expenditure associated with 
osmotic adjustment and results in the inhibition of root 

growth and development. Salt stress has been shown to 
induce a strong reduction in stems and leaves and, ulti-
mately, in the aerial biomass of trees. It also interferes 
with nutrient uptake, ion transport and metabolites. It is 
the cause of a reduction in photosynthetic pigment con-
tents and an increase in proline and malondialdehyde 
(MDA) concentrations (Dąbrowski et al. 2013; Green et al. 
2008; Grote et al. 2017; Munns and Tester 2008; Laffray 
et al. 2018; Plesa et al. 2018; Zhou et al. 2019).

The response to salt stress is a complex process that 
includes changes in trees at physiological, histological, cel-
lular and molecular levels, as it limits nutrient uptake and 
disrupts the ionic balance (Cekstere et al. 2008; Dąbrowski 
et al. 2017; Equiza et al. 2017; Jimenez-Casas and Zwiazek 
2014; Kalaji et al. 2018; Malik et al. 2011; Mansour 2013; 
Mousavi et al. 2019; Munns 2002; Ordóñez-Barona et al. 
2018). Salt stress can also increase the susceptibility of trees 
to pathogen attack (Munck et al. 2010), but Sienkiewicz-
Paderewska et al. (2017) have shown that salt stress reduces 
the number of aphids on the leaves of linden. Chlorine ions 
are considered more toxic to trees than sodium ions. The Cl 
content of the leaves is more correlated than the Na content 
with the degree of leaf damage (Alaoui-Sosse et al. 1998; 
Kayama et al. 2003; Paludan-Müller et al. 2002). Munns and 
Tester (2008) found that in the case of trees, sodium ions are 
retained in the roots and shoots, and only part of the charge 
reaches the leaves. However, some researchers believe that 
chlorine and sodium exhibit a similar degree of toxicity to 
trees (Thornton et al. 1988). According to Cekstere et al. 
(2008), the main reason for the appearance of leaf necrosis 
was the additive effect of high concentrations of Na and Cl 
in leaves; however, it was difficult to separate the  Na+ and 
 Cl− effects.

Plants use three general strategies for coping with salinity 
stress: avoidance, tolerance and resistance. The ability to 
resist stress can be an effect of either avoidance or tolerance 
or a combination thereof; the general term for this is resist-
ance (Blomqvist 1998). Plant strategies to mitigate salt stress 
rely on the following:

• The accumulation of compatible compounds, e.g., amino 
acids (Reddy et al. 2015), mannitol and sorbitol (Wu 
et al. 2015), glycine betaine (De la Torre-Gonzalez et al. 
2018), and polyol (Kobayashi et al. 2013) in the cyto-
plasm, which, despite reaching high concentrations, do 
not adversely affect plant metabolism;

• The sequestration of  Na+ and  Cl− into the vacuole (Baetz 
et al. 2016);

• The induction of antioxidant enzymes (Farhangi-Abriz 
and Torabian 2017);

• The induction of hormones, including auxins, cytokinins, 
jasmonate, gibberellins, and gibberellins (Ryu and Cho 
2015);
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• The participation of phytohormones in many aspects of 
the plant life cycle, including responses to abiotic stresses 
such as salt stress. They play a key role in plant responses 
to the environment with direct bearing on a plant’s fitness 
for adaptation and reproduction. Salinity-induced plant 
responses can be alleviated or enhanced by exogenous 
applications or genetic modifications of phytohormone 
levels through biotechnological tools (Ryu and Cho 
2015; Llanes et al. 2018).

• The induction of hormones, including: auxins (Hu et al. 
2019), abscisic acid and salicylic acid (Farhangi-Abriz 
and Ghassemi-Golezani 2018), cytokinins (Feng et al. 
2018), ethylene (Silva et al. 2014), jasmonate (Moreira 
et al. 2009), and gibberellins (Al-Taey 2018);

• The involvement of polyamines in modulating antioxi-
dant enzymes (Zhong et al. 2020)

• The increased conversion of xanthophyll pigments for 
absorption and dissipation of heat, which protects the 
photosynthetic apparatus against damage caused by salt 
stress and drought (Baraldi et al. 2019);

• The ability to block Cl and Na uptake and redistribute 
elements from leaves to other parts of plants (Tester and 
Davenport 2003; Shelke et al. 2019);

• The presence of ectomycorrhizal fungi, which improve 
tolerance to salt stress (Zwiazek et al. 2019);

• The presence of genes that can increase salt tolerance 
by: (i) controlling salt uptake and transport, (i) having 
an osmotic or protective function, and (i) making a plant 
grow more quickly in saline soil (Munns 2005; Parihar 
et al. 2015);

• The synthesis of secondary metabolites that mitigate salt 
stress, e.g., polyprenols (Milewska-Hendel et al. 2017).

It is believed that polyprenols, representatives of prenyl 
lipids, can play a particular role in the adaptation of plants to 
adverse climatic and habitat conditions, thus demonstrating 
protective action in response to biotic and abiotic stresses 
(Bajda et al. 2009). Baczewska et al. (2014) suggest a protec-
tive role of polyprenols in limiting Cl uptake to tree leaves.

The effect of stressors on the polyprenol biosynthetic 
machinery has also been elucidated at the molecular level 
in model Arabidopsis plants. To date, three out of nine 
putative cis-prenyltransferases (CPT1-9) identified in the 
Arabidopsis genome have been characterized (Surowiecki 
et al. 2019). Both in silico and experimental gene expres-
sion analyses have revealed an upregulation of AtCPT1 and 
AtCPT6 transcript levels in Arabidopsis seedlings during 
various environmental stresses (Zimmermann et al. 2004). 
Further detailed analyses revealed that in Arabidopsis hairy 
roots cadmium chloride decreased the expression of four 
CPT-encoding genes, CPT1, -2, -6 and -9 and elevated the 
expression of CPT3 and -7. Additionally, sorbitol caused 
diverse changes in the expression of CPT-encoding genes; 

namely, the expression of CPT3, CPT6, and CPT7 was 
induced, while that of CPT1, CPT2, and CPT9 was reduced 
considerably (Jozwiak et al. 2017). These data suggest that 
environmental clues might modulate the content of poly-
prenols by affecting the biosynthesis of polyisoprenoid at 
transcriptional level”.

Milewska-Hendel et al. (2017) suggest that tree defen-
sive strategies against salt stress may rely on increasing the 
synthesis of polyprenols, which might act as scavengers 
of reactive oxygen species and/or modulate the transport 
and deposition of chloride and sodium in the leaf cells and 
change the chemical composition of pectin and AGPs in the 
cell walls. These results may be associated with the health 
status of trees, which suggests that the adaptation of trees to 
salinity can be characterized by different chemical composi-
tions of the cell walls.

This study attempts to determine how the urban environ-
ment, with particular emphasis on salt stress, affects tree 
species with different levels of salinity sensitivity. City trees 
are exposed to much stress. It is difficult to include many of 
them in one experiment but there are publications in which 
it succeeds (e.g. Laffray et al. 2018; Baraldi et al. 2019). 
Literature data and own research indicate that soil salinity 
caused by winter slipperiness is an important stress factor 
for street trees in cities of northern Europe and America. The 
aim of this study was to identify the strategies of eight tree 
species for mitigating salt stress based on the determination 
of the chemical composition of leaves, ionic imbalance, and 
the ability of the trees to synthesize and accumulate poly-
prenols in the leaves.

Materials and methods

Eight tree species commonly planted in European and North 
American cities were included in the study: Acer campestre 
L., A. platanoides L., Gingko biloba L., Gleditsia triacan-
thos L., Platanus xhispanica Mill, Quercus rubra L., Tilia 
xeuchlora K. Koch., and Robinia pseudoacacia ‘Umbracu-
lifera’. Hereafter, the abbreviated name R. pseudoacacia will 
be used.

Study area

The research was performed in two types of locations: in 
center of Warsaw (a: between 52°15′26" N 20°59′03" E and 
52°12′10" N 20°59′16" E) and the suburbs of Warsaw (b: 
52°06′27" N 21°05′42" E):

(a) The street trees were located in the city center on main 
streets with a very high intensity of traffic. The roads 
were intensely deiced in the winter. The soils at all 
locations were anthropogenic and showed alkaline 
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reactions and a high abundance of Cl and exchange-
able Ca, K and Na (Dmuchowski et al. 2011b). Warsaw 
was almost completely destroyed during World War II; 
therefore, the soil is largely mixed with building rubble. 
This and the fact that the areas surrounding the trees 
were covered with concrete slabs made it impossible 
to take a representative soil sample. The trees grew 
in areas covered with pavement at a distance of 1.5 m 
from the street. The space occupied by one tree, sepa-
rated from the next tree by pavement, was only 1.5  m2.

(b) The control trees were growing in the Botanical Garden 
of the Polish Academy of Sciences in Powsin, Warsaw. 
This region includes agro-forest areas on the southern 
outskirts of Warsaw, away from local emission sources 
and traffic routes.

Sampling

The leaf samples from all the locations were separately col-
lected in mid-July from eight 25- to 30-year-old trees. The 
leaves were collected from the outer belt of the tree crown 
around its full perimeter at a height of approximately 3–4 m. 
Forty leaves were collected from each side of the trees and 
mixed to make one sample.

Health condition of the leaves

The health condition of the trees was assessed in the same 
way for all the species at all locations tested. Each tree 
was assessed separately, based on a health assessment of 
the leaves. Leaf damage was evaluated on a six-level scale 
where “0” indicates that the leaves had no damage; “1” indi-
cates that damage covered up to 10% of the leaf surface; “2” 
indicates that damage covered 10–25%; “3” indicates that 
damage covered 25–50%; “4” indicates that damage covered 
50–75%; and “5” indicates that damage covered over 75%. 
The observations were made in mid-September. During the 
collection of samples for chemical analyses in mid-July, the 
damage to the leaves was still insignificant; therefore, the 
later date was chosen, at which point there were clear dif-
ferences between the studied tree species.

Chemical analyses of the leaves

The harvested leaves were placed in linen sacks, brought 
to the laboratory and dried for 12 h at 70 °C. The dried 
leaves were ground to powder using an impact mill (Fritsh 
14,702, Germany).

After mineralization of the dry leaves in a muffle fur-
nace (Naberthern L40/11/P320, Germany) (Allen et al. 

1974), metals (Ca, K, Mg, Na) and P were determined by 
atomic spectrophotometry using a Perkin Elmer 1100B 
(Perkin Elmer, Germany). The weight of the leaf sample 
was 2 g. Cl was determined by potentiometric titration 
using an ion-selective electrode and Orion Star Plus ion 
meter (Thermo Scientific, USA) (LaCroix et al. 1970). 
S was determined using a LECO 132 elemental analyzer 
(Leco Corporation, USA). N was determined by the Kjel-
dahl method using a Foss Tecator (Foss Polska). When 
determining N, Cl, and S, the sample weight was 0.5 g.

The content of organic acids was calculated in accord-
ance with the method proposed by Tuil et al. (1964) as the 
difference between the sum of the cations and the sum of 
the anions. The results were expressed in mEq/100 g of 
dry weight of leaves and calculated according to the fol-
lowing formulas:

The indicator of the ionic balance in the leaves of the 
trees was calculated as the ratio of the sum of the organic 
acid to the sum of the mineral anions expressed in chemi-
cally equivalent values (De Wit et al. 1963; Tuil et al. 
1964; Brogowski et al. 2000).

The N content was omitted in the calculations due to the 
traces of nitrates  (NO3

−) in the tree leaves.
This ratio is considered a good indicator of ion balance 

in plants (De Wit et al. 1963; Devitt et al. 2014).
To provide quality control (QC), the elemental content 

in the plant samples was determined using certified ref-
erence materials, including apple leaves (1515) from the 
National Institute of Standards and Technology (USA) 
and beech leaves (ERM100) from the European Reference 
Materials. The obtained results were in close agreement 
with the certified values. The recovery range (comparisons 
of measured and certified concentrations of elements in the 
plants in the certified reference material) was 94.1–107.1% 
for all the elements.

Qualitative and quantitative analysis of polyprenols

For the polyprenol determination, samples of the dry leaf 
powder were subjected to extraction, and the extracts 
were supplemented with an internal standard (Pren-12 
for G. biloba and Pren-15 for the rest of the studied tree 

organic acids

(

∑

K

−

∑

A

)

= R − COO−,

sum of cations
∑

K

= Ca2+ + Mg2+ + K+
+ Na+,

sum of anions
∑

A

= H2PO
−

4
+ SO2−

4
+ Cl−.
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species). The lipids were purified as previously described 
by Skorupinska-Tudek et al. (2008). We used a combina-
tion of linear gradient mixtures of solvent A (90% methanol 
in water, v/v) and solvent B (50% methanol, 25% hexane 
and 25% isopropanol, v/v/v) at a flow rate of 1.5 mL min-
1; the analysis time was 25 min. Other HPLC/UV condi-
tions were consistent with those of the previously described 
methods of Skorupinska-Tudek et al. (2008) and Jozwiak 
et al. (2013). Polyprenols were identified by comparing 
their retention times and absorption spectra with the cor-
responding parameters of standard substances (by the use 
of an external standard). The quantitative and qualitative 
analyses of the polyprenols were performed using HPLC/
UV with a Waters UV detector (Waters 2487) as previously 
described (Baczewska et al. 2014). The separated polypre-
nols were identified by comparison of the retention times 
and absorption spectra with external standards of a poly-
prenol mixture from the Collection of Polyprenols, Institute 
of Biochemistry and Biophysics of the Polish Academy of 
Sciences, Warsaw. Chromatograms were integrated via the 
program Empower Pro. The content of the identified com-
pounds was estimated with the aid of an internal standard 
(Prenol-15) and expressed as milligrams per gram of dry 
weight of plant tissue. The results are the means of three 
independent analyses.

To provide quality control, additional analyses were 
performed for plant material with well-characterized poly-
prenol content and spectra (photosynthetic tissue of Sor-
bus intermedia, Nicotiana tabacum and Picea abies). The 
obtained results were consistent with previously published 
data (Jozwiak et al. 2013).

Statistical analysis

For the studied variables, the means and standard deviations 
were calculated. Statistical comparisons of the means were 
conducted using two-way analysis of variance (factors: spe-
cies and location) and Tukey’s post hoc test. The correlation 
coefficients were used for the evaluation of the relationships 
between pairs of variables. Moreover, principal component 
analysis (PCA) was conducted for the evaluation of the mul-
tivariate relationships between the variables and for the mul-
tivariate evaluation of the objects (species and locations). 
For all the analyses, the significance level was set at 0.05. 
The analyses were performed using Statistica 13 software.

Results

The assessment of the health condition of the trees was made 
on the basis of the health evaluation of the leaves (Table 1). 
The leaves of the trees of all the examined species growing 

in the control area had no damage during the entire grow-
ing season. During the leaf sample collection for chemical 
analysis in mid-July, only slight damage to the leaves was 
evident in T. xeuchlora and A. platanoides. In mid-Septem-
ber, T. xeuchlora leaves had a most damage index of 5.0 and 
A. platanoides, with a damage index of 2.8. Both of these 
species were also found to be sensitive to soil salinity due 
to NaCl by other authors (see Table 5). In mid-September, 
P. xhispanica and G. biloba had slightly damaged leaves 
(damage indexes of 0.47 and 0.23, respectively), and in A. 
campestre, G. triacanthos, Q. rubra and R. pseudoacacia, 
the leaves were undamaged.

The studied tree species were characterized by varied 
sensitivity to urban conditions, especially to soil salinity, 
which was reflected in the large variation in the chemical 
composition of the leaves (Tables 2, 3 and 4). Among all 
the species, the leaves of the control trees contained sig-
nificantly less Cl than the street tree leaves. The highest 
amounts of Cl were found in the leaves of T. xeuchlora 
(1.49%), G. biloba (1.48%) and A. platanoides (1.43%) 
from the street, and the lowest amounts of Cl were found in 
Q. rubra (0.08%) and G. triacanthos (0.13%). In the con-
trol trees, the Cl content in the leaves ranged from 0.06% 
in Q. rubra to 0.28% in T. x euchlora. The Na content in 
the leaves of the control trees in all the species was not 
very diverse (18.6–59.2 mg kg−1); however, the quantities 
in the street trees were different. The average Na content in 
the leaves of two species was much higher and more varied 
than that in the other species: T. xeuchlora—1294 mg kg−1 
and G. biloba—1088 mg kg−1 (range 724–1269 mg kg−1). 
The Na content was significantly lower in the other spe-
cies in the street location, with values ranging from 
41.7 mg kg−1 in A. campestre to 88.4 mg kg−1 in A. pla-
tanoides. The leaves of the street trees in all the studied 
species contained significantly more Cl and Na than those 
of the control trees. The differences in Cl leaf content 
between the locations showed significance for all spe-
cies. The statistical analysis of the comparisons between 

Table 1  Polyprenols identified in the leaves and the leaf damage 
index of the tree species studied were calculated in mid-September

Species Leaf 
damage 
index

Polyprenol mixture composition

A. campestre 0 Pren-10,-11,-12,-13
A. platanoides 2.8 Pren-10,-11,-12,-13
G. biloba 0 Pren-15,-16,-17,-18,-19,-20,-21,-22,-23
G. triacanthos 0 Pren-10,-11,-12,-13
P. xhispanica 0.47 Pren-9,-10,-11,-12
Q. rubra 0,25 Pren-9,-10,-11
R. pseudoacacia 0 Pren-9,-10,-11
T. xeuchlora 5.0 Pren-9,-10,-11,-12
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the species in the same locations indicated that no sig-
nificant differences in the content of Cl in G. biloba, G. 
triacanthos, P. x hispanica, Q. rubra and R. pseudoaca-
cia leaves were found in the control region. A. campestre 
leaves contained less Cl than A. platanoides leaves and 
T. x euchlora leaves contained the most Cl. The content 
of Na was significantly lower in the leaves of the control 
trees than in the leaves of all of the street trees species. 

The same analysis for the street trees allowed us to iden-
tify the Cl content in the leaves of 3 groups. The group 
with the lowest Cl content included G. triacanthos, and 
Q. rubra, the group with the moderate Cl content included 
R pseudoacacia, A. campestre and P. xhispanica, and the 
group with the largest Cl content included T. xeuchlora, 
G. biloba and A. platanoides.

Table 2  The content of Cl, Na, 
ionic balance index and sum 
of prenyl lipids (means and 
SDs, n = 8) in leaves of trees 
and their comparisons between 
different locations (separately 
for each species) based on 
analysis of variance and 
Tukey’s test (different letters 
mean statistically significant 
differences between locations)

Species Location Cl Na R-COO−/∑Anions ∑ prenyl lipids

(%) SD mg  kg−1 SD SD mg  g−1i SD

A. campestre Street 0.43b 0.07 41.7b 12.02 2.50a 0.23 5.62b 1.07
Control 0.22a 0.05 26.6a 6.50 2.72a 0.18 0.53a 0.13

A. platanoides Street 1.43b 0.12 88.4b 11.75 1.89a 0.51 1.32b 0.16
Control 0.26a 0.04 29.0a 7.39 7.88b 0.99 0.23a 0.06

G. biloba Street 1.48b 0.27 1088b 193 3.80a 1.44 11.80b 1.48
Control 0.08a 0.02 20.6a 5.78 13.65b 3.35 4.25a 0.58

G. triacanthos Street 0.13b 0.02 45.1b 5.86 9.90a 1.21 12.78b 3.33
Control 0.08a 0.02 26.0a 8.02 9.98a 0.73 8.96a 1.31

P. xhispanica Street 0.93b 0.11 55.9b 10.06 2.01a 0.43 0.58a 0.14
Control 0.09a 0.02 18.6a 2.40 9.72b 0.94 1.96b 0.46

Q. rubra Street 0.08b 0.03 63.4b 18.85 0.25a 0.03 1.14b 0.16
Control 0.06a 0.01 21.8a 3.55 0.32b 0.06 0.76a 0.17

R. pseudoacacia Street 0.35b 0.07 45.9b 7.46 6.72a 1.42 0.27a 0.05
Control 0.08a 0.02 18.9a 3.68 6.77a 1.35 1.11b 0.29

T. x euchlora Street 1.49b 0.57 1294b 131 3.07a 1.90 9.99b 2.31
Control 0.28a 0.09 59.2a 26.82 10.60b 1.03 6.15a 0.90

Table 3  The macronutrients (means and SDs, n = 8) contents in 
leaves of trees and their comparisons between different locations 
(separately for each species) based on analysis of variance and Tuk-

ey’s test and p-values based on ANOVA (different letters mean statis-
tically significant differences between locations)

Species Location N S P K Ca Mg

(%) SD (%) SD (%) SD (%) SD (%) SD (%) SD

A. campestre Street 1.68a 0.17 0.17a 0.01 0.16a 0.02 0.91a 0.13 0.12a 0.02 1.43a 0.16
Control 2.36b 0.14 0.20b 0.01 0.32b 0.08 1.14b 0.17 0.24b 0.07 1.38a 0.23

A. platanoides Street 2.12a 0.13 0.19a 0.01 0.22a 0.06 1.25b 0.13 0.15a 0.04 1.66a 0.24
Control 1.91a 0.30 0.18a 0.03 0.31b 0.04 1.25b 0.17 0.23b 0.04 1.45a 0.18

G. biloba Street 2.25b 0.14 0.17b 0.01 0.25b 0.02 2.17b 0.30 0.17a 0.03 1.92b 0.23
Control 1.47a 0.16 0.13a 0.03 0.16a 0.02 0.88a 0.13 0.21b 0.02 1.38a 0.19

G. triacanthos Street 3.29b 0.40 0.23b 0.02 0.35b 0.05 1.32b 0.16 0.15b 0.02 1.95b 0.29
Control 2.16a 0.33 0.19a 0.04 0.24a 0.05 1.11a 0.15 0.09a 0.02 0.77a 0.11

P. xhispanica Street 2.64b 0.19 0.21b 0.02 0.29c 0.02 1.11b 0.15 0.20b 0.04 1.06ab 0.13
Control 2.08a 0.26 0.16a 0.03 0.23b 0.03 0.95a 0.15 0.17ab 0.03 0.95a 0.15

Q. rubra Street 2.14a 0.20 0.18a 0.02 0.23a 0.02 1.24b 0.05 0.12a 0.03 1.19a 0.22
Control 2.12a 0.24 0.18a 0.02 0.23a 0.03 0.95a 0.10 0.13a 0.03 1.06a 0.14

R. pseudoacacia Street 3.97a 0.18 0.27a 0.03 0.44a 0.02 1.92a 0.21 0.17b 0.01 1.83b 0.26
Control 4.54b 0.20 0.32b 0.02 0.50b 0.02 1.77a 0.20 0.14a 0.02 1.03a 0.06

T. x euchlora Street 2.60a 0.41 0.21a 0.02 0.26a 0.04 1.45a 0.53 0.29a 0.09 1.99a 0.40
Control 3.17b 0.29 0.24b 0.03 0.38b 0.07 1.84a 0.46 0.35a 0.05 2.05a 0.20
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The macroelements (N, S, P, K, Mg and Ca) contents in 
leaves were not very diverse, and no significant trends could 
be identified (Tables 3, 4). There were differences between 
species and locations, but no overall trend could be deter-
mined. A similar situation was observed for the N/K, N/Mg 
and N/Ca ratios (Table 4).

The ion balance indicator in the leaves was calculated 
as the ratio of the organic acid to the sum of the anions 
(Table 2). A significant disturbance of the ionic balance 
caused by salt stress occurs almost exclusively in street trees. 
The value of this indicator was the lower in all the street 
tree species than in the control trees, but in the case of G. 
triacanthos and R. pseudoacacia, this difference was not 
significant. The values of this indicator for the street trees 
varied significantly between species, with values ranging 
from 0.25 for Q. rubra and 1.89 for A. platanoides to 9.90 
for G. triacanthos and 6.72 for R. pseudoacacia.

Based on the chromatographic analysis, different com-
positions of the polyprenol mixtures were identified in 
the tree leaves independent of their place of growth, i.e., 
either with exposure to salinity in the street or in the con-
trol conditions in the Botanical Garden (Table 1). Long-
chain polyprenols have been identified in G. biloba leaves 
(Pren-15–Pren-23) in agreement with the published data 
from Ibata et al. (1983), while only short-chain polypre-
nols (Pren-9–Pren-13) were identified in the leaves of the 
remaining species studied here.

To assess the effect of polyprenol accumulation on the 
trees, the total polyprenol content was estimated. Statis-
tical analysis of the results showed that the street trees, 
except R. pseudoacacia and P. xhispanica, had a signifi-
cantly higher content of polyprenols in their leaves than 

did the controls (Table 2). In the control trees, the poly-
prenol content ranged from 0.23 mg g−1 in the leaves of A. 
platanoides, 0.53 mg g−1 in A. campestre and 0.76 mg g−1 
in Q. rubra to 6.15 mg.g−1 in T. xeuchlora and 8.96 mg.g−1 
in G. triacanthos. In the street trees, the lowest values 
were found in R. pseudoacacia (0.27 mg g−1), P. xhispan-
ica (0.58 mg g−1) and Q. rubra (1.14 mg g−1) leaves, and 
the highest values were found in G. biloba (11.80 mg g−1) 
and G. triacanthos (12.78 mg g−1) leaves.

The PCA results showed a very strong positive cor-
relation between the Na and Cl content (Fig. 1). These 
two elements were strongly negatively correlated with the 
ratio of R-COO-/∑anions (street/control). The ratio of the 
sum of the polyprenols (street/control) was not correlated 
with the contents of Na and Cl. The reason for this fact 
was the large variation in the Cl content in the leaves of 
the resistant species (Q. rubra, G. triacanthos and R. pseu-
doacacia), which had a very low content, and in the leaves 
of G. biloba, which had a very high content. The highest 
values of the ratio with the sum of the polyprenols were 
observed for A. campestre, a species resistant to salinity. 
T. xeuchlora, a very sensitive species, had very high leaf 
Na and Cl contents. The highest values of the ratio of 
R-COO-/∑anions were observed for G. triacanthos and 
R. pseudoacacia, while the lowest values were observed 
for A. platanoides, a very sensitive species.

Table 4  The ratios of 
macronutrients (means and 
SDs, n = 8) in leaves of trees 
and their comparisons between 
different locations (separately 
for each species) based on 
analysis of variance and 
Tukey’s test and p values based 
on ANOVA (different letters 
mean statistically significant 
differences between locations)

Species Location N/P N/K N/Ca N/Mg

SD SD SD SD

A. campestre Street 10.71b 1.93 1.89a 0.34 14.09b 3.04 1.19a 0.20
Control 7.79a 2.17 2.12ab 0.39 10.85a 3.40 1.76b 0.40

A. platanoides Street 10.18a 2.34 1.71a 0.28 15.17b 3.74 1.30a 0.19
Control 6.21a 1.18 1.55a 0.29 8.34a 1.50 1.34ab 0.30

G. biloba Street 9.10a 0.12 1.05a 0.17 13.25b 2.04 1.18a 0.11
Control 9.53a 1.26 1.70b 0.31 7.03a 1.25 1.07a 0.16

G. triacanthos Street 9.61a 1.63 2.51b 0.32 22.33a 3.60 1.73a 0.36
Control 9.17a 0.60 1.96a 0.27 24.33b 6.50 2.86b 0.54

P. xhispanica Street 9.11a 0.08 2.41b 0.36 13.83a 2.86 2.52b 0.38
Control 9.10a 0.16 2.24b 0.47 12.27a 1.64 2.23ab 0.41

Q. rubra Street 9.29a 0.28 1.71a 0.12 18.88a 4.64 1.85a 0.44
Control 9.07a 0.13 2.26b 0.34 17.35a 3.70 2.04a 0.35

R. pseudoacacia Street 9.11a 0.07 2.09a 0.21 24.05a 2.02 2.20a 0.33
Control 9.09a 0.06 2.59b 0.27 34.02b 5.36 4.42b 0.34

T. x euchlora Street 10.05a 2.04 2.04a 0.86 9.36a 2.24 1.34a 0.28
Control 8.45a 1.56 1.81a 0.46 9.26a 1.62 1.55a 0.15
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Discussion

The reasons for the very large differences in sensitivity to 
salinity between species and even taxa are not clearly under-
stood (Allen et al. 1994; Ashraf and Harris 2004). Plants 
have developed many biochemical and molecular mecha-
nisms to adapt to salt stress. Recent studies have identified 
various adaptive responses to salinity at molecular and 
cellular levels and metabolic and physiological processes, 
although the mechanisms underlying salinity tolerance are 
far from completely understood (Gupta and Huang 2014; 
Pirasteh-Anosheh et al. 2016; Yokoi and Ray 2002). The 
biochemical pathways leading to the synthesis of compounds 
and initiating processes that increase salt tolerance can act 
additively and probably synergistically (Iyengar and Reddy 
1996).

The state of the health of urban trees depends on many 
factors acting simultaneously which makes identification 
of the most important factors difficult. Trees in the urban 
environment are widely exposed to many stress factors: criti-
cal water stress, increased soil pH, limited soil volumes, 
soil compaction, air pollution, deicing salt and many others 
(Grassi and Magnani 2005; Hermans et al. 2003; Ugolini 
et al. 2012). However, many authors point to soil salinity 
as the main cause of poor health and dieback of street trees 
(e.g., Zimmerman and Jull 2006; Oleksyn et al. 2007; Cek-
stere et al. 2016; Equiza et al. 2017; Ordóñez-Barona et al. 
2018). Therefore, it is important to identify the specific fea-
tures of individual species that increase tree health in urban 
stress.

Studies have shown that six species, A. campestre, G. 
biloba, G. triacanthos, P. xhispanica, Q. rubra and R. pseu-
doacacia, are characterized by resistance to street conditions 

in cities, especially soil salinity. In contrast, A. platanoides 
and T. xeuchlora are relatively very sensitive. Table 5 shows 
the sensitivity of the 8 studied street tree species to soil 
salinity due to deicing, according to various authors. Infor-
mation from the table confirms our results from Warsaw. 
Of the studies on A. campestre, only 3 items found in the 
literature suggest the resistance of this species. A. campestre 
is the most drought resistant (Samson et al. 2017; Schumann 
et al. 2018), which is accompanied by its high resistance to 
soil salinity (Appleton et al. 2009; Šerá 2017).

Many studies have shown a positive correlation between 
the damage index of leaves and their Cl and Na contents 
(e.g., Appleton et  al. 2009; Dmuchowski et  al. 2014; 
Goodrich and Jacobi 2012; Ordóñez-Barona et al. 2018; 
Paludan-Müller et al. 2002). Reliable data determining the 
toxic limits of Cl and Na in tree leaves were not found in 
the literature.

A high content of Cl and Na was also found in G. biloba 
leaves (Cl: 1.48% and Na: 1088 mg.kg−1), which did not 
have any damage. This species was also considered tolerant 
by most authors. Similarly, a high content of Cl in G. biloba 
leaves under saline conditions was described by Townsend 
(1984). Three of the species tested were characterized by 
extremely low Cl content in the leaves under street condi-
tions: Q. rubra, 0.08%; G. triacanthos, 0.13%; and R. pseu-
doacacia, 0.35%. Similar values for these three species were 
found by Dmuchowski et al. (2013). The low content of Cl in 
leaves can be caused by its accumulation in roots and shoots 
and limited transport to the leaves (Alaoui-Sossé et al. 1998; 
Benlloch et al. 1991; Tattini et al. 1993), which may result 
in low sensitivity to salt stress.

Fig. 1  Results of principal component analysis (PCA) presenting 
multivariate variability of species as well multivariate relationships 
between content of elements for street and ratio of R-COO−/∑anions 
and sum of prenyl lipids (values for street were divided by values for 
control)

Table 5  Sensitivity of eight studied tree species to soil salinity 
according to various authors

(1) Shortle and Rich (1970); (2) Dirr (1976); (3) Townsend (1984); 
(4) Barrick and Davidson (1980); (5) Gibbs and Palmer (1994); (6) 
Johnson and Sucoff (2000); (7) Borowski and Latocha (2006); (8) 
Bassuk et al. (2009); (9) Appleton et al. (2009); (10) Jull (2009); (11) 
Dmuchowskiet al. (2013); (12) Šerá (2017); (13) Baczewska et  al. 
(2017); (14) Dmuchowski et al. (2019)

Species Tolerance to soil salt

Sensitive Intermediate Tolerant

A. campestre 7 8,9,12
A. platanoides 1,4,6,7,11,13 2,7
G. biloba 1,5 10 3,6,7,8,9,14
G. triacanthos 1,2,3,6,7,8,9,10,11, 

12
P. xhispanica 1,5 3,7,8,9,11,12
Q. rubra 10 1,2,6,7,8,9,11,12
R. pseudoacacia 1,2,5,6,7,8,9,11,12
T. x euchlora 2,8,13
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It showed significant differences in the content of Cl in 
the leaves of street trees of the same genus (Acer) with dif-
ferent sensitivity to urban conditions. The species considered 
to be not very sensitive (A. campestre) accumulated three 
times less Cl in its leaves than the amount that is considered 
to have an impact on the very sensitive species A. plata-
noides. Leh (1990) and Zimmerman and Jull (2006) classi-
fied A. platanoides as a sensitive species that collects large 
amounts of Cl (Gibbs and Palmer 1994; Marosz 2012; Rose 
and Weber 2011) and A. campestre as relatively resistant. 
In older publications, A. platanoides is classified as resist-
ant to salinity (Carpenter 1970; Lumis et al. 1975). This 
research and newer publications do not confirm this fact 
(Dmuchowski et al. 2011a; Šerá 2017).

The variation in Na content in the leaves of various spe-
cies of trees growing in comparatively saline soil is very 
large, and is significantly greater than that of Cl. The inter-
pretation of the results of the Na content in the leaves of trees 
is difficult due to the lack of information in the literature 
about the threshold values of toxicity. Na is characterized 
by high lability in both the soil and plants, and its excess 
mostly causes ionic imbalance rather than a simple toxic 
effect (Alaoui-Sosse et al. 1998; Dmuchowski et al. 2011b). 
Genc et al. (2015) performed tests separating  Cl+ and  Na+ 
ions and showed that Na mainly affects plants osmotically 
and that Cl affects plants osmotically and is toxic to plants. 
For most trees, the action of  Cl− ions is more important 
than that of  Na+ in terms of health. The content of Cl in 
leaves is more correlated with leaf damage than the con-
tent of Na (Alaoui-Sosse et al. 1998; Dirr 1976; Storey and 
Walker 1999). Ziska et al. (1991) and Munns and Tester 
(2008) found that in the case of trees and shrubs,  Na+ ions 
are retained in the roots and shoots, and only part of the 
charge reaches the leaves. Only after exceeding the critical 
level in the shoots are the ions transported in larger quanti-
ties to the leaves. Zhou et al. (2019) found a higher content 
of Na in the roots as well as Cl mostly accumulated in leaves, 
suggesting a defense mechanism for Na toxicity through the 
compartmentalization of this element in the roots. It is pos-
sible that such a situation occurred in T. xeuchlora and G. 
biloba near the street in Warsaw.

Determining the (N, P, K, Mg, Ca) contents in tree 
leaves provides a large amount of valuable information 
about the tree’s vitality, nutrition, growth conditions, and 
threats and may be more valuable than determining the 
chemical composition of the soil (Cape et al. 1990; Musio 
et al. 2007; Prietzel et al. 2008). The content of macroe-
lements in tree leaves is shown in Table 3. The results 
varied, and no significant trends were noted in the content 
of individual elements in the leaves depending on the spe-
cies and location. The relationship between salinity and 
mineral uptake is complex. Salinity may increase, decrease 
or remain unaffected by the content of elements in plants 

(e.g., Bayuelo-Jiménez et al. 2003; Chen et al. 2014; Dmu-
chowski et al. 2014; Loupassaki et al. 2002; Marosz 2004). 
The observed differences may be the result of the effect of 
salinity on the uptake of microelements, which may be due 
to their availability, ion competitiveness or interferences in 
transport within the plant (Chen et al. 2001; Grattan and 
Grieve 1999). A comparison of the obtained results with 
previously published data indicates that macroelements 
(N, P, K, Ca and Mg) contents in the leaves of the studied 
trees was at a level considered "normal" and often optimal. 
Deficient levels were not found in any of the species at any 
locations tested (Dauer et al. 2007; De Vries et al. 2000; 
Dirr 1976; Kopinga and Van den Burg 1995; Mellert and 
Göttlein 2012; Van den Burg 1974). Similarly, the ranges 
of the N/P, N/K, N/Mg and N/Ca ratios in the leaves of all 
the tree species and locations were consistent with those 
in previously published literature (Flückiger and Braun 
2003; Zhou et al. 2019).

Ion imbalance due to salt stress affects plant growth 
and development (e.g., Green et al. 2008; Loupassaki et al. 
2002; Mazher et al. 2007; Serrano and Rodriguez-Navarro 
2001). However, in the vast majority of studies, the content 
of elements in plants is given in units of weight (e.g., mg/kg 
and %), which is a great simplification. Chemicals and ions 
react with each other not in equal weight proportions but 
in equivalent proportions depending on the atomic or ionic 
mass and valence. This fact significantly limits the possibil-
ity of discussing our own results with those of other studies.

The ratio of the sum of the organic acids to the sum of 
the mineral anions expressed in chemically equivalent values 
is considered an appropriate indicator of ionic balance in 
the leaves of trees. Relatively low ratios may indicate ionic 
imbalance (Brogowski et al. 2000; De Wit et al. 1963; Tuil 
et al. 1964). The value of this indicator in the leaves of most 
of the studied species was significantly lower in the street 
trees than in the control trees. The largest differences were 
found in species sensitive to soil salinity and that had dam-
age to the leaves (T. xeuchlora and A. platanoides), which 
may indicate a significant disturbance of the ionic balance, 
resulting in deterioration of leaf health. In the second resist-
ant species of the genus Acer (A. campestre), the differences 
between locations occurred but were statistically insignifi-
cant. This may be the reason for differences in resistance 
between both species. The leaves of G. biloba and P. xhis-
panica, species resistant to soil salinity despite large differ-
ences in the balance index values between locations, were 
characterized by good health without significantly damaged 
leaves. The research program does not allow us to explain 
this, and additional research is needed. In the resistant spe-
cies G. triacanthos and R. pseudoacacia, there were no sig-
nificant differences between locations.

Short-chain polyprenols (Pren-9–Pren-13) have been 
identified in the leaves of various plant species, and these 
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mixtures usually contain 3–4 homologues (Roslinska et al. 
2002; Swiezewska et al. 1994). Seven of the studied tree 
species except G. biloba had such a set of polyprenols. Eight 
polyprenols (Pren-15–Pren-23) have been identified in G. 
biloba. The same homologues in G. biloba leaves were also 
identified by van Beek and Montoro (2009) and Wang et al. 
(2015). However, we have no reason to say that this unu-
sual set of polyprenols for trees causes the low sensitivity of 
this species to salt stress. This problem requires additional 
research. An additional criterion when determining the spe-
cies response to salinity was the content of polyprenols in 
leaves. The role of these compounds in the adaptation to 
adverse habitat conditions as well as biotic and abiotic stress 
has been postulated (Bajda et al. 2009; Skorupińska-Tudek 
et al. 2008). Data on the impact of salt stress on the content 
of polyprenols in tree leaves are quite limited (Baczewska 
et al. 2014; Milewska-Hendel et al. 2017). These studies 
suggest that polyprenols mitigate salt stress by blocking the 
transport of  Cl− ions to leaves and changing the structure 
and the chemical composition of cell walls.

In this study, significant quantitative differences between 
the species and locations of the trees were noted. The leaves 
of the street trees of two species, R. pseudoacacia and P. 
xhispanica, contained fewer polyprenols than the control 
trees did, which indicates the lack of influence of these com-
pounds on the mitigation of salt stress. The leaves of G. 
triacanthos and Q. rubra grown near the street contained 
only approximately 30% more polyprenols than were found 
in the control. This may indicate a certain, but not decisive, 
property in mitigating salt stress.

Gingko biloba leaves from the street trees contained very 
high levels of polyprenols (11.8 mg g−1), and this amount 
was three times higher than that in the control. This may 
indicate that the ability to synthesize polyprenols under 
conditions of salt stress determines the high resistance of 
this species to soil salinity. Research by Dmuchowski et al. 
(2019) has shown that in urban conditions the increas-
ing amount of Cl in G. biloba leaves was accompanied by 
an increase in the amount of polyprenols, and the leaves 
could remain beige without damage. In other studies, the 
exceptionally low sensitivity of G. biloba to salt stress was 
explained by increased photosynthetic intensity with moder-
ate amounts of NaCl in the soil, increased free leaf proline 
content, and high antioxidant activity, reducing the content 
of free radicals and reactive oxygen species in the leaves 
(Ellnain-Wojtaszek et al. 2002; Liu et al. 2006; Park et al. 
2000; Zahradníková et al. 2007).

The comparison of the polyprenol content in the urban 
tree leaves of two Acer species with different sensitivities 
to urban conditions showed significant differences. In the 
leaves of the street trees, the total polyprenol content found 
in the leaves of the resistant species, A. campestre, was 
more than four times higher than that in the leaves of the 

sensitive species, A. platanoides. A. campestre street leaves 
contained far lower amounts of Cl and Na than did A. pla-
tanoides leaves. A. campestre synthesized larger amounts 
of polyprenols, which probably have the ability to mitigate 
salt stress. The leaves of T. xeuchlora street trees were found 
to be sensitive to salt stress and contained higher levels of 
polyprenols than those of the control trees. Baczewska et al. 
(2014) studied T. xeuchlora and suggested that polyprenols 
may reduce the uptake of Cl to leaves. This study suggests 
that an increase in polyprenol content in the leaves of street 
trees of this species is not able to mitigate salt stress. T. 
xeuchlora is thought to be the most sensitive of the species 
studied.

Conclusions

The range of influence of salt stress on plants is very wide. 
Our research was limited to the study of the effect of salt on 
the contents of Na, Cl, macronutrients and polyprenols and 
the ion balance index in the leaves of trees. However, testing 
in two significantly different locations: a street environment 
in the city center with all possible inconveniences for trees, 
and a relatively favorable location for urban trees in the sub-
urbs, allowed us to expand our knowledge about the causes 
of such a diverse response of different species to salt stress.

The results obtained suggest that individual species 
implement different strategies in response to salt stress. The 
study summary is presented in Table 6. In addition to the 
absolute values, the classification was also determined by 
the differences between the street locations and the control.

The species studied can be ranked in terms of sensitivity 
to salt stress as follows:

The least sensitive species

• Quercus rubra and R. pseudoacacia ‘Umbraculifera’ 
block the uptake of Cl and Na by leaves in the absence 
of an increase in polyprenol synthesis/accumulation and 
in the absence of ionic imbalance in the leaves.

• Gleditsia triacanthos blocks the uptake of Cl and Na by 
leaves, with an increase in polyprenol synthesis/accumu-
lation.

• Acer campestre has a relatively low content of Cl and 
Na. The street trees of this species synthesize significant 
amounts of polyprenols.

• Gingko biloba has very high content of Cl and Na in 
its leaves but does not show leaf damage. This species 
synthesizes large amounts of polyprenols. Some distur-
bance of the ionic balance does not lead to a reduction in 
resistance.
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Medium sensitive species

The sensitivity of trees in the medium-sensitivity category is 
only slightly higher than that observed for the low-sensitive 
species, but much lower than that of highly sensitive species.

• Platanus xhispanica has a relatively low content of Cl 
and Na and a slight disturbance of the ionic balance in its 
leaves. The cause of salinity resistance is not identified.

• Gingko biloba has a very high content of Cl and Na in 
its leaves but does not show leaf damage. This species 
synthesizes large amounts of polyprenols. Some distur-
bance of the ionic balance does not lead to a reduction in 
resistance.

Very sensitive species

Tilia xeuchlora and A. platanoides, which have very high 
contents of Cl and Na in their leaves, are significantly dam-
aged, with a pronounced ionic imbalance, and the dam-
age is not compensated for by the increased synthesis of 
polyprenols.

City trees, especially street ones, are exposed to many fac-
tors affecting their health. One of these factors is soil salinity 
caused by winter deicing of streets and sidewalks. In many 
cities planted trees belong, predominantly, to saline-sensitive 
species, what results in their high death rate. Therefore, on 
the basis of the results of our research, we postulate to sig-
nificantly increase the amount of trees belonging to the spe-
cies Acer campestre L., Gleditsia triacanthos L., Quercus 
rubra L., Robinia pseudoacacia ‘Umbraculifera’, planted 
on the streets where deicing in winter is required. We also 
confirm that in some cities trees belonging to the species 
Gingko biloba L. and Platanus x hispanica Mill, should also 
be planted in higher numbers. Tilia x euchlora K. Koch., and 

Acer platanoides L. should be eliminated from new street 
plantings.
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Table 6  Response of tested 
trees species to salt stress

0: no effect
a Blocking leaf transport- -“ + ”, intensive transport—“−- - blocking
b High ability to synthesize and accumulate polyprenols- -“ + ”
c Ionic imbalance expressed by the ratio of organic acids to the sum of anions- -“ + ”

Species Blocking leaf 
transport  Cla

Blocking leaf 
transport  Naa

Polyprenol 
 contentb

Deficiency essen-
tial nutrients

Ionic  balancec

Q. rubra  +  +  +  + 0 0 0
R. pseudoaccacia  +  +  + 0 0 0
G. triacanthos  +  +  +  +  +  + 0 0
P. × hispanica  +  + 0 0  + 
G. biloba - - - -  +  + 0  + 
A. campestre  +  +  + 0 0
A. platanoides - - -  + 0 0  +  + 
T. xeuchlora - - - -  + 0  +  + 

http://creativecommons.org/licenses/by/4.0/
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