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Abstract: Charcot–Marie–Tooth (CMT) disease encompasses a group of rare disorders that are
characterized by similar clinical manifestations and a high genetic heterogeneity. Such excessive
diversity presents many problems. Firstly, it makes a proper genetic diagnosis much more difficult
and, even when using the most advanced tools, does not guarantee that the cause of the disease will
be revealed. Secondly, the molecular mechanisms underlying the observed symptoms are extremely
diverse and are probably different for most of the disease subtypes. Finally, there is no possibility
of finding one efficient cure for all, or even the majority of CMT diseases. Every subtype of CMT
needs an individual approach backed up by its own research field. Thus, it is little surprise that our
knowledge of CMT disease as a whole is selective and therapeutic approaches are limited. There is an
urgent need to develop new CMT models to fill the gaps. In this review, we discuss the advantages
and disadvantages of yeast as a model system in which to study CMT diseases. We show how
this single-cell organism may be used to discriminate between pathogenic variants, to uncover the
mechanism of pathogenesis, and to discover new therapies for CMT disease.

Keywords: Charcot-Marie-Tooth disease; neurodegenerative diseases; neuropathy; yeast model
organism

1. Introduction

The peripheral neuropathies, also known as polyneuropathies, are a large group of disorders
affecting the three types of peripheral nerves: motor, sensory, and autonomic. The clinical presentations
of all neuropathies overlap, and the primary causes are numerous and varied. Infectious, immune-
mediated, metabolic, toxic, vascular, genetic, and idiopathic forms can all be distinguished from
one another. Hereditary neuropathies include Charcot–Marie–Tooth disease (CMT), also known
as hereditary motor sensory neuropathy (HMSN); the hereditary motor neuropathies (HMN);
the hereditary sensory and autonomic neuropathies (HSAN), also known as hereditary sensory
neuropathy (HSN); and small fiber neuropathies (SFN). It is notable that the lines between one class and
the next are relative and considered “blurred” or “fluid”. The CMT disease can be classified into several
types/subtypes, depending on the mode of inheritance (dominant, recessive), the pattern of the injury
(axonal, demyelinating) and the genes involved (more than 100 different genes have been identified
so far). Despite this high heterogeneity, the clinical presentation allows for the “classical” CMT
phenotype to be distinguished. Typically, the disease begins between the first and second decade of
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life, with weakening and wasting of the distal muscles, usually of the lower limbs, with accompanying
sensory abnormalities. Some patients have skeletal deformities, the most common being pes cavus
(a high arched foot). The muscle-wasting and weakness slowly progresses and worsens throughout
the patient’s life. In addition to the “classical” CMT symptoms, the patient may also exhibit a wide
range of additional symptoms, including hearing impairment, optic atrophy, vocal cord paresis,
distal arthrogryposis, and even diaphragmatic weakness [1].

In the late 1960s, the overall prevalence of CMT in the population was estimated as being at
the level of 1:2500 [2]. However, the most recent epidemiological studies have shown that there is
considerable geographic variation, with a minimum prevalence in Serbia (9.7:100,000), and much
higher levels in Norway (1:1250). In general, using different methodologies, the prevalence of CMT has
been determined as ranging from 1:5000 to 1:10,000 in European populations [3]. Despite the relatively
high prevalence of CMT in some populations, its subtypes belong to the group of rare or even ultra-rare
diseases and, like most disorders in this group, suffer from the same problems, namely, verification of
mutation pathogenicity, poorly understood molecular mechanisms and a lack of efficient treatments.
In this review, we raise the issue of using yeast as a model for studying neuropathies, in particular CMT
disease, and present how it may help to overcome these three problematic, but ultimately basic, issues.
Yeast systems offer many advantages that are still poorly utilized to investigate neuropathies in general.
Many researchers do not realize that yeast may be a convenient model for studying ongoing processes
in peripheral nerves diseases. We present the huge potential of this simple, unicellular organism to
improve diagnostics, expand the understanding of pathogenesis, and accelerate the development of
treatment. The studies of CMT disorder using a yeast model included here have not been summarized
in any review to date; hence, we hope that by showing the broad spectrum of possibilities that yeast
systems present, it may be more widely adopted as a useful tool in CMT research.

2. Genetic Background of Charcot–Marie–Tooth Disease

CMT disease is characterized by an extreme genetic heterogeneity. To date, more than 1000
mutations have been described in more than 100 genes as causes of different CMT disease types
(subtypes) [4]. Familial aggregation of CMT cases was identified at the beginning of the 20th century [5].
Around 70 years later, the first CMT-associated gene and the most common genetic cause of CMT
was described (a 1.4 Mb tandem duplication located on chromosome 17p11.2-p12, encompassing the
PMP22 gene) [6,7]. The duplication of PMP22, responsible for CMT type 1A (CMT1A), is identified in
more than 60% of CMT-affected patients [1]. Point mutations in three other genes—GJB1, MFN2 and
MPZ (causing CMTX1, CMT2, and CMT1B, respectively)—are responsible for around 30% of CMT
cases [8]. At the opposite end of the spectrum are genes in which mutations have only been identified
in isolated CMT families and lineages. This list includes mutations in PRPS1, ATP7A, and IGHMBP2.

Surprisingly, even in the era of next-generation sequencing (NGS), using whole exome sequencing
(WES) technology, which enables for testing of all known CMT-causing mutations in a single approach,
results in diagnosis for only 45% of CMT disease cases [1]. The relatively low ratio of positively
verified CMT cases may be associated with structural variations that are not detectable in routine
molecular analysis, expanding the mutation spectrum of existing CMT variants. These structural
variations encompass both large translocations (e.g., a 1.35 Mb inversion on chromosome 7q36.3) and
relatively small duplications (e.g., 118 kb, 6.25 kb) [9]. However, the list of genes responsible for CMT
disease seems to be far from complete. In recent years, additional mutations in genes previously
unassociated with CMT disease have been reported in single families [4]. For these small sample
groups, the mechanism of pathogenicity associated with these genetic mutations remains unclear. Thus,
despite access to powerful genetic tools, such as WES or whole genome sequencing (WGS), a correct
and clear diagnosis based on a comprehensive genetic analysis is still not available for many patients.

The distinction between pathogenic and non-pathogenic variants of a disease is a problem for all
genetic diseases. Solving this problem is important in order to assess the risk of disease in individual
patients and for the development of therapies. The relationship between the gene and the disease
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can be established by comparing the frequency of rare variants in the patient group compared to the
healthy population [10,11]. There are also various computational and experimental methods used
to deduce the pathogenicity of rare variants. However, computational methods have the limited
predictive potential [12–17], and the experimental evaluation of variant function in human cells is
difficult, due to inefficient allele replacement methods and the presence of paralogs with overlapping
functions. This makes tests in "humanized" model organisms, such as yeast, an attractive alternative.

3. Therapeutic Approaches for Charcot-Marie-Tooth Disorder

The vast majority of experimental therapies are dedicated to the most common CMT subtypes,
i.e., CMT1A (PMP22 gene duplication), CMTX1 (GJB1 gene point mutations), CMT1B (MPZ gene
mutations) and CMT2A (MFN2 gene mutations), which, together, make up more than 90% of genetically
confirmed CMT cases [18]. However, even in these cases, the proposed therapies are not universal.
They usually target a single disease mechanism, and are thus dedicated to a specific set of mutations in
the associated gene. Gene therapy has also been attempted as a treatment for CMT disease caused
by less common mutations, including IGHMBP2 and SH3TC2 [19–21]. As the treatment strategies
for different types of CMT were described in detail elsewhere [22], below, we summarize the most
important information about possible therapies for CMT disorder.

CMT1A, the most common CMT disease subtype, is the result of elevated expression of PMP22.
Down-regulation of PMP22 is, therefore, the main therapeutic strategy targeting this disease subtype.
Unfortunately, the first attempts to down-regulate PMP22 gene expression in a mouse model (ascorbic
acid) and in a transgenic rat model (progesterone receptor antagonists) could not be translated into
human clinical trials [23–25]. The discovery that a combination of three medications already on the
market (baclofen, sorbitol and naltrexone—PXT3003) was able to ameliorate the long-term phenotypical
manifestation of peripheral neuropathy in a CMT1A rat model was a significant step forward (reviewed
in [26]). Recently, encouraging news in relation to the Phase III trial of PXT3003 was reported [27].
Another promising pre-clinical therapeutic for patients carrying the CMT1A mutation is ADX71441
(a positive allosteric modulator of GABAB receptors) [28], which was approved for phase I clinical
trials for other diseases [29]. In addition, the use of antisense oligonucleotides (ASOs) appears to be
a good strategy for the suppression of PMP22 mRNA levels [30]. Nevertheless, it is notable that a
variety of missense (amino acid substitutions), nonsense (premature termination due to stop codons),
and frameshift mutations have also been described in PMP22, some of them causing more severe
phenotypes. These mutations result in a different, not yet fully elucidated, pathogenic mechanism [31]
that will require different therapeutic strategies.

The second most common form of CMT disease, CMTX1, is caused by mutations within the
GJB1 gene, and seems to be an optimal candidate for gene replacement therapy, due to the small
size of the GJB1 gene and the loss-of-function observed for the majority of GJB1 mutations [32,33].
The treatment strategy for the next most common type of CMT, CMT1B, which is caused by mutations
in MPZ, is mainly focused on relieving the effects of accumulated mutant forms of the protein in
the endoplasmic reticulum (ER). However, this mechanism is not observed in all MPZ mutations,
and some may manifest in different manners [31]. It was shown that curcumin was able to release
MPZ mutant proteins from the ER to the cytoplasm and cause a significant decrease in apoptosis
in HeLa cells [34]. Curcumin also demonstrated positive results in a CMT1B mouse model [35,36].
Sephin1 (a selective inhibitor of a holophosphatase), which attenuates stress resulting from misfolded
proteins, also had a beneficial effect [37]. Finally, for CMT2A disease caused by mutations in the
MFN2 gene (encoding Mitofusin 2), abnormal mitochondrial trafficking has been reported for at least
some mutations. In recent studies, mitofusin agonists have been shown to normalize mitochondrial
pathology in the sciatic nerves of MFN2 Thr105Met mice [38].

Despite numerous attempts, no single effective therapeutic for CMT disorders has been registered
on the market to date. The vast majority of CMT subtypes and mutations in “common” CMT genes
with no “classical” (or an unknown) pathogenic mechanism have not been the subject of research for
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therapeutic approaches [39]. This state is a result of major barriers to research—including diverse
molecular mechanisms for most CMT subtypes (even for different mutations in the same gene)—a lack
of knowledge relating to the pathophysiology of specific variants, a deficiency of good disease models,
and problems with translating results from animal models into humans. In this context, new models
with which to identify new drugs may help to fill the gaps in available CMT therapies.

4. Studies of CMT in Yeast-Based Models for Human Genes with Yeast Orthologs

The simplicity of yeast is both its principle advantage and disadvantage as a model system. On the
one hand, yeast provides an easy, cheap, and rapid platform for conducting research. On the other
hand, are we truly able to use it to study processes in very complex systems such as neurons? Can yeast
really help to solve the problems that neurogenetics faces: the unknown pathogenicity of rare sequence
variants; unclear disease mechanisms; and a lack of effective therapies for patients? It has been shown
that yeast can help in all of these cases. In this section, we will present the commonalities between a
single-celled yeast and very sophisticated neurons, and how we can exploit these.

Although yeast and humans are separated by a billion years of evolution, a pairwise comparison
of genes between these two species reveals more than 2041 groups of orthologs, representing 2386 yeast
genes and 3673 human genes [40]. Moreover, there are more than 1000 functional complementation
pairs, where a gene from one species can functionally replace (complement) its ortholog in the other [41].
This clearly indicates a significant conservation of function between such distant species, which opens
a great number of research possibilities to explore. In the past 30 years, more than 400 yeast genes have
been used to study their human counterparts [42]. Whether a human gene will complement mutations
of its yeast ortholog cannot be confidently predicted based on the sequence alone [43]. Data related
to experimental cross-species complementation are collected and are easy to extract from an open
database (for details see [41]). The broad spectrum of possibilities of how to create and utilize yeast as
a human model for diseases has been described elsewhere [42,44]. Here, we would like to highlight
efficient neuropathy yeast-based models.

The CMT disease consists of a group of disorders displaying high genetic heterogeneity. If we
looked at the list of genes associated with neuropathies (Tables 1 and 2), with a particular focus on the
function of proteins that they encode, we notice that these proteins occur in a diverse range of cellular
pathways and processes. This ranges from the most common of processes, for example, translation
(aminoacyl-transfer RNA (tRNA) synthetases), to highly specialized processes such as myelin sheath
formation. It is not possible to study the formation of myelin using yeast, but it may be a good model
to describe pathogenic mechanisms in more basic processes.

Table 1. Human Genes Associated with Neuropathies and Their Yeast Orthologs.

Genes Complementing Yeast S. cerevisiae Orthologs Mutation

Human
Gene

Yeast
Gene Function of the Protein Comments Source

AARS ALA1 Alanyl-tRNA synthetase
Wild-type AARS improved

some yeast growth at 30 ◦C but
more robustly at 37 ◦C [45]

[46]

ATP7A CCC2 Copper-transporting P-type ATPase [47]

BSCL2 SEI1 Seipin: necessary for correct lipid
storage and lipid droplets maintenance

Complements the defects in
lipid droplets in sei1∆ strain [48]

COX10 COX10
Heme A:farnesyltransferase; functions

in the maturation of the heme A, a
prosthetic group of COX complex

[49,50]

FXN YFH1

Frataxin: a component of a multiprotein
complex that assembles iron–sulfur

(Fe–S) clusters in the
mitochondrial matrix

[51]
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Table 1. Cont.

Genes Complementing Yeast S. cerevisiae Orthologs Mutation

Human
Gene

Yeast
Gene Function of the Protein Comments Source

GARS GRS1 Glycyl-tRNA synthetase [52]

HARS HTS1 Histidyl-tRNA synthetase [53]

HINT1 HNT1
Hydrolyzes purine nucleotide

phosphoramidates with a single
phosphate group

[54]

HMBS HEM3
Hydroxymethylbilane synthase: the

third enzyme of the heme
biosynthetic pathway

[55,56]

MPV17 SYM1

An inner-membrane mitochondrial
protein; may form a channel in the inner

mitochondrial membrane, supplying
the matrix with desoxynucleotide

phosphates and/or
nucleotide precursors

[57]

OPA1 MGM1

Dynamin-related GTPase that is
essential for normal mitochondrial

morphology by regulating the
mitochondrial fusion

OPA1 cannot substitute the
MGM1 gene; however,

chimeric protein composed of
the N-terminal region of Mgm1
fused with the catalytic region
of OPA1 is able to complement

the mgm1 null mutant

[58]

POLG MIP1 Mitochondrial DNA
polymerase gamma

The yeast mitochondrial
localization signal was retained [59]

VAPB SCS22
SCS2

A type IV membrane protein found in
plasma and intracellular

vesicle membranes

Expression of VAPB partially
compensated for the inositol

auxotrophy scs2∆scs22∆
yeast strain

[60]

VCP CDC48

A member of the AAA ATPase family
of proteins; plays a role in protein

degradation, intracellular membrane
fusion, DNA repair and replication,

regulation of the cell cycle,
and activation of the NF-kappa

B pathway

Wild type VCP partially
suppressed the temperature
sensitivity growth of cdc48-3
but not the cold sensitivity

growth of cdc48-1 and
null mutation

[61]

YARS TYS1 Tyrosyl-tRNA synthetase [62]

Genes Possessing Orthologs in Yeast S. cerevisiae

Human
Gene

Yeast
Gene Protein Function

ABCA1 YOL075C A member of the superfamily of ATP-binding cassette (ABC) transporters

AIMP1 ARC1 A multifunctional polypeptide with both cytokine and tRNA-binding activities

ATP1A1
ENA5
ENA1
ENA2

Catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP
coupled with the exchange of sodium and potassium ions across the

plasma membrane

C12ORF65 RSO55 A mitochondrial matrix protein that appears to contribute to peptide chain
termination in the mitochondrial translation machinery

CCT5 CCT5 A molecular chaperone that is a member of the chaperonin containing TCP1 complex
(CCT), also known as the TCP1 ring complex (TRiC)

CHCHD10 MIX17
A mitochondrial protein that is enriched at cristae junctions in the intermembrane

space; it may play a role in cristae morphology maintenance or oxidative
phosphorylation



Int. J. Mol. Sci. 2020, 21, 4277 6 of 23

Table 1. Cont.

Genes Possessing Orthologs in Yeast S. cerevisiae

Human
Gene

Yeast
Gene Protein Function

CLP1 CLP1
A member of the Clp1 family; it is a multifunctional kinase which is a component of

the tRNA splicing endonuclease complex and a component of the pre-mRNA
cleavage complex II

CLTCL1 CHC1 The clathrin heavy chain protein

COX6A1 COX13 Cytochrome C oxidase subunit

CTDP1 FCP1

A protein which interacts with the carboxy-terminus of the RAP74 subunit of
transcription initiation factor TFIIF, and functions as a phosphatase that

dephosphorylates the C-terminus of POLR2A (a subunit of RNA polymerase II),
making it available for initiation of gene expression

DCTN1 NIP100 The largest subunit of dynactin

DHTKD1 KGD1 A component of a mitochondrial 2-oxoglutarate-dehydrogenase-complex-like protein
involved in the degradation pathways of several amino acids

DNAJB2 JJJ3 Almost exclusively expressed in the brain, mainly in the neuronal layers; encodes a
protein that shows sequence similarity to bacterial DnaJ protein and the yeast ortholog

DYNC1H1 DYN1 Dynein cytoplasmic heavy chain; dyneins are a group of microtubule-activated
ATPases that function as molecular motors

EGR2
MIG2;
MIG3;
COM2

A transcription factor

EXOSC3 RRP40 Non-catalytic component of the human exosome

EXOSC8 RRP43 A 3’-5’ exoribonuclease that specifically interacts with mRNAs containing
AU-rich elements

FIG4 FIG4 Phosphoinositide 5-phosphatase

GMPPA PSA1 GDP-mannose pyrophosphorylase

HK1

HXK1
HXK2
GLK1
EMI2

Hexokinase 1

IGHMBP2 HCS1 Helicase superfamily member that binds a specific DNA sequence from the
immunoglobulin mu chain switch region

ELP1
(IKBKAP) IKI3 Scaffold protein and a regulator for three different kinases involved in

proinflammatory signaling

MARS MES1 Methionyl-tRNA synthetase

MCM3AP SAC3 Involved in the export of mRNAs to the cytoplasm through the nuclear pores,
promoting somatic hypermutations

MFN2 FZO1 Mitofusin: participates in mitochondrial fusion

MT-ATP6 ATP6 Mitochondrial membrane ATP synthase

MYH14 MYO1 Member of the myosin superfamily

PDHA1 PDA1 Pyruvate dehydrogenase subunit

PDK3 PKP1 One of the three pyruvate dehydrogenase kinases that inhibits the PDH complex by
phosphorylation of the E1 alpha subunit

PEX12 PEX12 Belongs to the peroxin-12 family, proteins that are essential for the assembly of
functional peroxisomes

PNKP HNT3 Involved in DNA repair

PRPS1
PRS4
PRS2
PRS3

Enzyme that catalyzes the phosphoribosylation of ribose 5-phosphate to
5-phosphoribosyl-1-pyrophosphate, which is necessary for purine metabolism and

nucleotide biosynthesis
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Table 1. Cont.

Genes Possessing Orthologs in Yeast S. cerevisiae

Human
Gene

Yeast
Gene Protein Function

RAB7A YPT7 RAB family members, regulate vesicle traffic in the late endosomes and also from late
endosomes to lysosomes

REEP1 YOP1 Mitochondrial protein that functions to enhance the cell surface expression of
odorant receptors

SCO2 SCO1 One of the COX assembly factors

SEPT9
(SEPTIN9)

CDC10
CDC3 Member of the septin family involved in cytokinesis and cell cycle control

SETX SEN1 Contains a DNA/RNA helicase domain at its C-terminal end which suggests that it
may be involved in both DNA and RNA processing

SIGMAR1 ERG2 Receptor protein that interacts with a variety of psychotomimetic drugs, including
cocaine and amphetamines

SLC25A19 TPC1 Mitochondrial transporter mediating uptake of thiamine pyrophosphate
into mitochondria

SPTLC1 LCB1 The long chain base subunit 1 of serine palmitoyltransferase

SPTLC2 LCB2 Subunit of serine palmitoyltransferase

SURF1 SHY1 Localized to the inner mitochondrial membrane, involved in the biogenesis of the
cytochrome c oxidase complex

TDP1 TDP1
Is involved in repairing stalled topoisomerase I-DNA complexes by catalyzing the

hydrolysis of the phosphodiester bond between the tyrosine residue of topoisomerase
I and the 3-prime phosphate of DNA

UBA1 UBA1 Catalyzes the first step in ubiquitin conjugation to mark cellular proteins
for degradation

WARS WRS1 Tryptophanyl-tRNA synthetase

List of genes was created based on [63]. Yeast orthologs were find using GeneCard [64] and YOGI databases [65].
Function of protein was described based on the GeneCard, UniProt, and OMIM databases [64,66,67].

Table 2. Human Genes Associated with Neuropathies with No Yeast Orthologs.

Process Gene Protein Function

Adhesion FBLN5
Fibulin 5: extracellular matrix protein essential for elastic fiber formation;

promotes adhesion of endothelial cells; may play a role in vascular
development and remodeling

Apoptosis AIFM1 Flavoprotein essential for nuclear disassembly in apoptotic cells, and found in
the mitochondrial intermembrane space in healthy cells

Autophagy
RETREG1

(FAM134B)
Endoplasmic reticulum-anchored autophagy receptor that mediates ER

delivery into lysosomes through sequestration into autophagosomes

TECPR2 Implicated in autophagy

Cytoskeleton
organization

DST Dystonin: cytoskeletal linker protein

FGD4 Activates CDC42 by GDP/GTP exchange; binds to actin filaments; is involved
in the regulation of the actin cytoskeleton and cell shape

GSN Gelsolin: calcium-regulated protein functions in both assembly and
disassembly of actin filaments

INF2 A member of the formin family: severs actin filaments and regulates their
polymerization and depolymerization

MICAL1 Monooxygenase that oxidizes methionine residues on actin, thereby promoting
depolymerization of actin filaments

NEFH Neurofilament heavy polypeptide
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Table 2. Cont.

Process Gene Protein Function

Cytoskeleton
organization

NEFL Neurofilament light polypeptide

TUBB3 A class III member of the beta tubulin protein family

Endoplasmic
reticulum

organization

ATL1 Alastin 1: GTPase functions in endoplasmic reticulum tubular
network biogenesis

ATL2 Atlastin 2: GTPase functions in formation of endoplasmic reticulum

ATL3 Alastin 3: dynamin-like GTPase required for the proper formation of the
endoplasmic reticulum tubules

ARL6IP1
Transmembrane protein: plays a role in the formation and stabilization of
endoplasmic reticulum tubules; negatively regulates apoptosis; regulates

glutamate transport

Mitochondria
functioning

TWNK
(C10ORF2) DNA helicase: involved in mitochondrial DNA (mtDNA) metabolism

GDAP1 Regulates mitochondrial morphology and transport; participates in calcium
homeostasis; regulates redox state of cell

NDUFAF5 Mitochondrial protein required for complex I assembly

SLC25A46 Functions in promoting mitochondrial fission, and prevents the formation of
hyperfilamentous mitochondria

Myelination

ARHGEF10 A Rho guanine nucleotide exchange factor (GEF)

CNTNAP1 Required for radial and longitudinal organization of myelinated axons

DRP2
Dystrophin-related protein 2: required for normal myelination and for normal
organization of the cytoplasm and the formation of Cajal bands in myelinating

Schwann cells

FAM126A Hyccin: Component of a complex regulating phosphatidylinositol
4-phosphate; may play a part in the beta-catenin/Lef signaling pathway

MPZ
Specifically expressed in Schwann cells of the peripheral nervous system;

a type I transmembrane glycoprotein that is a major structural protein of the
peripheral myelin sheath

PLP1 A transmembrane protein that is the predominant component of myelin

PMP2 Localizes to myelin sheaths of the peripheral nervous system; is thought to
provide stability to the sheath

PMP22 An integral membrane protein that is a major component of myelin in the
peripheral nervous system

PRX A protein involved in peripheral nerve myelin upkeep

SH3TC2
Expressed in Schwann cells: interacts with the small guanosine triphosphatase
Rab11, which is known to regulate the recycling of internalized membranes

and receptors back to the cell surface

Lipid
metabolism

ABHD12 Catalyzes the hydrolysis of 2-arachidonoyl glycerol (2-AG), the main
endocannabinoid lipid transmitter that acts on cannabinoid receptors

ASAH1 Acid ceramidase: a lysosomal protein that hydrolyzes sphingolipid ceramides

CYP27A1 Sterol 26-hydroxylase: cytochrome P450 monooxygenase that catalyzes
hydroxylation of cholesterol and its derivatives

DGAT2 Diacylglycerol O-acyltransferase 2: one of two enzymes which catalyzes the
final reaction in the synthesis of triglycerides

GALC
Galactocerebrosidase: a lysosomal protein which hydrolyzes the galactose

ester bonds of galactosylceramide, galactosylsphingosine, lactosylceramide,
and monogalactosyldiglyceride

GLA Alpha-galactosidase A: hydrolyses the terminal alpha-D-galactosyl moieties
from glycolipids and glycoproteins
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Table 2. Cont.

Process Gene Protein Function

Lipid
metabolism

HADHA The alpha subunit of the mitochondrial trifunctional protein, which catalyzes
the last three steps of mitochondrial beta-oxidation of long chain fatty acids

HADHB The beta subunit of the mitochondrial trifunctional protein, which catalyzes
the last three steps of mitochondrial beta-oxidation of long chain fatty acids

HEXA Beta-hexosaminidase subunit alpha: involved in degradation of GM2
gangliosides, and other molecules containing terminal N-acetyl hexosamines

MTMR2
Member of the myotubularin family of phosphoinositide lipid phosphatases:
possesses phosphatase activity towards phosphatidylinositol-3-phosphate and

phosphatidylinositol-3,5-bisphosphate

PLA2G6 A2 phospholipase

Protein
processing

BAG3 Co-chaperone for HSP70 and HSC70 chaperone proteins: acts as a
nucleotide-exchange factor (NEF) promoting the release of substrate

DCAF8 Interacts with the Cul4-Ddb1 E3 ubiquitin-protein ligase complex; may
function as a substrate receptor

DNAJC3
Acts as a co-chaperone of BiP, a major endoplasmic reticulum-localized

member of the HSP70 family of molecular chaperones that promote normal
protein folding

FBXO38 Substrate recognition component of a SCF (SKP1-CUL1-F-box protein) E3
ubiquitin-protein ligase complex

GAN Gigaxonin: plays a role in neurofilament architecture and is involved in
mediating the ubiquitination and degradation of some proteins

HSPB1 A member of the small heat shock protein (HSP20) family: plays a role in stress
resistance and actin organization

HSPB3 A member of the small heat shock protein (HSP20) family: inhibitor of
actin polymerization

HSPB8 Belongs to the superfamily of small heat-shock proteins (HSP20): displays
temperature-dependent chaperone activity

KLHL13
Functions as an adaptor protein of a BCR (BTB-CUL3-RBX1) E3

ubiquitin-protein ligase complex required for mitotic progression
and cytokinesis

LRSAM1 E3 ubiquitin-protein ligase: involved in various functions

MME Neprilysin: membrane metalloendopeptidase

RNF170

RING domain-containing protein that resides in the endoplasmic reticulum
(ER) membrane; functions as an E3 ubiquitin ligase and mediates

ubiquitination and processing of inositol 1,4,5-trisphosphate (IP3) receptors via
the ER-associated protein degradation pathway

SACS Sacsin: co-chaperone which acts as a regulator of the Hsp70 chaperone

SBF1 Myotubularin-related protein: acts as an adapter for the phosphatase MTMR2;
promotes the exchange of GDP to GTP

TRIM2 Functions as an E3-ubiquitin ligase: plays a neuroprotective function

VRK1 Serine/threonine-protein kinase

WNK1 Serine/threonine kinase which plays an important role in the regulation of
electrolyte homeostasis, cell signaling, survival, and proliferation

Signaling

ADCY6 Belongs to the adenylate cyclase family of enzymes responsible for the
synthesis of cAMP

AHNAK2 Nucleoprotein: may play a role in calcium signaling

DHH Signaling molecules that play an important role in regulating morphogenesis

GJB1 Gap junction beta-1 protein: a member of the gap junction protein family
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Table 2. Cont.

Process Gene Protein Function

Signaling

GJB3 Gap junction beta-3 protein: a member of the gap junction protein family

GNB4 Guanine nucleotide-binding protein (G-protein) subunit beta 4; G proteins are
involved as a modulator or transducer transmembrane signaling

NDRG1

Belongs to the alpha/beta hydrolase superfamily: a cytoplasmic protein
involved in stress responses, hormone responses, cell growth,

and differentiation; is necessary for p53-mediated caspase activation
and apoptosis

NGF Nerve Growth Factor: nerve growth stimulating activity

NTRK1 High affinity nerve growth factor receptor tyrosine kinase: involved in the
development and the maturation of the central and peripheral nervous systems

STING1
(TMEM173) Regulator of the innate immune response to viral and bacterial infections

Gene
expression
and RNA

processing

ANG Angiogenin: a mediator of new blood vessel formation

ASCC1 Subunit of the activating signal co-integrator 1 (ASC-1) complex: plays a role in
DNA damage repair

DNMT1 DNA (cytosine-5)-methyltransferase 1: methylates CpG residues

FUS

Multifunctional protein involved in processes such as transcription regulation,
RNA splicing, RNA transport, DNA repair and damage response; in neuronal

cells, plays crucial roles in dendritic spine formation and stability, RNA
transport, mRNA stability and synaptic homeostasis

HNRNPA1 Involved in mRNA metabolism and transport

HOXD10 Transcription factor which is part of a developmental regulatory system

IFRD1

Protein related to interferon-gamma: this protein may function as a
transcriptional co-activator/repressor that controls the growth and

differentiation of specific cell types during embryonic development and
tissue regeneration

LAS1L Involved in the biogenesis of the 60S ribosomal subunit

LITAF Plays a role in endosomal protein trafficking and in targeting proteins for
lysosomal degradation

MED25
Component of the transcriptional co-activator complex termed the Mediator

complex, involved in the regulated transcription of nearly all RNA polymerase
II-dependent genes

MORC2 Essential for epigenetic silencing by the HUSH (human silencing hub) complex

PRDM12 A transcriptional regulator of sensory neuronal specification that plays a
critical role in pain perception

RBM7
RNA-binding subunit of the trimeric nuclear exosome targeting (NEXT)

complex, a complex that functions as an RNA exosome cofactor that directs a
subset of non-coding short-lived RNAs for exosomal degradation

SOX10 Transcription factor involved in developing and mature glia

TARDBP RNA-binding protein that is involved in various steps of RNA biogenesis
and processing

TRIP4 Transcription co-activator, which associates with transcriptional coactivators,
nuclear receptors and basal transcription factors

ZNF106 RNA-binding protein, required for normal expression and/or alternative
splicing of a number of genes in the spinal cord and skeletal muscle

Transport

ALS2 Guanine nucleotide exchange factor for the small GTPase RAB5

BICD2 A member of the Bicoid family: implicated in dynein-mediated motility
along microtubules

DNM2 Dynamin 2: microtubule-associated motor protein
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Table 2. Cont.

Process Gene Protein Function

Transport

FLVCR1 Heme transporter that exports cytoplasmic heme

KIF1A Member of the kinesin family and functions as an anterograde motor protein

KIF1B A motor protein that transports mitochondria and synaptic vesicles

KIF5A A member of the kinesin family of proteins: microtubule-dependent motor

OPTN Optineurin: plays a role in the maintenance of the Golgi complex,
in membrane trafficking and exocytosis

NIPA1 Magnesium transporter

PLEKHG5 Functions as a guanine exchange factor (GEF) for RAB26

SH3BP4 Is involved in cargo-specific control of clathrin-mediated endocytosis,
specifically controlling the internalization of a specific protein receptor

SLC5A7 Sodium ion- and chloride ion-dependent high-affinity transporter that
mediates choline uptake

SCN10A Tetrodotoxin-resistant voltage-gated sodium channel

SCN11A Voltage-gated sodium channel

SCN9A Voltage-dependent sodium channel

SLC12A6 Potassium-chloride cotransporter

SLC5A2 Sodium-dependent glucose transport protein

SLC5A3 Myo-inositol transporter

SPG11 Spatacsin: involved in the endolysosomal system and autophagy

SYT2 Synaptic vesicle membrane protein: calcium sensor in vesicular trafficking and
exocytosis

TFG Plays a role in the function of the endoplasmic reticulum (ER) and its
associated microtubules

TRPA1
Receptor-activated non-selective cation channel involved in pain detection and
possibly also in cold perception, oxygen concentration perception, cough, itch,

and inner ear function

TRPV4 Non-selective calcium permeant cation channel involved in osmotic sensitivity
and mechanosensitivity

TTR
Transthyretin: one of the three prealbumins; is a carrier protein, which

transports thyroid hormones in the plasma and cerebrospinal fluid; is involved
in the transport of retinol in the plasma

Other

LMNA The lamin family member: component of the nuclear lamina

PHYH Phytanoyl-CoA hydroxylase

NAGLU Alpha-N-acetylglucosaminidase: degrades heparan sulfate

TNNT2 The tropomyosin-binding subunit of the troponin complex

TYMP An angiogenic factor which promotes angiogenesis and stimulates the in vitro
growth of a variety of endothelial cells

List of genes was created based on [63]. Function of protein was described based on the GeneCard, UniProt,
and OMIM databases [64,66,67].

Looking at Tables 1 and 2, of the more than 170 genes involved in various neuropathies, 60 have
orthologs in yeast cells (Table 1 and Figure 1).
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Figure 1. Scheme showing the localization of selected proteins, in which mutations have been associated with hereditary peripheral neuropathies in a human nerve
cell and a yeast Saccharomyces cerevisiae cell. The violet color indicates human proteins complementing mutations in yeast proteins, marked in red; green indicates
human proteins possessing orthologs in yeast S. cerevisiae that are marked orange.
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Some of these genes are so well conserved that even human genes may, at least in part, complement
a lack of native yeast orthologs (Table 1). This gives a wide range of possibilities to model and study the
neuropathy-associated mutations in yeast cells, which has advantages over other more complex models
in terms of its low cost, growth rate, and genetic tractability. However, this opportunity is usually not
fully exploited. In most cases, yeast is used only sporadically and to investigate one narrow aspect of
a disease-associated mutation. Meanwhile, similar to other rare disorders, yeast-based neuropathy
models may, at least partially, solve three of the major problems faced by researchers (Figure 2).
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for the study of aminoacylation activity, and, thus, the possible pathogenicity of human aminoacyl-
transfer RNA (tRNA) synthetases (aaRSs) encoded by ARS genes [68]. AaRSs are key enzymes that 
catalyze the first reaction in protein biosynthesis, charging tRNAs with their cognate amino acids. To 
date, mutations in six ARS genes have been associated with CMT disorders (GARS, YARS, AARS, 
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deletion of the alanyl-, glycyl-, histidyl-, tyrosyl-RS genes (ALA1, GRS1, HTS1, TYS1, respectively) in 
yeasts and restore the growth of these cells (see Table 1). The other two human ARS genes associated 
with CMT (MARS and WARS) possess yeast orthologs (MES1 and WRS1, respectively), which allows 
researchers to model the mutations found in patients in the corresponding yeast genes. Testing newly 
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Figure 2. Yeast as a system to evaluate functional effects of human genetic variations. The coding part
of a human gene (cDNA) is inserted under a yeast regulatory sequence and transformed into yeast cells,
where it is expressed. The resulting protein interacts with yeast cellular components (proteins, RNAs,
lipids, etc.) and affects the cell physiology, leading to the selected phenotypes which may be monitored.
The system presented may be used to test unknown sequence variants to improve diagnosis, or for
screening drug candidates and investigating the molecular mechanisms of pathogenicity to develop
future experimental therapies.

The first problem is the significance of rare sequence variants found in patients. As mentioned
above, in the current era of NGS, several rare alleles are often identified in individual patients, but their
impact on human health is usually poorly understood. This is one of the reasons for prolonged and
incomplete diagnoses. There is an urgent need to develop a fast, cheap and reproducible system to
test the pathogenicity of identified sequence variants. Yeast has been presented as a good platform
for the study of aminoacylation activity, and, thus, the possible pathogenicity of human aminoacyl-
transfer RNA (tRNA) synthetases (aaRSs) encoded by ARS genes [68]. AaRSs are key enzymes that
catalyze the first reaction in protein biosynthesis, charging tRNAs with their cognate amino acids.
To date, mutations in six ARS genes have been associated with CMT disorders (GARS, YARS, AARS,
MARS, HARS, and WARS, encoding glycyl- tyrosyl- alanyl-, methionyl-, histidyl-, tryptophanyl-RS,
respectively) [53,69–73]. It has been shown that human orthologs can complement the lethality of the
deletion of the alanyl-, glycyl-, histidyl-, tyrosyl-RS genes (ALA1, GRS1, HTS1, TYS1, respectively) in
yeasts and restore the growth of these cells (see Table 1). The other two human ARS genes associated
with CMT (MARS and WARS) possess yeast orthologs (MES1 and WRS1, respectively), which allows
researchers to model the mutations found in patients in the corresponding yeast genes. Testing
newly identified rare variants in yeast not only allows the identification of loss-of-function (functional
null; hypomorphic) alleles but can also reveal gain-of-function (i.e., hypermorphic) alleles [45,73].
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Even though a human full-length wild-type WARS failed to complement a wrs1 deficiency in yeast cells,
a mutant WARS incorporating a H257R substitution could partially complement the lack of WRS1,
which implies that H257R substitution may change the structure of human tryptophanyl-RS [73].

Another example of using a yeast-based system to investigate rare sequence variants is the
study of mutations in the POLG gene, which encodes the catalytic subunit of mtDNA polymerase
γ. Pathological mutations in this gene are usually associated with severe mitochondrial disorders,
but may also manifest as an isolated neuropathy [74]. Yeast is a suitable model organism for the study
of alleles resulting in severe oxygen and/or respiration impairment and mitochondrial dysfunction,
due to its ability to survive without oxidative phosphorylation. Comparable phenotypes (the harmful
effects observed in yeast reproduce the severity of the phenotypes in humans), the possibility to study
variants in heteroallelic states, and easy and fast analysis make budding yeast an excellent model for
testing mutations in POLG. In POLG-associated diseases, yeast has enabled researchers to distinguish
pathogenic mutations from other single-nucleotide polymorphisms; to show that some polymorphisms
may act as phenotypic modifiers; and has demonstrated that certain mutations are not the only cause
of a pathology, highlighting the need for further genetic analysis [75–81].

The second problem is a deficiency or complete lack of knowledge related to the molecular
mechanisms underlying the pathogenicity of mutations. Information about the cellular processes
that trigger pathogenic changes and ultimately lead to the symptoms observed in patients may
provide clues for the production of effective therapeutics. It may also reveal the possible toxicity
of the drugs used and which drugs should be avoided when treating specific patients. It may also
enable recommendations to be made for lifestyle changes to improve the quality of life and slow the
disease’s progression. An example of using yeast to learn about the mechanism of pathogenicity
of a specific mutation is the study of the human gene MFN2 encoding Mitofusin 2. Mutations in
MFN2 result in the most frequent axonal form of CMT (CMT2A) [82]. Mitofusin 2 represents a
key player in mitochondrial fusion, trafficking, turnover and the formation of contacts with other
organelles [83]. Yeast mitofusin, Fzo1, was used to study the consequences of CMT2A mutations
associated with the human MFN2 gene. It was shown that one mutation in particular (causing a
substitution analogous to the I213T substitution in Mfn2) is highly deleterious for protein function and
stability. Other mutations had variable effects, causing either no phenotype, or a subtle alteration of
mitochondrial morphology [84]. The study of Mfn2 function is also of importance because mitofusins
belong to the group of proteins important for the formation, regulation, and function of endoplasmic
reticulum (ER) and mitochondrial membrane contact sites (MCSs), called mitochondria-associated
membranes (MAMs). MCSs are structures where membranes of different organelles are close and
connected by a proteinaceous tether but do not fuse. The genes affecting homeostasis in MAMs are
over-represented in the group of genes causing several hereditary neurodegenerative disorders, such as
Alzheimer’s disease [85–88] and Chorea-acanthocythosis [89]. This is because MCSs are involved in
various processes, including mitochondrial dynamics (fusion, fission), lipids metabolism, autophagy,
cell survival, energy metabolism, calcium homeostasis, and protein folding [90–92]. In the group of
genes causing CMT disorders, besides Mfn2, there are other proteins with and without orthologs in
yeast, which take part in processes at MAMs, such as VAPB, Opa1, or GDAP1 [93]. Studies on the
function of one MCSs component may help uncover the role of MCSs in the development of several
other neurodegenerative diseases. More details about the role of MAMs in neurodegeneration can be
found in other reviews [85–88].

The third and final challenge, facing not only neuropathies but all rare diseases, is a lack of
therapies. This problem was more specifically described in the Section 3. Yeast may also serve as
a rapid and cheap platform with which to screen potentially active compounds, and for a detailed
analysis of the cellular effects of drugs (see Section 6).
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5. Studies of CMT for Human Genes Lacking Orthologs in the Yeast Model

The most simple yeast-based neuropathy models are based on the homology between human and
yeast genes. However, even in the absence of clear orthologs, yeast may still be used to study the three
problematic areas for rare diseases identified in Section 4.

The strategy that allows for this is based on the belief that yeast and the cells of higher organisms are
built and function according to the same principles. Thus, human proteins may still be able to modulate
essential cellular pathways in yeast. This rule has been shown in the case of yeast-based studies of
neurodegenerative disorders including Alzheimer’s disease, Parkinson’s disease, and Huntington’s
disease. Here, the heterologous expression of pathological variants of aβ-peptide, α-synuclein
or poly-Q repeats of different lengths in the yeast allowed researchers to dissect the molecular
mechanisms underlying the pathology of mutant proteins, identify potential drug targets and select
active compounds by screening the available drug libraries [94–98]. Similarly, in the case of genes
whose mutations lead to CMT diseases and which have no orthologs (Table 2), their expression in yeast
may still affect cells and limit their growth.

This strategy, testing the activity of a human protein without an ortholog in yeast, has already
been used to study neuropathy associated with mutations in the GDAP1 gene encoding ganglyoside
induced differentiation associated protein 1. Although the production of this protein does not affect
the growth of wild-type yeast cells, it has manifestations at the molecular level, as shown in two
different studies [99,100]. In both studies, the effect of heterologous GDAP1 expression in the wild-type
and different yeast mutants was tested. Based on the observation that increased expression of
GDAP1 in COS-7 cells results in mitochondrial fragmentation, which is probably due to interference
with the mechanism of mitochondrial fission, the influence on yeast mitochondria morphology
was investigated [99,100]. The expression of GDAP1 either did not affect yeast mitochondria
morphology [99], or caused increased fragmentation of the mitochondria, depending on the specific
experimental procedures [100], and also changed mtDNA maintenance [100]. GDAP1 expression in
the fis1∆ mutant, defective for mitochondrial fission and for G2/M progression during the cell cycle,
did not eliminate the mitochondrial fission defect, but reversed the cell cycle delay phenotype of this
mutant [99]. Although the results obtained did not define the molecular function of the GDAP1 protein,
they indicate the pathway for further research. Moreover, finding a clear phenotype allowed for further
testing of the effect of pathogenic GDAP1 gene missense variants. Since all the investigated variants
did not reverse the cell cycle delay phenotype of a fis1∆ mutant, it suggests that this phenotype can be
used to study new GDAP1 variants and distinguish pathogenic from non-pathogenic alleles identified
in patients during the diagnostic process. However, it is not possible to differentiate between variants
in terms of the strength of the clinical symptoms induced.

A more functional system with which to evaluate the pathogenicity of GDAP1 gene mutations
was reported in our previous study [100]. In this case, the csg2∆ mutant was used with the deletion of
a gene required for mannosylation of inositolphosphorylceramide. The sensitivities of the csg2∆ strain
to stress conditions, the presence of tunicamycin and high concentrations of calcium ions (Ca2+) were
all suppressed by the expression of the wild-type GDAP1 allele, but not by GDAP1 variants encoding
proteins that lost the ability to correctly localize to the mitochondria. Different GDAP1 variants
(point mutants) exhibited differing abilities to suppress these phenotypes. This system, in addition to
enabling testing of the pathogenicity of GDAP1 alleles isolated from patients, should also allow for
their classification in terms of the severity of the resulting clinical phenotypes.

These two working systems show that GDAP1 functionality can be assessed in yeast cells even
though yeast has no functional orthologs. This is due to the fact that they participate in conserved
cellular processes (Table 2) and, consequently, there are functional orthologs of their partner proteins
(Figure 2). Based on this principle, it is possible to build additional yeast-based models for other genes
that are involved in CMT disease, but do not have yeast orthologs. An example of this is the human
gene MTMR2 coding for Myotubularin 2-related protein, a member of the myotubularin family of
phosphoinositide lipid phosphatases. Myotubularin 2 functionally interacts with the phosphoinositide
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5-phosphatase protein FIG4, amongst other proteins in Schwann cells and in neurons [101]. Mutations
in the FIG4 gene, similar to in MTRM2, are described as resulting in CMT disease. The human FIG4
has a yeast ortholog, making it is possible to build a model to directly study FIG4, and to indirectly test
MTMR2 function in a yeast model.

Another possible use of the preservation of biochemical pathways is associated with the CMT
subtype, caused by mutations in the MPZ gene. Some mutant MPZ proteins are retained in the ER,
where their accumulation triggers an induction of the unfolded protein response (UPR). Although
the downregulation of UPR has already been shown to have a positive effect in CMT1B, the problem
associated with distinguishing between pathogenic and non-pathogenic variants and the subsequent
search for mechanisms of pathogenicity remains. In a case of mutations in the MPZ gene, a yeast
model can be used because of the conservation of biochemical pathways.

As a result of UPR induction in mammalian cells, the eIF2 kinases PERK and GCN2 are activated
and phosphorylate the translation initiation factor 2 (eIF2a). This leads to the synthesis of transcription
factor ATF4 and increased production of the CHOP protein. The induction of this response has
been shown to cause demyelination in CMT1B. Depletion of CHOP or its subsequent target, Gadd34,
improves myelination [102]. The mammalian signaling pathway leading to eIF2a phosphorylation is
homologous to the well-studied general control response in yeast, in which phosphorylation of eIF2a
activates genes involved in amino acid biosynthesis. Thus, mammalian cells use a conserved pathway
to regulate gene expression in response to various stresses [103]. Therefore, it is possible to use yeast to
study the pathogenicity of mutations by monitoring the effects caused by the presence of MPZ protein
variants at the molecular level.

Finally, with models such as those described above, we can study the pathogenicity of variants and
mechanisms of pathogenesis and use them to find therapies by searching libraries of small molecules.
This experimental approach could and should be far more widely applied to the investigation of
CMT diseases.

6. Repositioning of Drugs in Hereditary Neuropathies

In the case of common disorders, effective medicines can be found and tested in clinical trials
involving thousands of patients, but for rare and ultra-rare diseases, the classical approaches to drug
discovery are very difficult to follow. This is due to the small number of patients and the lack of
economic justification for pharmaceutical companies to engage large resources in research that will not
be profitable for them.

This problem applies to CMT disease, which can be classified as a rare or even ultra-rare disease.
In such cases, one favorable solution is a drug repurposing strategy. Drug repurposing (also known as
repositioning, reprofiling, rediscovering or redirecting) may be defined as developing new uses for a
drug beyond its original intended use or initially approved use. The best example of drug repurposing
is that of chlorpromazine. In 1950, chlorpromazine, synthesized as a potential antimalarial drug, was
administered to patients before surgery. Due to its unexpected sedative effects, a weak anti-malarial
drug has become a powerful medicine used in both psychiatry (acute mania) and neurology (chorea,
epilepsy, muscle spasms, etc.) [104]. Drug repositioning radically reduces the cost of clinical trials,
prevents the withdrawal of a drug from the market due to low interest, and usually allows well-known
and cheap pharmaceuticals to be selected as the preferred option. This latter feature is especially
important when developing therapies for rare disorders, as the alternatives (e.g., gene therapy or cell
therapy) are extremely expensive.

Yeast models have great potential to be used as a platform for the screening of drugs libraries to
obtain preliminary results. Such models benefit from a fast turnaround, low cost, and easy testing.
Yeast models have been successfully used to search for active compounds against mitochondrial
diseases [105–107], central nervous system diseases [108], and copper-deficiency disorders [109]. Thus,
it seems reasonable that, for peripheral neuropathies, yeast models may also be applied and allow
for drug repositioning. Nearly a third of human genes involved in the pathogenesis of CMT have
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yeast orthologs, making it relatively easy to create yeast-based models. For the other cases, there is the
possibility of finding a convenient, easy to quantify phenotype (e.g., a toxic effect associated with the
expression of gene variants), which may be used for drug screening. The other option is the use of
phenologs, which are the phenotype-level equivalent of gene orthologs. Two sets of deeply conserved
genes between extremely evolutionary divergent organisms, i.e., yeast and humans, may be manifested
in the different molecular contexts as two dissimilar phenotypes. For example, cell-wall maintenance in
yeast and vascular growth in human are phenologous processes: they share the same genes conserved
between yeast and human. The failure of the equivalent genes will lead to disturbed angiogenesis
in humans and reduced cell-wall maintenance in yeast. Using this logic, thiobendazole—marketed
as an antifungal drug—would also act as an angiogenesis inhibitor in humans [110,111]. Similarly,
phenologous processes may also be used for drug selection in CMT disease.

The repurposing strategy may be key to finding therapies, especially for very rare subtypes of
CMT. To date, this approach has been poorly used for CMT diseases. Only a few CMT genes and
their mutations (AARS, ATP7A, GARS, HARS, HINT1) have been modeled in yeast so far, and any
have not been used for drug repurposing, despite the systems being ready to test collections of highly
bioavailable drugs of known toxicity in models to confirm their action and to select the effective dose.

7. Outlook

Rapidly developing technologies provide ever-improving diagnostics, pathology monitoring and
therapies. However, they also reveal the limitations of current approaches and “black holes” in our
knowledge. Returning to more basic, simple models may be a key for further research regarding
different, and especially very rare, neuropathies. Included in this work are examples that clearly
indicate that yeast models have a great potential to serve as neuropathic models. These models are
currently underused. Yeast models are a promising tool for the determination of the pathogenicity of
newly discovered rare sequence variants and their influence on the progression of a disease. In addition,
they may also provide an excellent platform for studying the molecular and cellular background of
pathogenesis and offer a cheap, easy, and fast system for the high-throughput screening of genetic and
chemical suppressors that would give rise to potential therapeutics. Yeast models have advantages
over other models in terms of cost, ease of growth and use, and the facilities necessary to implement
them. They could be used as a convenient tool in almost all laboratories, and we hope that they will
continue to be developed to support the study of more hereditary neuropathies.
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in a Yeast Model. Genes 2020, 11, 310. [CrossRef]

101. Vaccari, I.; Dina, G.; Tronchere, H.; Kaufman, E.; Chicanne, G.; Cerri, F.; Wrabetz, L.; Payrastre, B.; Quattrini, A.;
Weisman, L.S.; et al. Genetic Interaction between MTMR2 and FIG4 Phospholipid Phosphatases Involved in
Charcot-Marie-Tooth Neuropathies. PLoS Genet. 2011, 7, e1002319. [CrossRef]

102. D’Antonio, M.; Musner, N.; Scapin, C.; Ungaro, D.; Del Carro, U.; Ron, D.; Feltri, M.L.; Wrabetz, L. Resetting
translational homeostasis restores myelination in Charcot-Marie-Tooth disease type 1B mice. J. Exp. Med.
2013, 210, 821–838. [CrossRef]

103. Harding, H.P.; Novoa, I.; Zhang, Y.; Zeng, H.; Wek, R.; Schapira, M.; Ron, D. Regulated translation initiation
controls stress-induced gene expression in mammalian cells. Mol. Cell 2000, 6, 1099–1108. [CrossRef]

http://dx.doi.org/10.1038/s41419-017-0023-6
http://dx.doi.org/10.1091/mbc.e09-07-0622
http://dx.doi.org/10.1007/978-3-030-12457-1_29
http://dx.doi.org/10.1016/j.bbrc.2016.07.056
http://www.ncbi.nlm.nih.gov/pubmed/27416756
http://dx.doi.org/10.1016/j.neuint.2017.03.021
http://www.ncbi.nlm.nih.gov/pubmed/28389271
http://dx.doi.org/10.1007/s00401-015-1528-7
http://www.ncbi.nlm.nih.gov/pubmed/26744348
http://dx.doi.org/10.1111/tra.12523
http://www.ncbi.nlm.nih.gov/pubmed/28846184
http://dx.doi.org/10.1016/j.cub.2016.12.038
http://dx.doi.org/10.3390/ijms18071576
http://dx.doi.org/10.1146/annurev-cellbio-100818-125251
http://dx.doi.org/10.3390/ijms20020403
http://dx.doi.org/10.3389/fmolb.2019.00015
http://dx.doi.org/10.1016/j.bbadis.2005.11.009
http://dx.doi.org/10.1126/science.1245321
http://www.ncbi.nlm.nih.gov/pubmed/24158909
http://dx.doi.org/10.1007/BF03033172
http://www.ncbi.nlm.nih.gov/pubmed/14715446
http://dx.doi.org/10.1126/science.1245296
http://www.ncbi.nlm.nih.gov/pubmed/24158904
http://dx.doi.org/10.1074/jbc.M111.260042
http://dx.doi.org/10.3390/genes11030310
http://dx.doi.org/10.1371/journal.pgen.1002319
http://dx.doi.org/10.1084/jem.20122005
http://dx.doi.org/10.1016/S1097-2765(00)00108-8


Int. J. Mol. Sci. 2020, 21, 4277 23 of 23

104. Baker, N.C.; Ekins, S.; Williams, A.J.; Tropsha, A. A bibliometric review of drug repurposing. Drug Discov.
Today 2018, 23, 661–672. [CrossRef]

105. Rak, M.; Tetaud, E.; Godard, F.; Sagot, I.; Salin, B.; Duvezin-Caubet, S.; Slonimski, P.P.; Rytka, J.; Di Rago, J.-P.
Yeast Cells Lacking the Mitochondrial Gene Encoding the ATP Synthase Subunit 6 Exhibit a Selective Loss of
Complex IV and Unusual Mitochondrial Morphology. J. Biol. Chem. 2007, 282, 10853–10864. [CrossRef]

106. Rak, M.; Tetaud, E.; Duvezin-Caubet, S.; Ezkurdia, N.; Bietenhader, M.; Rytka, J.; Di Rago, J.-P. A Yeast
Model of the Neurogenic Ataxia Retinitis Pigmentosa (NARP) T8993G Mutation in the Mitochondrial ATP
Synthase-6 Gene. J. Biol. Chem. 2007, 282, 34039–34047. [CrossRef] [PubMed]

107. Schwimmer, C.; Rak, M.; Lefebvre-Legendre, L.; Duvezin-Caubet, S.; Plane, G.; Di Rago, J.-P. Yeast models
of human mitochondrial diseases: From molecular mechanisms to drug screening. Biotechnol. J. 2006, 1,
270–281. [CrossRef] [PubMed]

108. Oliveira, A.V.; Vilaça, R.; Costa, V.; Menezes, R.; Santos, C. Exploring the power of yeast to model aging and
age-related neurodegenerative disorders. Biogerontology 2016, 18, 3–34. [CrossRef] [PubMed]

109. Soma, S.; Latimer, A.J.; Chun, H.; Vicary, A.C.; Timbalia, S.A.; Boulet, A.; Rahn, J.J.; Chan, S.S.L.; Leary, S.;
Kim, B.-E.; et al. Elesclomol restores mitochondrial function in genetic models of copper deficiency. Proc. Natl.
Acad. Sci. USA 2018, 115, 8161–8166. [CrossRef] [PubMed]

110. McGary, K.L.; Park, T.J.; Woods, J.O.; Cha, H.J.; Wallingford, J.B.; Salemi, M. Systematic discovery of
nonobvious human disease models through orthologous phenotypes. Proc. Natl. Acad. Sci. USA 2010, 107,
6544–6549. [CrossRef]

111. Lehner, B. Genotype to phenotype: Lessons from model organisms for human genetics. Nat. Rev. Genet.
2013, 14, 168–178. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.drudis.2018.01.018
http://dx.doi.org/10.1074/jbc.M608692200
http://dx.doi.org/10.1074/jbc.M703053200
http://www.ncbi.nlm.nih.gov/pubmed/17855363
http://dx.doi.org/10.1002/biot.200500053
http://www.ncbi.nlm.nih.gov/pubmed/16897707
http://dx.doi.org/10.1007/s10522-016-9666-4
http://www.ncbi.nlm.nih.gov/pubmed/27804052
http://dx.doi.org/10.1073/pnas.1806296115
http://www.ncbi.nlm.nih.gov/pubmed/30038027
http://dx.doi.org/10.1073/pnas.0910200107
http://dx.doi.org/10.1038/nrg3404
http://www.ncbi.nlm.nih.gov/pubmed/23358379
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Genetic Background of Charcot–Marie–Tooth Disease 
	Therapeutic Approaches for Charcot-Marie-Tooth Disorder 
	Studies of CMT in Yeast-Based Models for Human Genes with Yeast Orthologs 
	Studies of CMT for Human Genes Lacking Orthologs in the Yeast Model 
	Repositioning of Drugs in Hereditary Neuropathies 
	Outlook 
	References

