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80-308 Gdańsk, Poland; anna.kloska@ug.edu.pl (A.K.); magdalena.wesierska@phdstud.ug.edu.pl (M.W.);
marcelina.malinowska@ug.edu.pl (M.M.)

2 Laboratory of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences,
Kładki 24, 80-822 Gdańsk, Poland
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Abstract: This review discusses how lipophagy and cytosolic lipolysis degrade cellular lipids, as well
as how these pathway ys communicate, how they affect lipid metabolism and energy homeostasis
in cells and how their dysfunction affects the pathogenesis of lipid storage and lipid metabolism
diseases. Answers to these questions will likely uncover novel strategies for the treatment of
aforementioned human diseases, but, above all, will avoid destructive effects of high concentrations
of lipids—referred to as lipotoxicity—resulting in cellular dysfunction and cell death.
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1. Introduction

Lipids are water-insoluble biological macromolecules that are essential for maintaining cellular
structure, function, signaling and energy storage. They are basic components of all cellular
membranes which separate cell compartments in eukaryotic cells and provide a permeability barrier.
These membrane boundaries are necessary for maintaining cellular homeostasis [1,2]. Moreover,
lipids affect the function of membrane proteins. Lipid rafts play a specific role in protein segregation;
membrane proteins can interact with lipids, which serve as cofactors [3,4]. Finally, changes in lipid
organization influence signal transduction and membrane trafficking [2]. Cholesterol serves as
a precursor for steroid hormones and bile acid biosynthesis [5]. Lipids are also molecules that serve as
a source of energy when tissue energy is depleted [6]. Despite their role in essential cellular functions,
incorrect lipid distribution or metabolism can result in abnormal concentrations of lipids being toxic
because of their limited solubility and amphipathic nature, their adverse impact on cellular homeostasis
and their ready transformation into highly bioactive, cytotoxic lipid species. These effects have serious
consequences for cellular function and homeostasis and may even lead to cell death [2].

In this review, we provide information about lipid metabolism in health and disease, focusing on
lipid storage diseases and lipid metabolism diseases. We summarize the current knowledge about the
role of two cytosolic pathways designed for lipid selective catabolism—lipophagy and lipolysis—and
discuss the transcriptional regulation of these processes by the mechanistic target of rapamycin kinase
complex 1 (mTORC1)—transcription factor EB (TFEB) signaling. We also characterize lipid storage
and lipid metabolism diseases, highlighting the latest research on the contribution of mTORC1-TFEB
signaling in the regulation of lipophagy, a subtype of macroautophagy, and lipolysis, an enzymatic
hydrolysis process, in the selected human dysfunctions.
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2. Lipids in Eukaryotic Cells

Based on the chemical origin (i.e., whether ketoacyl groups or isoprene groups serve as
fundamental “building blocks”), lipids are divided into eight categories: fatty acids, glycerolipids,
glycerophospholipids, sphingolipids, saccharolipids, polyketides, sterols and prenols [7].

2.1. Fatty Acids and Cholesterol—Essential and Toxic

Fatty acids (FAs) are hydrophobic molecules consisting of an aliphatic hydrocarbon chain
terminating in a carboxylic acid moiety. FAs usually contain 16–18 carbons, and the chain can be
fully saturated (saturated FA) or may contain one or more double bonds (unsaturated FAs). The main
source of FAs for humans and other animals are dietary fats and oils, but they can also be synthesized
de novo from metabolites of sugar and protein catabolic pathways [8]. Fatty acids can be harmful
to cells because of lipotoxicity; thus, cells convert FAs into neutral lipids for storage in organelles
called lipid droplets (LDs). Biogenesis of LDs is stimulated upon the increase in cellular free FA levels.
Different cell types have LDs of various sizes and numbers, potentially reflecting the capacity of the cell
for managing lipid storage. Moreover, these organelles are often heterogeneous within a population of
a single cell type. It is believed that LDs not only serve as lipid storage organelles, but also interact
with most, if not all, cellular organelles, mediating lipid transfer via direct contact [9].

Cholesterol is an elementary component of mammalian cell membranes. It interacts with
phospholipids and sphingolipid fatty acyl chains in order to maintain appropriate membrane fluidity.
Interactions between these lipids also regulate water and ion membrane permeability [10]. Cholesterol is
required for normal prenatal development, as embryonic and fetal cells demonstrate high membrane
formation rates [11,12]. At both fetal and adult stages of development, cholesterol is the precursor
for biosynthesis of five major classes of steroid hormones (i.e., androgens, estrogens, glucocorticoids,
mineralocorticoids and gestagens), vitamin D and bile acids [10,11,13]. Mammalian cells require
cholesterol for proliferation. Moreover, cholesterol is specifically required for the transition from G1 to
S during cell cycle progression [14,15]. Additionally, cholesterol is essential for mitosis progression
and its deficiency leading to aberrant mitosis and polyploid cell formation [15,16].

The cell synthesizes cholesterol de novo or internalizes it from exogenous sources. Interestingly,
cells do not have any enzymes to break down the sterol core to acetyl-CoA units; thus, cholesterol
cannot be used as an energy source [10]. Regardless of its source, free cholesterol must be esterified;
otherwise, it has a toxic effect on cellular membranes and induces cell death. Esterified cholesterol is
stored in cells in cytoplasmic lipid droplets [2,5].

2.2. Lipid Droplets—Storage of Neutral Lipids

LDs are highly dynamic cellular organelles responsible for the storage of neutral lipids. They are
found in most eukaryotic cell types. The size of LDs varies within the range 0.4–100 µm in different
cell types or within the same cells, depending on physiological conditions. Lipid droplets originate
from the endoplasmic reticulum (ER) and have a unique architecture consisting of a hydrophobic
core of neutral lipids which is enclosed by a phospholipid monolayer with hundreds of resident and
transient proteins that influence LD metabolism and signaling, known generically as perilipins (PLINs)
(Figure 1A). Organization of these organelles is quite different than any other because the core of a LD
is hydrophobic, the hydrophobic acyl chains of the monolayer’s phospholipids are in contact with
neutral lipids and the polar head groups face the aqueous cytosol [17]. Furthermore, LDs can also
be found in the nuclei, where they are thought to regulate nuclear lipid homeostasis and modulate
signaling through lipid molecules [18]. Cells preserve lipids by converting them into neutral lipids
such as triacylglycerols (TAGs) and sterol esters (ESs), which are in various ratio deposit in LDs.
Depending on the cell type, many other endogenous neutral lipids, such as retinyl esters, ether lipids
and free cholesterol, can be stored in the LD core. Defects in LD biogenesis lead to insufficient or excess
storage. Beyond the main function in energy metabolism, LDs play an important role in various cellular
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events, such as protein degradation, sequestration of transcription factors and chromatin components,
generation of lipid ligands for certain nuclear receptors and serving as fatty acid trafficking nodes [19].
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Figure 1. Structure and catabolism of a lipid droplet (LD). (A) LD is surrounded by the phospholipid
monolayer enclosing a core filled with neutral lipids, e.g., triacylglycerol (TAG) and sterol esters.
Polar heads of phospholipids are oriented toward the cytosol, whereas their acyl chains contact the
hydrophobic lipid core. The LD surface is associated with various proteins, e.g., members of the perilipin
(PLIN) family. There are two major types of LD catabolism: lipolysis—an enzymatic hydrolysis of
lipids in cytosol, and lipophagy—an autophagic/lysosomal pathway in the form of macroautophagy or
chaperone-mediated autophagy (CMA). (B) In lipolysis, protein kinase A (PKA) phosphorylates PLIN1
proteins, leading to their proteasomal degradation and activating adipose triglyceride lipase (ATGL),
which then initiates TAG hydrolysis to generate diacylglycerols (DAGs) and free fatty acids (FAs).
Further degradation of DAGs occurs through activation of the hormone sensitive lipase (HSL), leading
to monoacylglycerol (MAG) and FAs production. MAGs are released to the cytosol and cleaved by
monoacylglycerol lipase (MGL) to generate glycerol and FAs. (C) In macroautophagy, the phagophore
is formed and LC3 positive membranes engulf small LD or sequester portions of a large LD to form the
autophagosome, which later fuses with lysosome where LD degradation and neutral lipid catabolism
occur. (D) In chaperone-mediated autophagy, lipid droplet-coat proteins—PLIN2 and PLIN3—are
degraded through a coordinated action of Hsc70 protein and lysosome-associated membrane protein
2A (LAMP2A) receptor; this makes the LD surface accessible to cytosolic lipases, which hydrolyze LD
cargo to generate FAs, which next are released to the cytosol and undergo subsequent mitochondrial
β-oxidation.

In mammalian cells, the phospholipid composition of LD membranes differs from that of
the ER and other organelles. The main constituent is phosphatidylcholine (PC), followed by
phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS) and sphingomyelin
(SM), as well as free cholesterol and phosphatidic acid in minor amounts. The unique phospholipid
membrane composition affects LD synthesis, size and catabolism. The homeostasis of these organelles
under physiological conditions is maintained through changes in membrane phospholipid ratios
in various cell types [20].

In addition to the composition of phospholipids, LD membrane surface proteins are another
key factor that is important for their homeostasis and intracellular interactions. Each LD has many



Int. J. Mol. Sci. 2020, 21, 6113 4 of 31

different structural and functional proteins on its surface. In mammalian LDs, predominant proteins
are PLINs, adipophilin (ADRP) and a tail-interacting protein of 47 kDa (TIP47)—all belonging to
the PAT (PLIN/ADRP/TIP47) protein family, which was named after its members [21]. Of these
proteins, the structure and function of PLINs that regulate lipase access to the LD core is best known,
and increased lipolysis in adipocytes is observed in their absence [22]. Furthermore, there are many
other proteins involved in the maintenance of lipid homeostasis, including signaling and membrane
trafficking proteins, chaperones and proteins associated with cellular organelles. Mitogen-activated
protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) play the major role among signaling
proteins associated with the LD surface [23]. Caveolin 1 (CAV1) and 2 (CAV2) are other proteins present
on the LD surface; they generate membrane domains that serve as regulators of signaling proteins.
In general, caveolins form a coat by making invaginations in surrounding cellular membranes. The coats
are called caveolae and they function in endocytosis, signal transduction, cholesterol transport and
growth control [24]. Amongst membrane trafficking-related proteins, five subgroups are distinguished:
small GTPases governing vesicle formation and motility; proteins that carry LDs on the cytoskeleton,
such as kinesin and myosin; proteins that mediate membrane docking and fusion, such as soluble
N-ethylmaleimide-sensitive factor attachment receptor (SNARE); proteins that regulate cargo sorting
and vesicle budding, such as ADP-ribosylation factor (ARF)-related proteins and coat proteins (COPs);
and other proteins of miscellaneous function [19].

Generally, once LDs are synthesized they keep growing because of excessive amounts of
intracellular FAs until they reach a final size. It has been shown that many proteins, e.g., PLIN1 and
lipids, such as PC, are involved in LD growth mechanisms [25].

3. Lipophagy and Lipolysis—Two Pathways that Play a Crucial Role in Lipid Metabolism

Mobilization of fat stores from LDs is regulated by the metabolic and energy demands of the cell.
This process usually appears in the form of lipophagy or lipolysis. They are the catabolic pathways that
have a fundamental role in breaking down lipids during nutrient deprivation. Both have an impact on
cellular energetic balance: directly through their important role in the early steps of lipid breakdown
and indirectly by regulating food intake. Defects in lipophagy and lipolysis have been linked to many
metabolic disorders; among them are lipid storage and lipid metabolism diseases.

3.1. Catabolism of Lipid Droplets

Catabolism of LDs into free FAs is a crucial cellular pathway that is required to generate energy
in the form of ATP. Their catabolism is strictly under the control of hormone and enzyme activation.
Moreover, it is required to provide building blocks for biological membranes and precursors in hormone
synthesis. Degradation of LDs is strictly regulated by the protein composition on the surface of the
vesicle and generally occurs by two mechanisms: lipolysis or lipophagy.

Lipolysis is a biochemical catabolic pathway that relies on direct activation of LD-associated
lipases, such as adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL) and monoglyceride
lipase (MGL), which, together with regulatory protein factors (ATGL activators and inhibitors),
constitute the basis for this process [26]. Under fed conditions, LDs mainly store TAGs in adipose
tissue, and lipolytic hydrolysis is based on the hydrolysis of ester bonds between long-chain FAs and
the glycerol backbone. During the first step of this process, protein kinase A (PKA) phosphorylates
PLIN1, leading to its proteasomal degradation. This results in the release of an ATGL activator
protein—comparative gene identification-58 (CGI-58)—which selectively activates ATGL, which then
catalyzes TAG hydrolysis to diacylglycerols (DAGs) and free FAs. The next step of the process depends
on the activation of a multifunctional enzyme, hormone sensitive lipase (HSL), that hydrolyzes DAGs
and produces monoacylglycerol (MAG) and FAs (Figure 1B). HSL functions as a rate-limiting enzyme
for DAG catabolism. HSL also retains specificity to other lipid ester bonds, such as cholesteryl esters,
retinyl esters and short-chain carbonic acid esters [27]. It is responsible for mediating the hydrolysis of
diacylglycerol and triacylglycerol. In testis, HSL is the only esterase that can hydrolyze cholesteryl
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ester, and the loss of this activity results in cholesteryl ester and diacylglycerol accumulation [28],
as well as altered lipid homeostasis [29]. In the last step of the lipolysis cascade, MAGs are released
into the cytosol and cleaved by MGL, generating glycerol and FAs [30,31]. Products of lipolysis
secreted from adipose tissue are transported to other tissues and used for β-oxidation and ATP
production. In non-adipose tissues, mitochondria or peroxisomes can directly oxidize products of
lipolytic hydrolysis through β-oxidation and release acetyl CoA [32].

In turn, the lysosomal–autophagic pathway that plays an important role in the early steps of
lipid degradation has been termed lipophagy. In general, autophagy is one of the major degradation
pathways that enables the cell to survive under stress conditions by recycling metabolic components.
This process is initiated by sequestering cytosolic organelles or macromolecules in a double membrane
vesicle, which is then delivered to lysosomes for degradation by lytic enzymes. Degradation products
that can be reused by the cell in synthesis processes are then released into the cytosol. Proper functioning
of autophagy allows the cell to maintain homeostasis [33]. Due to the mechanism of the process,
we can distinguish three types of autophagy: macroautophagy, which targets large substrates in
a selective or nonselective manner to form autophagosomes prior to fusion with lysosomes [34];
microautophagy, which degrades molecules through direct engulfment by membranes of lytic
compartments (lysosomes or late endosomes); and chaperone-mediated autophagy (CMA), which is
a selective form of autophagy, targeting specific proteins through the recognition activity of chaperone
protein heat shock cognate 70 (Hsc70) [35].

Uptake of LDs by macroautophagy is an alternative route for the mobilization of lipid storage
and degradation of intracellular LDs (Figure 1C). Such a process is called lipophagy, in which LDs are
selectively delivered to a lytic compartment for degradation via actions of autophagic (Atg) proteins.
This process was first described in mouse hepatocytes under starvation, when LDs were mobilized
in order to generate free FAs [36]. LC3, a classical marker of the autophagosome, was able to directly
interact with ATGL and HSL at the surface of LDs. LC3 binds ATGL via an LC3 interaction region
(LIR) and, under fed deprivation and LIR deficiency conditions, reduced basal ATGL localization to
LDs, preventing the ATGL translocation to the LD surface, was observed. When we consider the
above, it seems that LC3 is required for translocation of ATGL to the surface of LDs, to facilitate TAG
hydrolysis [37].

Numerous Rab proteins have been identified on LDs. In general, Rab proteins are a family of
small GTPases, acting as important mediators of endosomal trafficking events. They are molecular
switches, cycling between active GTP-bound and inactive GDP-bound states, regulating the vesicular
trafficking network within the cell. Perturbation to some members of the Rab family proteins has
deleterious effects on LD turnover in response to classical lipophagy-inducing causes [38]. The most
predominant Rab protein on the LD surface is Rab7, which is a well-characterized marker of the late
endocytic pathway and a participant in the process of autophagosomal maturation. This protein
assists in the regulation of lysosome–autophagosome interaction. Rab7 GTPase on the surface of
LDs becomes active upon nutrient deprivation, resulting in its increased activity for GTP over GDP.
Such an activated state promotes the requirement of lysosomes near LDs and their target degradation
via lipophagy [39]. Another LD-localized protein from the Rab family that potentially participates
in lipophagy is Rab10, which in its active state is significantly redistributed on the LD surface under
nutrient deprivation conditions. This GTPase co-localizes with autophagic membrane markers such
as LC3 and Atg16. However, it seems that Rab10 acts downstream of Rab7 as a part of a complex
that promotes the envelopment of LD during lipophagy progression [40]. There are several other Rab
proteins that have been studied to determine their role in LD catabolism via conventional lipolysis and
selective lipophagy, such as Rab32, Rab18 and Rab25.

In LD catabolism, a link between PLIN proteins and CMA has been identified (Figure 1D). For the
CMA process, LAMP2A is required and lack of LAMP2A leads to LD accumulation. Moreover, Hsc70
binds to CMA recognition motif (KFERQ) within PLIN proteins, acting as a signal for CMA-mediated
degradation in the lysosome. It appears that degradation of PLIN proteins is required to promote LD
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catabolism by allowing ATGL and autophagic proteins to access the LD surface. Blocking the CMA
process reduces lipase-mediated lipolysis and lipophagy. Therefore, CMA-mediated degradation of
PLIN proteins seems to be a crucial event for initiating lipophagy [41,42].

3.2. Energy Release from Fatty Acids

Triacylglycerols are highly concentrated forms of metabolic energy because they are reduced and
anhydrous. They are made up of three FAs that are ester-linked to a single glycerol. Complete oxidation
of FAs provides more than twice as much energy than is obtained from carbohydrates or proteins.
TAGs have much lower toxicity compared to FAs; thus, they can reach much higher concentrations
(e.g., in plasma). For this reason, TAGs are the major form of FA storage and transport [6,43].

Before FAs can be used as a source of energy, they must be released from TAGs by lipolysis or
lipophagy. Products of lipid stores that are broken down by lipolysis or lipophagy are subsequently
utilized in β-oxidation for ATP production (Figure 2). At the outer mitochondrial membrane,
FAs are activated by thioesterification to acyl-CoA esters. Next, carnitine, together with acylcarnitine
translocase, transports FAs across the inner mitochondrial membrane to the matrix, where β-oxidation
takes place. FA β-oxidation consists of four cyclic biochemical reactions. First, acyl-CoA is oxidized
with the participation of flavin-adenine dinucleotide (FAD). At this stage, electrons from FADH2 reduce
ubiquinone to ubiquinol, which transfers them on the respiratory chain and leads to the generation of
1.5 ATP molecules. Acyl-CoA oxidation introduces a double bond in the FA chain, which is hydrated
in the second step of β-oxidation. The third reaction involves oxidation with creating ketone group at
C-3 and reduction of NAD+ to NADH (to generate 2.5 ATP molecules). In the fourth and final step,
the thiol group of the next CoA molecule resolves 3-ketoacyl-CoA into acyl-CoA (two carbon atoms
shortened) and acetyl-CoA by thiolytic cleavage. B-oxidation is repeated until the initial FA chain is
converted into acetyl-CoA, which enters the Krebs cycle (to generate 10 ATP molecules) [44,45].Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 7 of 34 
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Figure 2. Energy release from saturated fatty acids in mitochondrial β-oxidation. Fatty acids are
released from triacylglycerol by lipolysis or lipophagy and translocated into the mitochondrion.
Fatty acid is shortened by two carbons in one β-oxidation cycle; the β-oxidation steps are repeated
until only two carbon units remain. The FADH2 and NADH are utilized to generate ATP in the electron
transport chain and acetyl-CoA enters the Krebs cycle. The β-oxidation steps are shown in red italics,
numbered 1–4. The number of ATP molecules obtained from β-oxidation and Krebs cycle is shown in
red. ATP, adenosine triphosphate; CoA, coenzyme A; FAD and FADH2, flavin-adenine dinucleotide,
oxidized and reduced forms, respectively; NAD+ and NADH, nicotinamide adenine dinucleotide,
oxidized and reduced forms, respectively.
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Mitochondrial β-oxidation is more complex with unsaturated FAs or odd-chain FAs being
the source of energy. Degradation of unsaturated FAs involves the participation of additional
enzymes. Isomerase converts configuration of the double bond in mono- and poly-unsaturated FA.
Next, mono-unsaturated FA is hydrated, and β-oxidation progresses as for saturated FA. In turn,
poly-unsaturated FA is oxidized with the participation of FAD and then reduced by mitochondrial
NADPH-dependent reductase. Another double bond is formed and FA is again converted by isomerase
until a regular intermediate of β-oxidation pathway is obtained, which is entered into the cycle at the
stage of hydration [46]. At the end of odd-chain FA β-oxidation, acetyl-CoA and propionyl-CoA are
produced in place of two molecules of acetyl-CoA. Propionyl-CoA enters into the Krebs cycle after it
has been converted into succinyl-CoA [47].

3.3. Transcriptional Regulation of Lipophagy, Lipolysis and Lipid Metabolism

Lipophagy control depends on several transcription factors, activators and nuclear receptors,
which, in response to nutrient status, enhance or decrease the process of lipid breakdown, in order to
support current energy demands of the cell. Expression of many autophagy- and lipophagy-related
genes is controlled by transcription factors belonging to the microphthalmia (MiT/TFE) family. One of
these factors is TFEB, which regulates not only the general autophagic process, but lipophagy and
lipid metabolism, as well [48]. Phosphorylation and dephosphorylation of TFEB determines its
cellular localization and activity. Both events are mainly controlled by the nutrient or lysosomal
storage status of the cell [48]. Under nutrition-rich conditions, the phosphorylated form of TFEB is
retained in the cytoplasm (Figure 3A). However, nutrient depletion or aberrant lysosomal storage
results in dephosphorylation of TFEB, causing its translocation from the cytoplasm to the nucleus,
where it induces the transcription of target genes (Figure 3B). Promoters of many lysosome-related
genes share a common 10-base E-box-like palindromic sequence; they compose the coordinated
lysosomal expression and regulation (CLEAR) gene network that TFEB directly targets and controls
the transcription process of [49]. Chromatin immunoprecipitation assays identified over 600 endocytic
genes regulated by TFEB; among them are genes related to lysosomal biogenesis and autophagy, as well
as lipid catabolism. TFEB phosphorylation is mainly exerted by two kinases: mTORC1 (one of two
complexes having mTOR kinase as a core component) or extracellular signal-regulated kinase 2 (ERK2,
also known as MAPK1). MTORC1 is the main negative regulator of autophagy, acting in response to
amino acids, growth factors or cellular energy status [50]. Under sufficient intracellular availability of
nutrients, mTORC1 is activated and inhibits autophagy, but as nutrients are deprived, this kinase is
switched off, leading to autophagy activation and inhibition of anabolic processes. Active mTORC1
phosphorylates TFEB, preventing its translocation to the nucleus and thus indirectly inhibiting
autophagy as the TFEB-dependent transcription of genes related to autophagy and lysosomal biogenesis
stays suppressed [51].

The role of TFEB in lipophagy was firmly revealed by Settembre et al. [52], as they demonstrated
that TFEB regulates lipid degradation in the mouse liver. They showed that, upon nutrient depletion,
TFEB deficiency lead to accumulation of LDs and impairment of FA oxidation in the liver [52]. In animals
receiving a high-fat diet, overexpression of TFEB prevented the development of obesity and improved
the metabolic syndrome phenotype by reducing abnormal levels of circulating triglycerides, cholesterol,
glucose and insulin [52]. High TFEB activity was also able to revert the metabolic syndrome when it was
already present [52]. A functional autophagic pathway was required to observe TFEB-mediated lipid
degradation, as overexpression of TFEB was not able to decrease the lipid droplet number, liver weight
gain or lipid content in livers of mice with blocked autophagy [52]. Upon starvation, TFEB enhanced
the expression of genes related to lipid metabolism and lipophagy [52]. In mice, TFEB-dependent
transcriptional upregulation of monocarboxylic acid, FA, ketone catabolism and FA oxidation pathways
was observed [52]. Several genes involved in lysosome organization and autophagy were also
upregulated by TFEB, upon reduced nutrient availability; these include ATPase subunits, proteases,
membrane proteins and fusion proteins [52]. Additionally, TFEB downregulated gene expression of lipid
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biosynthetic pathways; these included pathways of steroid, lipid, isoprenoid and FA biosynthesis [52].
TFEB was shown to regulate expression of genes involved in several steps of lipid catabolism, including
genes related to FA transport across the plasma membrane (e.g., Cd36 and Fabps), β-oxidation of free
FAs in mitochondria (e.g., Cpt1, Crat, Acadl, Acads and Hdad) and peroxisomes (Cyp4a genes) [52].
Moreover, TFEB controls its own expression in an autoregulatory feedback loop [52]. CLEAR elements
are present in the TFEB gene promoter; thus, as TFEB translocates to the nucleus, it is able to bind to
its own promoter, enhancing transcription of itself in response to cellular status [52]. Interestingly,
the role of TFEB in lipophagy appears to be evolutionarily conserved. In Caenorhabditis elegans, a gene
encoding the worm’s TFEB orthologue, HLH-30, regulates the expression of fat catabolism enzymes and
autophagy genes in response to nutrient availability. Moreover, loss-of-function mutations of this gene
result in impairment of lipophagy [53]. Transcriptional control of genes involved in lipid metabolism
by TFEB is exerted through the peroxisome proliferator-activated receptor gamma coactivator 1α
(PPARGC1α; also known as PGC1α) and the downstream nuclear receptor peroxisome proliferator
activated receptor 1α (PPAR1α) [52]. The promoter of the PGC1α-encoding gene was shown to have
three CLEAR sites and upon starvation TFEB bound to two of them [52]. Thus, TFEB induces PGC1α
expression upon starvation and regulates the expression of genes related to lipid metabolism by
controlling the downstream PPARα activity [52,54]. Independently from TFEB, lipophagy control is
also mediated by nuclear farnesoid X receptor (FXR) and transcriptional activator cAMP response
element-binding protein (CREB) [55]. Under nutrient-deprived conditions, CREB promotes lipophagy
by the upregulation of autophagy-related genes, including Atg7, Ulk1 and Tfeb, but FXR, a fed-state
sensing gene regulator, inhibits this response after feeding [55].
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Lipolysis, another process involved in intracellular lipid breakdown, was shown to be
transcriptionally modulated by forkhead homeobox type O (FOXO) and TFEB transcription factors.
Nutrient restriction upregulates FOXO1, which then activates lipid catabolism by inducing lysosomal
acid lipase (LAL) expression [56]. In this case, colocalization of LDs with lysosomes was observed.
In response to nutrient restriction, FOXO1 and TFEB were shown to induce the expression of LIPA,
a gene encoding LAL. In a mouse atherosclerosis model, lysosomal stress conditions induced by
atherogenic lipids were shown to promote TFEB translocation to the nucleus and upregulation of LIPA
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gene expression and lysosomal biogenesis [57]. TFEB overexpression in macrophages loaded with
acetylated low-density lipoprotein (LDL) enhanced cholesterol efflux [57].

Lipophagy and lipid metabolism are also regulated by transcription factor E3 (TFE3), which is
another transcription factor belonging to the MiT family. In the liver, TFE3 was shown to induce
lipophagy as its overexpression alleviated steatosis of this organ in mice [58]. Similarly to TFEB,
TFE3 induces expression of genes that modulate mitochondrial fatty acid β-oxidation; an increased
mRNA level of PGC1α and PPARα was found upon TFE3 overexpression [58]. Another study
also showed that TFE3 deficiency resulted in altered mitochondrial morphology and function [59].
Tfe3-knockout mice show abnormalities in energy balance and alterations in systemic glucose and lipid
metabolism, resulting in high-fat-diet-induced obesity and diabetes [59]. However, overexpression of
TFE3, as well as TFEB, was shown to improve this metabolic outcome [59]. Because TFE3 and TFEB
were able to compensate for each other’s deficiency, the authors suggested that both play a cooperative
role in controlling metabolism.

Generally, autophagy was thought to contribute to lipid oxidation by increasing the supply of free
FAs by lipophagy. However, a recent study demonstrated that autophagy regulates lipid metabolism by
participating in regulation of PPARα activity through the degradation of nuclear receptor co-repressor
1 (NCoR1) [60]. Autophagic degradation of NCoR1 was shown to contribute to PPARα activation to
effectively promote β-oxidation in response to physiological fasting [60]. Defects of liver autophagy
were accompanied by accumulation of NCoR1 and suppression of PPARα activity leading to defective
β-oxidation and ketogenesis [60].

4. Lipid Metabolism and Diseases

Lipids have been found necessary in tissues such as adipose tissue, intestine and liver for energy
storage or lipid turnover, but they are accreted in skeletal muscles, macrophages, mammary glands
and the adrenal cortex. Under energy-poor conditions, lipid accumulation allows organisms to
survive, and stored lipids are then used to produce energy [61]. Abnormal lipid metabolism is
associated with many diseases, including type 2 diabetes, obstructive sleep apnea, non-alcoholic
fatty liver disease, coronary artery disease and cancer. A number of studies have been published
to reveal the important role of lipid metabolism in energy homeostasis and metabolic diseases [62].
Inherited metabolic disorders are genetic conditions that cause metabolism problems. There are
hundreds of different genetic metabolic disorders, and their symptoms, treatment and prognosis vary
significantly. Genetic disorders associated with abnormal lipid turnover belong to two groups of
inherited metabolic disorders: lipid storage diseases and lipid metabolism diseases [63].

The pathological accumulation of undigested biomaterials in the lysosome, including lipids,
leads to the development of metabolic disorders collectively called lysosomal storage diseases (LSDs).
LSDs are traditionally classified due to the nature of undigested materials in the lysosome; in this group,
mucopolysaccharidosis, cystinosis, mannosidosis and lipid storage diseases can be distinguished.

4.1. Characterization of Lipid Storage Diseases and Lipid Metabolism Diseases

Lipid storage diseases are the most common LSDs and constitute the largest group of these
diseases [64]. However, undigested lipids can also accumulate due to secondary mechanisms,
e.g., mechanisms secondary to carbohydrate or protein accumulation or membrane trafficking.
Most LSDs are caused by lysosomal hydrolase mutations. Lipid storage diseases are a genetically
determined group of disorders characterized by excessive lipid (fatty acids, cholesterol or complex
lipids) accumulation due to inherited abnormalities in lipid metabolism. Excessive lipid deposition
ultimately causes damage to cells and tissues, resulting in neurodegeneration and also often heart, liver,
spleen and kidney problems [65]. In most lysosomal lipid storage diseases, the accumulation of one or
more lipids leads to the co-precipitation of other hydrophobic substances in the endolysosomal system,
such as lipids and proteins [66]. The progressive accumulation of undigested lipids in lysosomes
leads to the accumulation of enlarged (>500 nm) but dysfunctional lysosomes [67]. These swollen
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lysosomes are mainly endolysosomes and autolysosomes; therefore, LSD is a state of endocytic and
autophagic “block” or “arrest”. Although the total number of lysosomes is not reduced in LSDs,
the overall lysosomal function in the cell is blocked, which can lead to serious cell consequences [68].
The accumulation of undigested materials in lysosomes can cause a deficiency of building block
precursors for biosynthetic pathways, while the accumulation of various membrane-associated lipids
can affect the properties and integrity of the cell membrane. In addition, lipid storage may alter
the functionality of lysosomal membrane proteins, such as lysosomal ion channels or catabolite
exporters, affecting the physiology and ionic composition of lysosomes. In turn, altered heavy metal
ion homeostasis can increase oxidative stress, causing lipid peroxidation and affecting membrane
integrity. Over time, excessive lipid storage can cause permanent damage to cells, tissues in the brain
and peripheral nervous system and other organs [64]. The brain is particularly sensitive to lipid
accumulation, as any increase in fluid or deposits can lead to changes in pressure and disruption of
normal neurological function [69]. Symptoms may appear early in life or develop in teenage years or
even adulthood. Neurological complications of lipid storage diseases depend on the type of storage
material and may include: lack of muscle coordination, brain degeneration, seizures, loss of muscle
tone, spasticity, difficulty feeding and swallowing, pain in arms and legs and corneal opacity [70].

Congenital lipid metabolism errors are a heterogeneous group of disorders characterized by
problems with the breakdown synthesis of lipids. Diseases that affect lipid metabolism can be caused
by defects in the structural proteins of lipoprotein particles, in the cell receptors that recognize
different types of lipoproteins or in fat-breaking enzymes [71]. As a result of such defects, excessively
accumulating lipids can deposit in the walls of blood vessels, which can lead to atherosclerosis and,
as a consequence, strokes or coronary heart diseases. Lipid metabolism diseases are associated with
an increase in plasma lipoprotein levels, such as LDL cholesterol, very low-density lipoprotein (VLDL)
and triglycerides, or combinations thereof. The historical framework for the classification of lipoprotein
disorders is dominated by the Fredrickson classification, which is based on the pattern of lipoproteins on
electrophoresis or ultracentrifugation [72]. The phenotypic classification of lipid metabolism diseases,
which is widely used and has been accepted internationally, is based on the affected lipoprotein; however,
the clinical approach is to classify dyslipidemia according to the high lipid content fraction: cholesterol
(hypercholesterolemia, Fredrickson class IIa), triglycerides (hypertriglyceridemia, Frederickson classes
I, IV and V) or a combination of the two (hypercholesterolemia and hypertriglyceridemia, Fredrickson
classes III or IIb) [73]. In addition, it is crucial to consider the etiological aspects of dyslipidemias,
which may help in the diagnosis or initial treatment.

Table 1 contains a list of examples of diseases classified as lipid storage diseases and lipid
metabolism diseases. The classification was based on data contained in Mammalian Phenotype
Ontology [63], with the exception of sitosterolemia. This disease is sometimes classified as rarer
inherited metabolic disorder [72].
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Table 1. Characterization of lipid storage diseases and lipid metabolism diseases.

Disease Gene Deficient Enzyme/Protein Accumulated Products Symptoms Perturbations in
Autophagy/Lipophagy/Lipolysis Reference

Lysosomal storage diseases
Lipid storage diseases

Sphingolipidoses

Niemann–Pick disease
types A and B SMPD1 sphingomyelinase Sphingomyelin in brain and red

blood cells (RBCs)

Hepatosplenomegaly, psychomotor regression, clumsiness
and difficulty walking, dystonia, sleep disturbances,

difficulty swallowing and eating, recurrent pneumonia,
thrombocytopenia, a cherry-red spot inside the eye, frequent

respiratory infections, slow mineralization of bone

Impaired autolysosomal clearance;
formation of late endosome/lysosome

(LE/LY)-like storage organelles (LSOs) and
the misdirection of lipids to the LSOs; defect
in autophagosome maturation; accumulation

of autophagosomes

[74–77]

Niemann–Pick disease
type C

NPC1 or NPC2 intracellular cholesterol
transporters located within lysosomal and
endosomal membranes (NPC1) or inside

lysosomes (NPC2)

Free cholesterol, sphingomyelin and
glycosphingolipid storage in
lysosomes or late endosomes

Hepatosplenomegaly, problems with speech and swallowing,
dementia, seizures, ataxia, vertical supranuclear gaze palsy,

dystonia, severe liver disease, interstitial lung disease

Defective amphisome formation; impaired
maturation of autophagosomes;

accumulation of autophagosomes and
autolysosomes

[78–82]

Fabry disease GLA α-galactosidase A
Glycolipids, particularly ceramide

trihexoside, in brain, heart and
kidney

Episodes of pain (particularly acroparesthesias),
angiokeratomas, hypohidrosis, corneal opacity or corneal

verticillate, problems with the gastrointestinal system,
tinnitus, hearing loss, kidney damage, heart attack, stroke

Impairment of the autophagic pathway [83–86]

Krabbe disease (globoid
cell leukodystrophy) GALC galactocerebrosidase

Glycolipids, particularly
galactocerebroside, in

oligodendrocytes

Irritability, muscle weakness, feeding difficulties, stiff posture,
delayed mental and physical development, spasticity,

hypertonia, blindness, hyperreflexia, deafness,
neurodegeneration (leading to death)

Impairment of autophagy; lysosomal
dysfunction; partial blocking and saturation

of the autophagy flux
[87–90]

Gaucher disease GBA glucocerebrosidase Glucocerebrosides in RBCs, liver and
spleen

Hepatosplenomegaly, pancytopenia, Erlenmeyer flask
deformity, anemia, lung disease, bone abnormalities such as

bone pain, fractures, arthritis

Impaired autophagosome maturation;
accumulation of autophagosomes;

autophagy block
[91–93]

Tay–Sachs disease HEXA β-hexosaminidase A GM2 gangliosides in neurons
Neurodegeneration, seizures, vision and hearing loss,
cherry-red spot, muscle weakness, ataxia, intellectual

disability, paralysis, early death

Altered lipid trafficking; impaired
autophagy [94–97]

Tay–Sachs Disease, AB
Variant (AB-variant GM2) GM2A GM2 ganglioside activator GM2 ganglioside in neurons in the

brain and spinal cord
Psychomotor deterioration, seizures, vision and hearing loss,
intellectual disability, paralysis, cherry-red spot, early death Impaired autophagy [95,98,99]

Metachromatic
leukodystrophy (MLD) ASA or PSAP arylsulfatase A or prosaposin Sulfatide compounds in neural tissue

Demyelination in central and peripheral nervous systems
(peripheral neuropathy, mental retardation, motor

dysfunction, ataxia, hyporeflexia), seizures, incontinence,
paralysis, inability to speak, blindness, hearing loss

Affected trafficking due to altered chain
length of the lipids; defective

autophagosome–lysosome fusion, impaired
autophagy

[100–103]

Sandhoff disease HEXB β-hexosaminidase A and
β-hexosaminidase B

GM2 ganglioside in neurons of the
brain and spinal cord

Progressive nervous system deterioration, muscle weakness,
ataxia, speech problems, mental retardation, blindness,

seizures, spasticity, macrocephaly, cherry-red spots in the
eyes, frequent respiratory infections, doll-like facial

appearance, hepatosplenomegaly

Disruption of autophagy, aberrant
lysosomal–autophagic turnover [104–107]

Multiple sulfatase
deficiency

SUMF1 formylglycine-generating enzyme
(FGE)

Sulfatides, sulfated
glycosaminoglycans, sphingolipids

and steroid sulfates in tissues

Leukodystrophy, movement problems, seizures,
developmental delay, slow growth, ichthyosis, hypertrichosis,

skeletal abnormalities (scoliosis, joint stiffness, dysostosis
multiplex), hypotonia, coarse facial features, mild deafness,

hepatomegaly, progressive neurologic deterioration,
hydrocephalus

Accumulation of autophagosomes, defective
autophagosome–lysosome fusion [108–110]
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Table 1. Cont.

Disease Gene Deficient Enzyme/Protein Accumulated Products Symptoms Perturbations in
Autophagy/Lipophagy/Lipolysis Reference

GM1 gangliosidosis GLB1 β-galactosidase GM1 ganglioside in tissues and
organs, particularly in the brain

Hepatosplenomegaly, skeletal abnormalities, seizures,
profound intellectual disability, cherry-red spot, gingival

hypertrophy, cardiomyopathy, dysostosis multiplex,
coarsened facial features

Accumulation of autophagosomes, impaired
lysosomal flux [101,111,112]

Schindler disease NAGA α-N-acetylgalactosaminidase

Glycosphingolipids, glycoproteins
and oligosaccharides with terminal

or preterminal
N-acetylgalactosaminyl residues in

the lysosomes of most tissues

Developmental regression, blindness, seizures, loss of
awareness of surroundings, unresponsive, cognitive

impairment, sensorineural hearing loss, weakness and loss of
sensation, angiokeratomas

No data [113]

Sea-blue histiocytosis
(inherited lipemic

splenomegaly)
APOE apolipoprotein E

Cholesterol, triglycerides and
beta-very-low-density lipoproteins

(beta-VLDLs) in the blood;
glycosphingolipids, particularly
sphingomyelins in the histocytes

Hypertriglyceridemia, splenomegaly, liver function
abnormalities, heart disease, sea-blue histiocytes in many

organs (bone marrow, liver and spleen)
No data [114]

Neuronal ceroid lipofuscinosis
Batten disease (juvenile

neuronal ceroid
lipofuscinosis, CLN3

disease)

CLN3 battenin, hydrophobic transmembrane
protein involved in lysosomal function

Lysosomal autofluorescent storage
material (AFSM) in the cells of the
brain, central nervous system, and

retina in the eye

Progressive blindness, seizures, mental and cognitive decline,
dementia, speech and motor skills problems, premature death

Disruption of autophagy, vacuole
maturation and impaired mitophagy;

impaired autophagic clearance, defective
autophagosome maturation

[115–118]

Jansky–Bielschowsky
disease (late infantile

neuronal ceroid
lipofuscinosis, LINCL,

CLN2 disease)

TPP1 tripeptidyl-peptidase 1 Lipopigments in neurons, primarily
in the cerebral and cerebellar cortices

Epilepsy, ataxia, myoclonus, vision loss, speech and motor
skills problems (e.g., sitting and walking), developmental

regression, intellectual disability, behavioral problems

Reduction in autophagic flux, inhibition of
autophagosome formation, reduction in

autophagosomes and autophagic
degradation

[119,120]

Lysosomal and lipase deficiency

Lysosomal acid lipase
deficiency (Wolman

disease, cholesteryl ester
storage disease)

LIPA lysosomal acid lipase
Cholesteryl esters, triglycerides, and
other lipids within lysosomes of most

tissues

Hepatosplenomegaly, ascites, calcified adrenal glands,
vomiting, diarrhea with steatorrhea, progressive

psychomotor degradation, anemia, cachexia, low muscle tone,
jaundice, vomiting, developmental delay, anemia, poor

absorption of nutrients from food

Impairment of the lipophagic pathway [121–124]

Mucolipidosis

Mucolipidosis IV MCOLN1 (TRPML1) mucolipin-1

Sphingolipids, phospholipids,
mucopolysaccharides and

glycoproteins in cells of almost all
tissues, including liver, spleen and in

fibroblasts

Intellectual disability, psychomotor retardation, hypotonia,
retinal degeneration, strabismus, photophobia, myopia,

amblyopia or blindness, iron-deficiency anemia, achlorhydria
with elevated blood gastrin levels

Impairment of autophagy and lipolysis;
accumulation of lysosomes,

autophagosomes and autophagy substrates
[125–128]

Sialidosis (mucolipidosis
I) NEU1 neuraminidase 1

Sialic acid–containing compounds
(sialyloligosaccharides and

sialolipids) in lysosomes in bodily
tissues

Type I: progressive neurological impairment without bone or
joint abnormalities; type II: mental retardation, severe
hepatosplenomegaly, coarse facial features, dysostosis
multiplex, seizures, myoclonus, ataxia, aminoaciduria,

corneal opacity, macular cherry-red spot, skeletal
abnormalities

Impairment of lipolysis and autophagy [129–131]

Neutral lipid storage disease
Neutral lipid storage

disease with myopathy PNPLA2 adipose triglyceride lipase (ATGL) Triglycerides in muscle and other
tissues

Myopathy, fatty liver, cardiomyopathy, pancreatitis,
hypothyroidism, type 2 diabetes Impairment of lipolysis [132–134]
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Table 1. Cont.

Disease Gene Deficient Enzyme/Protein Accumulated Products Symptoms Perturbations in
Autophagy/Lipophagy/Lipolysis Reference

Chanarin–Dorfman
syndrome (neutral lipid
storage disease type I,
neutral lipid storage

disease with ichthyosis)

ABHD5 abhydrolase domain containing 5
(activator of ATGL)

Triglycerides in organs and tissues,
including skin, liver, muscles,

intestine, eyes and ears

Ichthyosis, hepatomegaly, cataracts, ataxia, hearing loss, short
stature, myopathy, nystagmus, mild intellectual disability

Impaired long-chain fatty acid oxidation;
impaired BECN1-induced autophagic flux [135–137]

Xanthomatosis

Cerebrotendinous
xanthomatosis (CTX) CYP27A1 sterol 27-hydroxylase Cholestanol and bile alcohols in the

blood

Neonatal cholestasis, childhood-onset cataract, tendon and
brain xanthomata, neurologic dysfunction (dementia,

psychiatric disturbances, pyramidal and/or cerebellar signs,
seizures and neuropathy), liver dysfunction, intellectual
impairment, neuropsychiatric symptoms (hallucinations,

aggression and depression)

Induced autophagy [138–140]

Plant sterol storage disease

Sitosterolemia ABCG5 or ABCG8 sterolin Plant sterols, such as sitosterol, and
LDL in the blood

Atherosclerosis, increased chance of a heart attack, stroke or
sudden death, xanthomas, joint stiffness and pain, hemolytic

anemia, macrothrombocytopenia
Accumulation of autophagic vacuoles [141,142]

Farber lipogranulomatosis

Farber disease (Farber
lipogranulomatosis) ASAH1 acid ceramidase

Lipids in cells and tissues throughout
the body, particularly around the

joints.

Lipogranulomas, swollen and painful joint deformity,
subcutaneous nodules, hoarseness, difficulty breathing,

hepatosplenomegaly, developmental delay, vomiting
Impairment of autophagic flux [143]

Fucosidosis

Fucosidosis FUCA1 alpha-L-fucosidase

Fucose containing glyco-lipids and
polysaccharides in the brain, liver,
spleen, skin, heart, pancreas and

kidneys

Intellectual disability, dementia, delayed development of
motor skills, impaired growth, dysostosis multiplex, seizures,
spasticity, angiokeratomas, coarse facial features, recurrent

respiratory infections, visceromegaly

Induction of the autophagic cell death [144]

Lipid metabolism diseases
Familial hyperlipidemia

Hyperlipoproteinemia
Familial

dysbetalipoproteinemia
(hyperlipoproteinemia

type III)

APOE apolipoprotein E Chylomicrons and VLDL remnants in
plasma

Palmar and tuberoeruptive xanthomas, coronary heart
disease, peripheral vascular disease Decreased lipolysis [145–148]

Familial
hypercholesterolemia

(hyperlipoproteinemia
type IIa)

LDLR LDL receptor LDL in plasma Tendon xanthomas, coronary heart disease, increased chance
of a heart attack, stroke or sudden death

Impairment of autophagic flux; altered
autophagy flux by persistent mitophagy [149–151]

Familial defective
apoB-100

(hyperlipoproteinemia
type IIa)

APOB apolipoprotein B-100 LDL in plasma Tendon xanthomas, coronary heart disease, increased chance
of a heart attack, stroke or sudden death

Impairment of autophagic flux; altered
autophagy flux by persistent mitophagy [151,152]

Familial chylomicronemia syndrome
ApoA-V deficiency APOA5 apolipoprotein A-V Chylomicrons and VLDL in blood Eruptive xanthomas, hepatosplenomegaly, pancreatitis Impairment of lipolysis [153,154]
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Disease Gene Deficient Enzyme/Protein Accumulated Products Symptoms Perturbations in
Autophagy/Lipophagy/Lipolysis Reference

GPIHBP1 deficiency
GPIHBP1

glycosylphosphatidylinositol-anchored
high-density lipoprotein binding protein 1

Chylomicrons in plasma Eruptive xanthomas, pancreatitis Impairment of lipolysis [155,156]

Lipoprotein lipase
deficiency

(hyperlipoproteinemia
type I)

LPL lipoprotein lipase Chylomicrons in plasma Eruptive xanthomas, abdominal pain, lipemia retinalis,
hepatosplenomegaly, pancreatitis Impairment of lipolysis [157,158]

Familial apolipoprotein
C-II deficiency

(hyperlipoproteinemia
type I)

APOC2 apolipoprotein C-II (LPL cofactor) Chylomicrons in plasma Eruptive xanthomas, abdominal pain, lipemia retinalis,
hepatosplenomegaly, pancreatitis Impairment of lipolysis [159–161]

Familial hepatic lipase
deficiency LIPC hepatic lipase VLDL remnants and IDLs in plasma Pancreatitis, coronary heart disease, increased chance of a

heart attack, stroke or sudden death Impairment of lipolysis [162]

Familial hypercholesterolemia
Autosomal recessive
hypercholesterolemia

LDLRAP1 (ARH) low-density lipoprotein
receptor adaptor protein 1 LDL in plasma Tendon xanthomas, coronary heart disease, increased chance

of a heart attack, stroke or sudden death Induced autophagy [73,163,164]

Autosomal dominant
hypercholesterolemia

PCSK9 proprotein convertase
subtilisin/kexin type 9 LDL in plasma Tendon xanthomas, coronary heart disease, increased chance

of a heart attack, stroke or sudden death Increased autophagic flux [73,165,166]

Groups (bold regular font), subgroups (regular font) or classes (italic font) of disorders related to abnormal lipid storage or lipid metabolism are indicated in the lines with a gray
background. VLDL, Very Low Density Lipoprotein; LDL, Low Density Lipoprotei.
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4.2. Dysregulation of Autophagy or Lipolysis in Diseases

Due to the important role of the lysosome in autophagy, this pathway is an obvious candidate
in the pathogenesis of LSDs [167]. Autophagy has been identified as the primary pathway of
lipid metabolism in cells [36]; therefore, it is believed that perturbances in autophagy, particularly
lipophagy, are responsible for cellular lipid accumulation in patients with lipid storage diseases [168].
Studies have documented autophagic dysregulation in patient samples and disease models of
various LSDs (i.e., Tay–Sachs disease, Fabry disease and Krabbe disease) [77,169]. Although impaired
autophagy has been seen in many storage diseases, the defects observed relate to different stages of
the autophagic pathway (Table 1 and Figure 4). While in GM1 gangliosidosis and Niemann–Pick
disease, the impairment is due to overactivation of autophagy, in other LSDs, e.g., MSD and MLD,
the autophagosome–lysosome fusion is defective [96]. Similar abnormalities of autophagy can be
observed in diseases with secondary lipid accumulation (Figure 4). Although there is an increasing
evidence of dysregulation of autophagy in lipid storage disorders, the role of these abnormalities in the
pathogenesis of the diseases is still not well understood and requires further research. Impairment of
autophagy has also been observed in lipid metabolism diseases; for example, autophagy induction
occurs in the familial hypercholesterolemia and familial defective apoB-100. Impaired lipolysis has been
reported in two groups of diseases—the neutral lipid storage diseases and the familial chylomicronemia
syndromes (lipid metabolism diseases).
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evidence of dysregulation of autophagy in lipid storage disorders, the role of these abnormalities in 
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Figure 4. Alterations in different stages of autophagy in the pathogenesis of lipid storage diseases. 
Lysosomal lipid storage leads to a reduced ability to autophagosome formation, maturation, or fusion 

Figure 4. Alterations in different stages of autophagy in the pathogenesis of lipid storage diseases.
Lysosomal lipid storage leads to a reduced ability to autophagosome formation, maturation, or fusion
of lysosomes with autophagosomes. This results in a block of the autophagic flux. The steps of
these abnormalities are presented in blue boxes. Consequently autophagy substrates (orange boxes)
such as protein aggregates and dysfunctional mitochondria accumulate and promote cell death.
The inflammatory response, cellular damage or neurodegeneration (orange boxes) further contribute to
cell death (red box).
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4.3. Secondary Lipid Accumulation in Lysosomal Storage Diseases

Storage processes in LSDs are much more complex than one would expect from the deficiency
of a single enzyme altering a single substrate degradation in a particular catabolic pathway.
Multiple substrates at variable ratios are detected as the storage material; this may result from
metabolic links, e.g., when one enzyme is committed in the catabolism of multiple compounds.
Secondary storage compounds can be actively involved in the pathogenesis of LSDs and the most
common group of compounds that are subject to secondary storage are lipids. Phospholipids,
glycosphingolipids and cholesterol are mainly identified as secondary storage materials. In numerous
LSDs, one or more of these compounds, in various proportions, may accumulate inside cells (Table 2).

Table 2. Secondary lipid storage in lysosomal storage diseases. The individual classes of lipids are
indicated in the lines with a gray background.

Secondary Storage Lipid Disease Compartment Cellular Disturbance Reference
Phospholipids

Sphingomyelin Sphingolipidoses: Niemann–Pick
type C Lysosomes Altered membrane lipids

trafficking [170,171]

Bis(monoacylglycero)phosphate
(BMP)

Sphingolipidoses: Niemann–Pick
type C, Fabry disease, Gaucher

disease, GM1 gangliosidosis, GM2
gangliosidosis

Mucopolysaccharidoses: Hurler
syndrome, Hunter syndrome
Neuronal ceroid lipofuscinoses:

NCL 10

Endosomes,
lysosomes

Altered membrane lipids
trafficking, lamellar bodies

formation
[171,172]

Glycosphingolipids

Gangliosides—GM1, GM2, GM3,
GD1a, GD2, GD3

Sphingolipidoses: Niemann–Pick
type A, B and C, Gaucher disease,

prosaposin deficiency
Mucopolysaccharidoses: Hurler
syndrome, Hunter syndrome,

Sanfilippo syndrome,
Maroteaux–Lamy syndrome, Sly

syndrome
Glycoproteinoses: Galactosialidosis,

α-mannosidosis, sialidosis
Mucolipidoses: mucolipidosis II/III,

mucolipidosis IV
Neuronal ceroid lipofuscinoses: NCL

3, NCL 6, NCL 10

Late endosomes,
lysosomes,

cytoplasmic
vesicles

Alteration of lysosomal pH,
autophagy dysregulation, rupture
of H+/Ca2+ homeostasis, altered
vesicle trafficking, dysregulation

of signaling pathways,
accumulation of

polyubiquitinated proteins,
reduced capacity of immune cells

to produce cytokines and
antibodies, neurodegeneration
(gliosis, demyelination of white
matter, astrocyte and microglial

activation)

[173–181]

Cholesterol

Cholesterol

Sphingolipidoses: Niemann–Pick
type A and B

Mucopolysaccharidoses: Hurler
syndrome, Hunter syndrome,

Sanfilippo syndrome,
Maroteaux–Lamy syndrome

Glycoproteinoses: α-mannosidosis

Late endosomes,
lysosomes,

cytoplasmic
vesicles

Impaired vesicle trafficking,
abnormal sequestration of

materials, foam cells in cerebral
blood vessels and liver

[171,174,176–178]

Subgroups (regular font) or classes (italic font) of disorders related to abnormal lipid storage or lipid metabolism are
indicated in the lines with a gray background.

Two phospholipids, i.e., sphingomyelin and bis(monoacylglycero)phosphate (BMP), are identified
as the secondary storage lipids in LSDs. Sphingomyelin is a primary storage material in Niemann–Pick
type A and B, but cholesterol is the primary material in Niemann–Pick type C, while sphingomyelin
is the secondary storage material. A moderate sphingomyelin increase already occurs in livers from
20-week-old fetuses with Niemann–Pick type C and remains at this level; sphingomyelin levels in the
spleen are much more elevated, as compared to those in the liver [171]. Interestingly, the main organ of
sphingomyelin accumulation in mice is the liver [182]. Currently, no secondary sphingomyelin storage
has been identified in the brain from LSDs. Accumulation of BMP occurs in the liver and spleen of
humans with all three types of Niemann–Pick disease, but it has not been identified in the brain [171,182].
BMP storage in the brain was described for humans with infantile neuronal-ceroid lipofuscinosis
(CLN1 disease) [183] and for mouse models of other types of neuronal-ceroid lipofuscinosis, CLN6 and
CLN10 diseases [184].

Secondary accumulation of GM2 and GM3 gangliosides is very often observed in diseases with
progressive neurodegeneration. In the brains of healthy humans or wild-type mice, GM2 and GM3
constitute only 1–2% of total gangliosides in humans and even less in mice. In immunostaining,
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these gangliosides appear as punctate, granular structures in the cytoplasm, suggesting that they
are sequestered in vesicles [171]. More precise analysis has shown that GM2 and GM3 are found
in separate vesicle populations in the same cell; this may suggest that they are metabolized in separate
cell compartments or are generated by independent processes [173]. GM2 and GM3 gangliosides
accumulate in various neurons and glial cells in various LSDs, e.g., in Niemann–Pick type C [182];
mucopolysaccharidosis (MPS) types I, II, IIIA, IIIB, IIID, VI and VII [173]; and mucolipidosis type
IV [185]. However, the presence of these gangliosides in non-nervous organs has been studied in only
a few disorders. Elevated GM3 levels have been reported in the liver and spleen of patients with
Niemann–Pick and Gaucher diseases [171].

Unesterified cholesterol is primary storage material in Niemann–Pick type C; this is in contrast
to Niemann–Pick types A and B, where cholesterol is accumulated secondarily to sphingolipids.
Sphingomyelin effectively inhibits the secretion of cholesterol from late endosomes and lysosomes,
which results in secondary cholesterol storage. In turn, unesterified cholesterol affects sphingomyelin
metabolism and regulates the trafficking of sphingolipids to other sites in the cell. Finally, perturbation
in cholesterol homeostasis correlates with sphingolipid accumulation. Accumulation of unesterified
cholesterol, which appears as storage-like granules inside cells, was also observed in MPS types I, II,
IIIA and VI, as well as mucolipidosis types II and IV [171,185,186].

4.4. Consequences of Secondary Lipid Storage

Excessive accumulation of compounds in cellular compartments is often a pathological process.
Storage of useless materials may be a result of a deficiency of catabolic enzymes, but disturbed
catabolism may also occur without any apparent genetic defects leading to underlying enzyme
deficiencies. When the primary storage in a particular disorder leads to secondary lipid accumulation,
it may result in incorrect vesicular or protein trafficking, signal transduction and membrane disability.

Lysosomal storage of undegraded compounds leads to disturbed secretion of breakdown products
from autolysosomes, consequently resulting in deficiency of precursors for cellular biosynthetic
pathways. Lipid turnover has fundamental importance in maintaining membrane permeability to
secure cell homeostasis. Cholesterol and glycosphingolipids are the main components of lipid rafts,
which play an important role in determining membrane plasticity. Keeping the membrane plasticity
is fundamental for fusion between autophagosomes and lysosomes in lipophagy. This process has
an influence on lipid turnover that, as a consequence, may affect the properties and functionality of the
membranes of other organelles. An example is a robust loss of mitochondrial membrane potential
in multiple sulfatase deficiency (MSD) cells after starvation [110]. Abnormal lipid metabolism leads to
disturbances in trafficking of synthesized proteins and lipids to their target destinations in the cell.
Induction of cholesterol accumulation in Niemann–Pick type C cells perturbs the intra-endosomal
trafficking [187]. Cholesterol stores correlate with primary or secondary storage of glycosphingolipids,
suggesting that a molecular linkage between the sequestration of these two lipid classes may exist.
In turn, blockade of GM2 and GM3 ganglioside synthesis results in an absence or dramatic reduction
in free cholesterol in NPC1-deficient neurons [188]. Further investigations are needed to determine
whether cholesterol sequestration depends on gangliosides or whether the storage of GM2 and GM3
gangliosides disturbs lipophagy.

Correct membrane function is also important for maintaining the physiology of the lysosome,
the organelle crucial for lipophagy. Appropriate lysosomal pH and its regulation are essential
for the activity of lysosomal acid hydrolases. Lipid dyshomeostasis may alter the functioning of
lysosomal membrane proteins (e.g., V-ATPase), ion channels and catabolite exporters, affecting
lysosomal physiology. Accumulation of primary storage molecules may inhibit catabolic pathways
that are genetically unaffected, and, as a consequence, accumulation of that pathway’s substrates
as secondary storage materials begins. For example, primary storage of chondroitin sulfate
(in mucopolysaccharidoses—Hurler disease, Hunter disease, Sanfilippo disease and Sly syndrome) or
sphingomyelin (in Niemann–Pick types A and B) and cholesterol (in Niemann–Pick type C) inhibits
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several catabolic pathways of gangliosides and glycosphingolipids and causes secondary neuronal GM2
accumulation that triggers neurodegeneration [189,190]. Furthermore, primary sphingomyelin storage
in Niemann–Pick type A and B results in strong inhibition of lysosomal cholesterol secretion [191],
which may lead to its deficiency in internal circulation. Excessive material storage inside the lysosome
affects lysosomal pH and impairs activities of various acid hydrolases, consequently leading to the
accumulation of other components. Dysfunctional lysosomes also undergo defective fusion with
autophagosomes, which has been observed in cell culture models or macrophages of MPS IIIA and
MSD [110].

4.5. mTOR–TFEB Signaling Pathway and Dysregulation of Autophagy in Lipid Storage Diseases

Functional lysosomes are particularly important for autophagy; lysosomes, by fusing with
autophagosomes, deliver digestion enzymes that are necessary for breaking down the stores.
Disruption of the autophagy–lysosomal pathway affects the normal autophagic flux and leads
to impaired cellular capacity to remove the stored materials. Deregulation of autophagy has been
reported in many lysosomal storage diseases, including those characterized with lipids as the main
storage material—lipid storage diseases.

Dysfunction of the autophagy–lysosomal pathway is indicated as the main pathogenic event
associated with neurodegeneration in Gaucher disease. Impaired autophagosome maturation
accompanied with downregulation of TFEB and reduction of lysosomal gene expression were found
in neurons differentiated from induced pluripotent stem cells of Gaucher disease patients [93].
MTORC1 was shown to be hyperactivated by the accumulation of glycosphingolipids in Gaucher
cells [192]. As a consequence, increased TFEB phosphorylation by mTORC1 lead to decreased TFEB
stability in Gaucher cells. The authors proposed that glycosphingolipid accumulation in Gaucher
disease leads to increased mTORC1 activity, which in turn results in increased TFEB phosphorylation.
Phosphorylated TFEB is targeted for proteasomal degradation and downregulation of lysosomal
functions is observed as a consequence. It was already shown that mTORC1 regulates lipid
metabolism [193] by controlling lipophagy in response to the nutrition status of the cell [123];
this process is mediated by mTORC1 and TFEB. It is therefore possible that the lipid storage disrupts
the proper signaling of autophagy/lipophagy pathways.

In Fabry disease, a disturbance of the autophagic pathway is observed in kidney cells, fibroblasts
and lymphoblasts [86,194]. Interestingly, studies on female Fabry disease cases showed that mild
symptoms correlate with normal autophagic flux, whilst severe symptoms correlate with abnormal
autophagic flux with enlarged lysosomes [195]. Neuropathology and axonal neurodegeneration
in a Fabry disease mouse model was shown to be associated with disruption of the autophagy–lysosome
pathway [196]. Accumulation of intracellular globotriaosylsphingosine was found to cause increased
autophagosome formation, loss of mTOR kinase activity and downregulation of Akt kinase activity
in Fabry podocytes, suggesting that dysregulated autophagy in Fabry disease may result from deficient
mTOR signaling, which possibly leads to podocyte damage [194]. Other studies on both Fabry
and Gaucher disease blood mononuclear cells revealed that dysfunction of the mTOR pathway
accompanies sphingolipid accumulation, but was shown to be partially improved by enzyme
replacement therapy [197].

In mice, Niemann–Pick type C1 maturation of autophagosomes appears to be impaired due to
defective amphisome formation caused by the failure in soluble N-ethylmaleimide-sensitive factor
attachment receptor (SNARE) machinery [81]. Decreased cell viability, cholesterol accumulation and
dysfunctional autophagic flux was characteristic for Niemann–Pick-type-C1-deficient human hepatic
and neural cells [198]. Genetic correction of a disease-causing mutation rescued these defects and
directly linked NPC1 protein function to impaired cholesterol metabolism and autophagy [198].
Recently, cholesterol was identified as an essential activator for the master growth regulator,
mTORC1 kinase. Cholesterol promotes mTORC1 recruitment and activation at the lysosomal
membrane, and a lysosomal transmembrane protein called SLC38A9 is required for this process [199].
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Lysosomal cholesterol content was shown to regulate mTORC1 signaling in Niemann–Pick type C.
ER–lysosome contacts enable cholesterol sensing by mTORC1, as was shown in a Niemann–Pick
type C1 model [200]. Cholesterol trafficking mediated by oxysterol binding protein (OSBP), a protein
responsible for cholesterol delivery across ER–lysosome contacts, results in constitutive mTORC1
activation in a Niemann–Pick type C model, while cells lacking OSBP show inhibition of mTORC1
recruitment by Rag GTPases as a result of impaired transport of cholesterol to lysosomes [200].

Increased autophagy was demonstrated in GM1-gangliosidosis mouse brains, and it was
accompanied with enhanced Akt-mTOR and ERK signaling [201]. In this case, activation of autophagy
was pointed to lead to mitochondrial dysfunction in the mouse brain as the mitochondria isolated
from animals were morphologically abnormal and had a decreased membrane potential.

In mucolipidosis type IV, mTOR kinase directly targets and inactivates the transient receptor
potential mucolipin 1 (TRPML1) channel, a lysosomal calcium channel, mutations of which cause
this disease, thereby affecting functional autophagy [202]. Lysosomal calcium release through
TRPML1 channel was shown to regulate autophagy by promoting TFEB dephosphorylation by
calcineurin [203]. TRPML1 channel was also shown to regulate autophagosome biogenesis by
a mechanism independent of TFEB. TRPML2 can act through activation of a signaling pathway of
calcium/calmodulin-dependent protein kinaseβ (CaMKKβ) and AMP-activated protein kinase (AMPK),
the induction of the Beclin1/VPS34 autophagic complex and the generation of phosphatidylinositol
3-phosphate (PI3P) [204].

Neuronal ceroid lipofuscinoses are also characterized with inhibition of autophagosome formation,
reduction in autophagosomes and autophagic degradation, defects in autophagosome maturation,
accumulation of autophagosomes and autophagic cargo [117,118,205]. Mechanisms involved in the
autophagy deregulation include upregulation of mTOR signaling [120], intracellular calcium
homeostasis and CLN3 protein (also named battenin) function [206].

Other lysosomal lipid storage diseases are also associated with observations of impaired
autophagy, but only a limited number of studies have been performed to elucidate the mechanism.
For example, autophagy was shown to be defective in Tay–Sachs disease due to either a reduction in the
number of autophagosomes produced or the amount of autophagic flux; studies on pyrimethamine,
a known pharmacological chaperone of β-hexosaminidase A, showed that the mechanism of action of
pyrimethamine in reversing the defective lysosomal phenotype was by improving autophagy [207].
Autophagy dysregulation is also observed in Krabbe disease; expression of some fundamental
autophagy markers (LC3, p62 and Beclin-1) was elevated in the brain and sciatic nerve of a murine
model of the disease [90]. Treatment with rapamycin, an autophagy inducer, was shown to restore
autophagy in vitro [90].

5. Conclusions

To sum up, despite the major progress in our understanding of how the different
pathways—lipophagy and lipolysis—communicate with each other, how they contribute—separately
and collectively—to cytosolic degradation of lipids, how they affect the human pathophysiology and
pathogenesis of lipid storage and lipid metabolism diseases, many questions remain unanswered.
Over the past few years, an increasing body of research in this subject—as we reported in this
review—has radically refilled our knowledge. However, the structural and functional depiction of the
lipophagic and lipolytic machinery is still incomplete. Thus, the functional link between lipophagy
and lipolysis and their cross-talk in the regulation of lipid metabolism to prevent and treat lipid
accumulation and lipotoxicity requires further interrogation.
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Abbreviations

ADRP adipophilin
AFSM autofluorescent storage material
AMPK AMP-activated protein kinase
ARF ADP-ribosylation factor
ATGL adipose triglyceride lipase
BMP bis(monoacylglycero)phosphate
CaMKKβ calcium/calmodulin-dependent protein kinase β
CAV caveolin
CGI-58 comparative gene identification-58
CLEAR coordinated lysosomal expression and regulation
CLN ceroid lipofuscinosis, neuronal
CMA chaperon-mediated autophagy
CoA coenzyme A
COP coat protein
CREB cAMP response element-binding
CTX cerebrotendinous xanthomatosis
DAG diacylglycerols
ER endoplasmic reticulum
ERK2 extracellular signal-regulated kinase 2
ES sterol ester
FA fatty acid
FAD flavin-adenine dinucleotide
FGE formylglycine-generating enzyme
FOXO forkhead homeobox type O
FXR farnesoid X receptor
Hsc70 heat shock cognate 70
HSL hormone-sensitive lipase
LAL lysosomal acid lipase
LAMP2A lysosome-associated membrane protein 2A
LC3 light chain 3
LD lipid droplet
LDL low-density lipoprotein
LINCL late infantile neuronal ceroid lipofuscinosis
LIR LC3 interaction region
LSD lysosomal storage disease
MAG monoacylglycerol
MAPK mitogen-activated protein kinase
MGL monoglyceride lipase
MiT microphthalmia
MLD metachromatic leukodystrophy
MPS mucopolysaccharidosis
MSD multiple sulfatase deficiency
mTOR mechanistic target of rapamycin
mTORC1 mechanistic target of rapamycin complex 1
NCoR1 nuclear receptor co-repressor 1
OSBP oxysterol binding protein
PAT PLIN/ADRP/TIP47
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PC phosphatidylcholine
PE phosphatidylethanolamine
PGC1α peroxisome proliferator-activated receptor gamma coactivator 1α
PI phosphatidylinositol
PI3K phosphatidylinositol 3-kinase
PI3P phosphatidylinositol 3-phosphate
PKA protein kinase A
PLIN perilipin
PPAR1α peroxisome proliferator activated receptor 1α
PPARGC1α peroxisome proliferator-activated receptor gamma coactivator 1α
PS phosphatidylserine
RBC red blood cell
SM sphingomyelin
SNARE soluble N-ethylmaleimide-sensitive factor attachment receptor
TAG triacylglycerol
TFE3 transcription factor E3
TFEB transcription factor EB
TIP47 tail-interacting protein of 47 kDa
TRPML1 mucolipin transient receptor potential 1
VLDL very low-density lipoprotein
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Gabig-Cimińska, M.; Piotrowska, E. Female Fabry disease patients and X-chromosome inactivation. Gene
2018, 641, 259–264. [CrossRef]

85. Cairns, T.; Müntze, J.; Gernert, J.; Spingler, L.; Nordbeck, P.; Wanner, C. Hot topics in Fabry disease. Postgrad.
Med. J. 2018, 94, 709–713. [CrossRef]

86. Chévrier, M.; Brakch, N.; Lesueur, C.; Genty, D.; Ramdani, Y.; Moll, S.; Djavaheri-Mergny, M.; Brasse-Lagnel, C.;
Barbey, F.; Bekri, S.; et al. Autophagosome maturation is impaired in Fabry disease. Autophagy 2010, 6,
589–599. [CrossRef]

87. Spassieva, S.; Bieberich, E. Lysosphingolipids and sphingolipidoses: Psychosine in Krabbe’s disease.
J. Neurosci. Res. 2016, 94, 974–981. [CrossRef] [PubMed]

88. Won, J.-S.; Singh, A.K.; Singh, I. Biochemical, cell biological, pathological, and therapeutic aspects of Krabbe’s
disease. J. Neurosci. Res. 2016, 94, 990–1006. [CrossRef]

89. Lin, D.-S.; Ho, C.-S.; Huang, Y.-W.; Wu, T.-Y.; Lee, T.-H.; Huang, Z.-D.; Wang, T.-J.; Yang, S.-J.; Chiang, M.-F.
Impairment of Proteasome and Autophagy Underlying the Pathogenesis of Leukodystrophy. Cells 2020, 9,
1124. [CrossRef] [PubMed]

90. Del Grosso, A.; Angella, L.; Tonazzini, I.; Moscardini, A.; Giordano, N.; Caleo, M.; Rocchiccioli, S.; Cecchini, M.
Dysregulated autophagy as a new aspect of the molecular pathogenesis of Krabbe disease. Neurobiol. Dis.
2019, 129, 195–207. [CrossRef] [PubMed]

91. Stirnemann, J.; Belmatoug, N.; Camou, F.; Serratrice, C.; Froissart, R.; Caillaud, C.; Levade, T.; Astudillo, L.;
Serratrice, J.; Brassier, A.; et al. A Review of Gaucher Disease Pathophysiology, Clinical Presentation and
Treatments. Int. J. Mol. Sci. 2017, 18, 441. [CrossRef]

92. Nguyen, Y.; Stirnemann, J.; Belmatoug, N. Gaucher disease: A review. Rev. Med. Interne 2019, 40, 313–322.
[CrossRef] [PubMed]

93. Awad, O.; Sarkar, C.; Panicker, L.M.; Sgambato, J.A.; Lipinski, M.M.; Miller, D.; Zeng, X.; Feldman, R.A. Altered
TFEB-mediated lysosomal biogenesis in Gaucher disease iPSC-derived neuronal cells. Hum. Mol. Genet.
2015, 24, 5775–5788. [CrossRef] [PubMed]

94. Tsuji, D. Molecular Pathogenesis and Therapeutic Approach of GM2 Gangliosidosis. Yakugaku Zasshi J.
Pharm. Soc. Jpn. 2013, 133, 269–274. [CrossRef] [PubMed]

95. Cachón-González, M.B.; Zaccariotto, E.; Cox, T.M. Genetics and Therapies for GM2 Gangliosidosis.
Curr. Gene Ther. 2018, 18, 68–89. [CrossRef]

96. Vitner, E.B.; Platt, F.M.; Futerman, A.H. Common and Uncommon Pathogenic Cascades in Lysosomal Storage
Diseases. J. Biol. Chem. 2010, 285, 20423–20427. [CrossRef]

97. Xu, Y.-H.; Barnes, S.; Sun, Y.; Grabowski, G. Multi-system disorders of glycosphingolipid and ganglioside
metabolism. J. Lipid Res. 2010, 51, 1643–1675. [CrossRef] [PubMed]

98. Li, S.-C.; Hama, Y.; Li, Y.-T. Ineraction of GM2 Activator Protein with Glycosphingolipids. Adv. Exp. Med. Biol.
2001, 491, 351–367.

99. Sandhoff, K. Neuronal sphingolipidoses: Membrane lipids and sphingolipid activator proteins regulate
lysosomal sphingolipid catabolism. Biochimie 2016, 130, 146–151. [CrossRef] [PubMed]

100. Gieselmann, V.; Krägeloh-Mann, I. Metachromatic Leukodystrophy—An Update. Neuropediatrics 2010, 41,
1–6. [CrossRef] [PubMed]

101. Breiden, B.; Sandhoff, K. Lysosomal Glycosphingolipid Storage Diseases. Annu. Rev. Biochem. 2019, 88,
461–485. [CrossRef] [PubMed]

102. Mahmood, A.; Berry, J.; Wenger, D.A.; Escolar, M.; Sobeih, M.; Raymond, G.; Eichler, F. Metachromatic
Leukodystrophy: A Case of Triplets with the Late Infantile Variant and a Systematic Review of the Literature.
J. Child Neurol. 2010, 25, 572–580. [CrossRef]

103. Maegawa, G. Patil Developing therapeutic approaches for metachromatic leukodystrophy. Drug Des. Devel.
Ther. 2013, 7, 729. [CrossRef]

104. Hendriksz, C.J.; Corry, P.C.; Wraith, J.E.; Besley, G.T.N.; Cooper, A.; Ferrie, C.D. Juvenile Sandhoff

disease—Nine new cases and a review of the literature. J. Inherit. Metab. Dis. 2004, 27, 241–249.
[CrossRef]

105. Kolodny, E.H. Tay–Sachs Disease. Encyclopedia of Neuroscience; Squire, L.R., Ed.; Academic Press: Cambridge,
MA, USA, 2009; pp. 895–902. ISBN 9780080450469.

http://dx.doi.org/10.1016/j.gene.2017.10.064
http://dx.doi.org/10.1136/postgradmedj-2018-136056
http://dx.doi.org/10.4161/auto.6.5.11943
http://dx.doi.org/10.1002/jnr.23888
http://www.ncbi.nlm.nih.gov/pubmed/27638582
http://dx.doi.org/10.1002/jnr.23873
http://dx.doi.org/10.3390/cells9051124
http://www.ncbi.nlm.nih.gov/pubmed/32370022
http://dx.doi.org/10.1016/j.nbd.2019.05.011
http://www.ncbi.nlm.nih.gov/pubmed/31108173
http://dx.doi.org/10.3390/ijms18020441
http://dx.doi.org/10.1016/j.revmed.2018.11.012
http://www.ncbi.nlm.nih.gov/pubmed/30638965
http://dx.doi.org/10.1093/hmg/ddv297
http://www.ncbi.nlm.nih.gov/pubmed/26220978
http://dx.doi.org/10.1248/yakushi.12-00199
http://www.ncbi.nlm.nih.gov/pubmed/23370522
http://dx.doi.org/10.2174/1566523218666180404162622
http://dx.doi.org/10.1074/jbc.R110.134452
http://dx.doi.org/10.1194/jlr.R003996
http://www.ncbi.nlm.nih.gov/pubmed/20211931
http://dx.doi.org/10.1016/j.biochi.2016.05.004
http://www.ncbi.nlm.nih.gov/pubmed/27157270
http://dx.doi.org/10.1055/s-0030-1253412
http://www.ncbi.nlm.nih.gov/pubmed/20571983
http://dx.doi.org/10.1146/annurev-biochem-013118-111518
http://www.ncbi.nlm.nih.gov/pubmed/31220974
http://dx.doi.org/10.1177/0883073809341669
http://dx.doi.org/10.2147/DDDT.S15467
http://dx.doi.org/10.1023/B:BOLI.0000028777.38551.5a


Int. J. Mol. Sci. 2020, 21, 6113 26 of 31

106. Tamboli, I.Y.; Hampel, H.; Tien, N.T.; Tolksdorf, K.; Breiden, B.; Mathews, P.M.; Saftig, P.; Sandhoff, K.;
Walter, J. Sphingolipid Storage Affects Autophagic Metabolism of the Amyloid Precursor Protein and
Promotes Aβ Generation. J. Neurosci. 2011, 31, 1837–1849. [CrossRef]

107. Keilani, S.; Lun, Y.; Stevens, A.C.; Williams, H.N.; Sjoberg, E.R.; Khanna, R.; Valenzano, K.J.; Checler, F.;
Buxbaum, J.D.; Yanagisawa, K.; et al. Lysosomal Dysfunction in a Mouse Model of Sandhoff Disease Leads
to Accumulation of Ganglioside-Bound Amyloid-Peptide. J. Neurosci. 2012, 32, 5223–5236. [CrossRef]

108. Annunziata, I.; Bouché, V.; Lombardi, A.; Settembre, C.; Ballabio, A. Multiple sulfatase deficiency is due to
hypomorphic mutations of theSUMF1 gene. Hum. Mutat. 2007, 28, 928. [CrossRef] [PubMed]

109. Schlotawa, L.; Adang, L.; Radhakrishnan, K.; Ahrens-Nicklas, R.C. Multiple Sulfatase Deficiency: A Disease
Comprising Mucopolysaccharidosis, Sphingolipidosis, and More Caused by a Defect in Posttranslational
Modification. Int. J. Mol. Sci. 2020, 21, 3448. [CrossRef] [PubMed]

110. Settembre, C.; Fraldi, A.; Jahreiss, L.; Spampanato, C.; Venturi, C.; Medina, D.L.; De Pablo, R.; Tacchetti, C.;
Rubinsztein, D.C.; Ballabio, A. A block of autophagy in lysosomal storage disorders. Hum. Mol. Genet. 2007,
17, 119–129. [CrossRef] [PubMed]

111. Brunetti-Pierri, N.; Scaglia, F. GM1 gangliosidosis: Review of clinical, molecular, and therapeutic aspects.
Mol. Genet. Metab. 2008, 94, 391–396. [CrossRef] [PubMed]

112. Boland, B.; Smith, D.A.; Mooney, D.; Jung, S.S.; Walsh, D.M.; Platt, F.M. Macroautophagy Is Not Directly
Involved in the Metabolism of Amyloid Precursor Protein. J. Biol. Chem. 2010, 285, 37415–37426. [CrossRef]

113. Schindler, D.; Desnick, R.J. Schindler Disease: Deficient α-N-acetylgalactosaminidase Activity. In Rosenberg’s
Molecular and Genetic Basis of Neurological and Psychiatric Disease; Rosenberg, R.N., Pascual, J.M., Eds.; Elsevier:
Boston, MA, USA, 2015; pp. 431–439. ISBN 9780124105294.

114. Wu, T.T.; Hoff, D.S. Fish Oil Lipid Emulsion-Associated Sea-Blue Histiocyte Syndrome in a Pediatric Patient.
J. Pediatr. Pharmacol. Ther. 2015, 20, 217–221.

115. Mirza, M.; Vainshtein, A.; DiRonza, A.; Chandrachud, U.; Haslett, L.J.; Palmieri, M.; Storch, S.; Groh, J.;
Dobzinski, N.; Napolitano, G.; et al. The CLN3 gene and protein: What we know. Mol. Genet. Genom. Med.
2019, 7, e859. [CrossRef]

116. Mukherjee, A.B.; Appu, A.P.; Sadhukhan, T.; Casey, S.; Mondal, A.; Zhang, Z.; Bagh, M.B. Emerging new
roles of the lysosome and neuronal ceroid lipofuscinoses. Mol. Neurodegener. 2019, 14, 4. [CrossRef]

117. Cao, Y.; Espinola, J.A.; Fossale, E.; Massey, A.C.; Cuervo, A.M.; Macdonald, M.E.; Cotman, S.L. Autophagy Is
Disrupted in a Knock-in Mouse Model of Juvenile Neuronal Ceroid Lipofuscinosis. J. Biol. Chem. 2006, 281,
20483–20493. [CrossRef]

118. Lojewski, X.; Staropoli, J.F.; Biswas-Legrand, S.; Simas, A.M.; Haliw, L.; Selig, M.K.; Coppel, S.H.; Goss, K.A.;
Petcherski, A.; Chandrachud, U.; et al. Human iPSC models of neuronal ceroid lipofuscinosis capture distinct
effects of TPP1 and CLN3 mutations on the endocytic pathway. Hum. Mol. Genet. 2013, 23, 2005–2022.
[CrossRef]

119. Nita, A.A.; Mole, S.E.; Minassian, B.A. Neuronal ceroid lipofuscinoses. Epileptic Disord 2016, 18, 73–88.
[CrossRef] [PubMed]

120. Vidal-Donet, J.M.; Carcel-Trullols, J.; Casanova, B.; Aguado, C.; Knecht, E. Alterations in ROS Activity and
Lysosomal pH Account for Distinct Patterns of Macroautophagy in LINCL and JNCL Fibroblasts. PLoS ONE
2013, 8, e55526. [CrossRef] [PubMed]

121. Aguisanda, F.; Thorne, N.; Zheng, W. Targeting Wolman Disease and Cholesteryl Ester Storage Disease:
Disease Pathogenesis and Therapeutic Development. Curr. Chem. Genom. Transl. Med. 2017, 11, 1–18.
[CrossRef] [PubMed]

122. Pericleous, M.; Kelly, C.; Wang, T.; Livingstone, C.; Ala, A. Wolman’s disease and cholesteryl ester storage
disorder: The phenotypic spectrum of lysosomal acid lipase deficiency. Lancet Gastroenterol. Hepatol. 2017, 2,
670–679. [CrossRef]

123. Settembre, C.; Ballabio, A. Lysosome: Regulator of lipid degradation pathways. Trends Cell Biol. 2014, 24,
743–750. [CrossRef]

124. Schulze, R.J.; Sathyanarayan, A.; Mashek, D.G. Breaking fat: The regulation and mechanisms of lipophagy.
Biochim. Biophys. Acta BBA Mol. Cell Biol. Lipids 2017, 1862, 1178–1187. [CrossRef]

125. Ruivo, R.; Anne, C.; Sagné, C.; Gasnier, B. Molecular and cellular basis of lysosomal transmembrane protein
dysfunction. Biochim. Biophys. Acta BBA Bioenerg. 2009, 1793, 636–649. [CrossRef]

http://dx.doi.org/10.1523/JNEUROSCI.2954-10.2011
http://dx.doi.org/10.1523/JNEUROSCI.4860-11.2012
http://dx.doi.org/10.1002/humu.9504
http://www.ncbi.nlm.nih.gov/pubmed/17657823
http://dx.doi.org/10.3390/ijms21103448
http://www.ncbi.nlm.nih.gov/pubmed/32414121
http://dx.doi.org/10.1093/hmg/ddm289
http://www.ncbi.nlm.nih.gov/pubmed/17913701
http://dx.doi.org/10.1016/j.ymgme.2008.04.012
http://www.ncbi.nlm.nih.gov/pubmed/18524657
http://dx.doi.org/10.1074/jbc.M110.186411
http://dx.doi.org/10.1002/mgg3.859
http://dx.doi.org/10.1186/s13024-018-0300-6
http://dx.doi.org/10.1074/jbc.M602180200
http://dx.doi.org/10.1093/hmg/ddt596
http://dx.doi.org/10.1684/epd.2016.0844
http://www.ncbi.nlm.nih.gov/pubmed/27629553
http://dx.doi.org/10.1371/journal.pone.0055526
http://www.ncbi.nlm.nih.gov/pubmed/23408996
http://dx.doi.org/10.2174/2213988501711010001
http://www.ncbi.nlm.nih.gov/pubmed/28401034
http://dx.doi.org/10.1016/S2468-1253(17)30052-3
http://dx.doi.org/10.1016/j.tcb.2014.06.006
http://dx.doi.org/10.1016/j.bbalip.2017.06.008
http://dx.doi.org/10.1016/j.bbamcr.2008.12.008


Int. J. Mol. Sci. 2020, 21, 6113 27 of 31

126. Jezela-Stanek, A.; Ciara, E.; Stepien, K.M. Neuropathophysiology, Genetic Profile, and Clinical Manifestation
of Mucolipidosis IV—A Review and Case Series. Int. J. Mol. Sci. 2020, 21, 4564. [CrossRef]

127. Venkatachalam, K.; Long, A.A.; Elsaesser, R.; Nikolaeva, D.; Broadie, K.; Montell, C. Motor Deficit
in a Drosophila Model of Mucolipidosis Type IV due to Defective Clearance of Apoptotic Cells. Cell 2008,
135, 838–851. [CrossRef]

128. Venugopal, B.; Mesires, N.T.; Kennedy, J.C.; Laplante, J.M.; Dice, J.F.; Slaugenhaupt, S.A.; Curcio-Morelli, C.
Chaperone-mediated autophagy is defective in mucolipidosis type IV. J. Cell. Physiol. 2009, 219, 344–353.
[CrossRef]

129. Khan, A.; Sergi, C. Sialidosis: A Review of Morphology and Molecular Biology of a Rare Pediatric Disorder.
Diagnostics 2018, 8, 29. [CrossRef] [PubMed]

130. Natori, Y.; Nasui, M.; Kihara-Negishi, F. Neu1 sialidase interacts with perilipin 1 on lipid droplets and
inhibits lipolysis in 3T3-L1 adipocytes. Genes Cells 2017, 22, 485–492. [CrossRef] [PubMed]

131. Davaadorj, O.; Akatsuka, H.; Yamaguchi, Y.; Okada, C.; Ito, M.; Fukunishi, N.; Sekijima, Y.; Ohnota, H.;
Kawai, K.; Suzuki, T.; et al. Impaired Autophagy in Retinal Pigment Epithelial Cells Induced from iPS Cells
obtained from a Patient with Sialidosis. Cell Dev. Biol. 2017, 6, 1–7. [CrossRef]

132. Missaglia, S.; Coleman, R.A.; Mordente, A.; Tavian, D. Neutral Lipid Storage Diseases as Cellular Model to
Study Lipid Droplet Function. Cells 2019, 8, 187. [CrossRef]

133. Massa, R.; Pozzessere, S.; Rastelli, E.; Serra, L.; Terracciano, C.; Gibellini, M.; Bozzali, M.; Arca, M. Neutral
lipid-storage disease with myopathy and extended phenotype with novelPNPLA2mutation. Muscle Nerve
2016, 53, 644–648. [CrossRef]

134. Angelini, C.; Nascimbeni, A.C.; Cenacchi, G.; Tasca, E. Lipolysis and lipophagy in lipid storage myopathies.
Biochim. Biophys. Acta BBA Bioenerg. 2016, 1862, 1367–1373. [CrossRef]

135. Yoneda, K. Inherited ichthyosis: Syndromic forms. J. Dermatol. 2016, 43, 252–263. [CrossRef]
136. Mogahed, E.A.; El-Hennawy, A.; El-Sayed, R.; El-Karaksy, H. Chanarin–Dorfman syndrome: A case report

and review of the literature. Arab. J. Gastroenterol. 2015, 16, 142–144. [CrossRef]
137. Peng, Y.; Miao, H.; Wu, S.; Yang, W.; Zhang, Y.; Xie, G.; Xie, X.; Li, J.; Shi, C.; Ye, L.; et al. ABHD5 interacts

with BECN1 to regulate autophagy and tumorigenesis of colon cancer independent of PNPLA2. Autophagy
2016, 12, 2167–2182. [CrossRef]

138. Nie, S.; Chen, G.; Cao, X.; Zhang, Y. Cerebrotendinous xanthomatosis: A comprehensive review of
pathogenesis, clinical manifestations, diagnosis, and management. Orphanet J. Rare Dis. 2014, 9, 179.
[CrossRef]

139. Salen, G.; Steiner, R. Epidemiology, diagnosis, and treatment of cerebrotendinous xanthomatosis (CTX).
J. Inherit. Metab. Dis. 2017, 40, 771–781. [CrossRef] [PubMed]

140. Li, J.; Xu, E.; Mao, W.; Qiao, H.; Zhou, Y.; Yang, Q.; Liu, S.; Chan, P. Parkinsonism with Normal Dopaminergic
Presynaptic Terminals in Cerebrotendinous Xanthomatosis. Mov. Disord. Clin. Pr. 2019, 7, 115–116.
[CrossRef] [PubMed]

141. Liebeskind, A.; Wilson, D.P. Sitosterolemia in the Pediatric Population. In Endotext [Internet]; Feingold, K.R.,
Anawalt, B., Boyce, A., Chrousos, G., Dungan, K., Grossman, A., Hershman, J.M., Kaltsas, G., Koch, C.,
Kopp, P., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000.

142. Bao, L.; Li, Y.; Deng, S.-X.; Landry, D.; Tabas, I. Sitosterol-containing Lipoproteins Trigger Free Sterol-induced
Caspase-independent Death in ACAT-competent Macrophages. J. Biol. Chem. 2006, 281, 33635–33649.
[CrossRef] [PubMed]

143. Alves, M.Q.; Le Trionnaire, E.; Ribeiro, I.; Carpentier, S.; Harzer, K.; Levade, T.; Ribeiro, M.G. Molecular basis
of acid ceramidase deficiency in a neonatal form of Farber disease: Identification of the first large deletion
in ASAH1 gene. Mol. Genet. Metab. 2013, 109, 276–281. [CrossRef]

144. Wali, G.; Wali, G.M.; Sue, C.M.; Kumar, K. A Novel Homozygous Mutation in the FUCA1 Gene Highlighting
Fucosidosis as a Cause of Dystonia: Case Report and Literature Review. Neuropediatrics 2019, 50, 248–252.
[CrossRef]

145. Koopal, C.; Marais, A.D.; Westerink, J.; Visseren, F.L. Autosomal dominant familial dysbetalipoproteinemia:
A pathophysiological framework and practical approach to diagnosis and therapy. J. Clin. Lipidol. 2017, 11,
12–23. [CrossRef]

146. Koopal, C.; Marais, A.D.; Visseren, F.L.J. Familial dysbetalipoproteinemia. Curr. Opin. Endocrinol. Diabetes Obes.
2017, 24, 133–139. [CrossRef]

http://dx.doi.org/10.3390/ijms21124564
http://dx.doi.org/10.1016/j.cell.2008.09.041
http://dx.doi.org/10.1002/jcp.21676
http://dx.doi.org/10.3390/diagnostics8020029
http://www.ncbi.nlm.nih.gov/pubmed/29693572
http://dx.doi.org/10.1111/gtc.12490
http://www.ncbi.nlm.nih.gov/pubmed/28429532
http://dx.doi.org/10.4172/2168-9296.1000188
http://dx.doi.org/10.3390/cells8020187
http://dx.doi.org/10.1002/mus.24983
http://dx.doi.org/10.1016/j.bbadis.2016.04.008
http://dx.doi.org/10.1111/1346-8138.13284
http://dx.doi.org/10.1016/j.ajg.2015.06.006
http://dx.doi.org/10.1080/15548627.2016.1217380
http://dx.doi.org/10.1186/s13023-014-0179-4
http://dx.doi.org/10.1007/s10545-017-0093-8
http://www.ncbi.nlm.nih.gov/pubmed/28980151
http://dx.doi.org/10.1002/mdc3.12846
http://www.ncbi.nlm.nih.gov/pubmed/31970228
http://dx.doi.org/10.1074/jbc.M606339200
http://www.ncbi.nlm.nih.gov/pubmed/16935859
http://dx.doi.org/10.1016/j.ymgme.2013.04.019
http://dx.doi.org/10.1055/s-0039-1684052
http://dx.doi.org/10.1016/j.jacl.2016.10.001
http://dx.doi.org/10.1097/MED.0000000000000316


Int. J. Mol. Sci. 2020, 21, 6113 28 of 31

147. Evans, D.; Beil, F.U. Genetic factors that modify the expression of type III hyperlipidemia in probands with
apolipoprotein E ε2/2 genotype. Future Lipidol. 2009, 4, 137–140. [CrossRef]

148. Henneman, P.; Beer, F.V.D.S.-D.; Moghaddam, P.H.; Huijts, P.; Stalenhoef, A.F.; Kastelein, J.J.; Van Duijn, C.M.;
Havekes, L.M.; Frants, R.R.; Van Dijk, K.W.; et al. The expression of type III hyperlipoproteinemia:
Involvement of lipolysis genes. Eur. J. Hum. Genet. 2009, 17, 620–628. [CrossRef]

149. Hendricks-Sturrup, R.; Clark-LoCascio, J.; Lu, C.Y. A Global Review on the Utility of Genetic Testing for
Familial Hypercholesterolemia. J. Pers. Med. 2020, 10, 23. [CrossRef]

150. Pang, J.; Sullivan, D.R.; Brett, T.; Kostner, K.M.; Hare, D.L.; Watts, G.F. Familial Hypercholesterolaemia
in 2020: A Leading Tier 1 Genomic Application. Hear. Lung Circ. 2020, 29, 619–633. [CrossRef] [PubMed]

151. Suárez-Rivero, J.M.; De La Mata, M.; Pavón, A.D.; Villanueva-Paz, M.; Povea-Cabello, S.; Cotán, D.;
Álvarez-Córdoba, M.; Villalón-García, I.; Ybot-Gonzalez, P.; Salas, J.J.; et al. Intracellular cholesterol
accumulation and coenzyme Q10 deficiency in Familial Hypercholesterolemia. Biochim. Biophys. Acta BBA
Mol. Basis Dis. 2018, 1864, 3697–3713. [CrossRef] [PubMed]

152. Andersen, L.H.; Miserez, A.R.; Ahmad, Z.; Andersen, R.L. Familial defective apolipoprotein B-100: A review.
J. Clin. Lipidol. 2016, 10, 1297–1302. [CrossRef] [PubMed]

153. Sharma, V.; Forte, T.M.; Ryan, R.O. Influence of apolipoprotein A-V on the metabolic fate of triacylglycerol.
Curr. Opin. Lipidol. 2013, 24, 153–159. [CrossRef] [PubMed]

154. Kwiterovich, P.O. Diagnosis and Management of Familial Dyslipoproteinemias. Curr. Cardiol. Rep. 2013,
15, 371. [CrossRef] [PubMed]

155. Chait, A.; Eckel, R.H. The Chylomicronemia Syndrome Is Most Often Multifactorial: A Narrative Review of
Causes and Treatment. Ann. Intern. Med. 2019, 170, 626–634. [CrossRef] [PubMed]

156. Young, S.G.; Davies, B.S.J.; Voss, C.V.; Gin, P.; Weinstein, M.M.; Tontonoz, P.; Reue, K.; Bensadoun, A.;
Fong, L.G.; Beigneux, A.P. GPIHBP1, an endothelial cell transporter for lipoprotein lipase. J. Lipid Res. 2011,
52, 1869–1884. [CrossRef]

157. Feingold, K.R. Triglyceride Lowering Drugs. In Endotext [Internet]; Feingold, K.R., Anawalt, B., Boyce, A.,
Chrousos, G., Dungan, K., Grossman, A., Hershman, J.M., Kaltsas, G., Koch, C., Kopp, P., et al., Eds.;
MDText.com, Inc.: South Dartmouth, MA, USA, 2000.

158. Burnett, J.R.; Hooper, A.J.; Hegele, R.A. Familial Lipoprotein Lipase Deficiency; Adam, M., Ardinger, H.,
Pagon, R., Wallace, S., Bean, L., Stephens, K., Amemiya, A., Eds.; University of Washington: Seattle, WA,
USA, 1993; ISBN 0444810781.

159. Wolska, A.; Dunbar, R.L.; Freeman, L.A.; Ueda, M.; Amar, M.J.; Sviridov, D.O.; Remaley, A.T. Apolipoprotein
C-II: New findings related to genetics, biochemistry, and role in triglyceride metabolism. Atherosclerosis 2017,
267, 49–60. [CrossRef]

160. Wilson, C.; Oliva, C.P.; Maggi, F.; Catapano, A.L.; Calandra, S. Apolipoprotein C-II deficiency presenting as
a lipid encephalopathy in infancy. Ann. Neurol. 2003, 53, 807–810. [CrossRef]

161. Desnick, R.J.; Guntinas-Lichius, O.; Padberg, G.W.; Schonfeld, G.; Lin, X.; Averna, M.; Yue, P.; Schnog, J.-J.B.;
Gerdes, V.E.A.; Cutillas, P.R.; et al. Familial Lipoprotein Lipase Deficiency. In Encyclopedia of Molecular
Mechanisms of Disease; Springer: Berlin/Heidelberg, Germany, 2009; p. 635. ISBN 0444810781.

162. Kobayashi, J.; Miyashita, K.; Nakajima, K.; Mabuchi, H. Hepatic Lipase: A Comprehensive View of its Role
on Plasma Lipid and Lipoprotein Metabolism. J. Atheroscler. Thromb. 2015, 22, 1001–1011. [CrossRef]

163. Warden, B.A.; Fazio, S.; Shapiro, M.D. Familial Hypercholesterolemia: Genes and Beyond. In Endotext
[Internet]; Feingold, K.R., Anawalt, B., Boyce, A., Chrousos, G., Dungan, K., Grossman, A., Hershman, J.M.,
Kaltsas, G., Koch, C., Kopp, P., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000.

164. Fellin, R.; Arca, M.; Zuliani, G.; Calandra, S.; Bertolini, S. The history of Autosomal Recessive
Hypercholesterolemia (ARH). From clinical observations to gene identification. Gene 2015, 555, 23–32.
[CrossRef] [PubMed]

165. Foody, J.M.; Vishwanath, R. Familial hypercholesterolemia/autosomal dominant hypercholesterolemia:
Molecular defects, the LDL-C continuum, and gradients of phenotypic severity. J. Clin. Lipidol. 2016, 10,
970–986. [CrossRef]

166. Sun, H.; Krauss, R.M.; Chang, J.T.; Teng, B.-B. PCSK9 deficiency reduces atherosclerosis, apolipoprotein B
secretion, and endothelial dysfunction. J. Lipid Res. 2018, 59, 207–223. [CrossRef] [PubMed]

167. Ballabio, A.; Gieselmann, V. Lysosomal disorders: From storage to cellular damage. Biochim. Biophys. Acta
BBA Bioenerg. 2009, 1793, 684–696. [CrossRef] [PubMed]

http://dx.doi.org/10.2217/clp.09.6
http://dx.doi.org/10.1038/ejhg.2008.202
http://dx.doi.org/10.3390/jpm10020023
http://dx.doi.org/10.1016/j.hlc.2019.12.002
http://www.ncbi.nlm.nih.gov/pubmed/31974028
http://dx.doi.org/10.1016/j.bbadis.2018.10.009
http://www.ncbi.nlm.nih.gov/pubmed/30292637
http://dx.doi.org/10.1016/j.jacl.2016.09.009
http://www.ncbi.nlm.nih.gov/pubmed/27919345
http://dx.doi.org/10.1097/MOL.0b013e32835c8c1a
http://www.ncbi.nlm.nih.gov/pubmed/23241513
http://dx.doi.org/10.1007/s11886-013-0371-5
http://www.ncbi.nlm.nih.gov/pubmed/23666884
http://dx.doi.org/10.7326/M19-0203
http://www.ncbi.nlm.nih.gov/pubmed/31035285
http://dx.doi.org/10.1194/jlr.R018689
http://dx.doi.org/10.1016/j.atherosclerosis.2017.10.025
http://dx.doi.org/10.1002/ana.10598
http://dx.doi.org/10.5551/jat.31617
http://dx.doi.org/10.1016/j.gene.2014.09.020
http://www.ncbi.nlm.nih.gov/pubmed/25225128
http://dx.doi.org/10.1016/j.jacl.2016.04.009
http://dx.doi.org/10.1194/jlr.M078360
http://www.ncbi.nlm.nih.gov/pubmed/29180444
http://dx.doi.org/10.1016/j.bbamcr.2008.12.001
http://www.ncbi.nlm.nih.gov/pubmed/19111581


Int. J. Mol. Sci. 2020, 21, 6113 29 of 31

168. Ward, C.; Martinez-Lopez, N.; Otten, E.G.; Carroll, B.; Maetzel, R.; Singh, R.; Sarkar, S.; Korolchuk, V.I.
Autophagy, lipophagy and lysosomal lipid storage disorders. Biochim. Biophys. Acta BBA Mol. Cell Biol. Lipids
2016, 1861, 269–284. [CrossRef] [PubMed]

169. Lieberman, A.P.; Puertollano, R.; Raben, N.; Slaugenhaupt, S.; Walkley, S.U.; Ballabio, A. Autophagy
in lysosomal storage disorders. Autophagy 2012, 8, 719–730. [CrossRef]

170. Patterson, M.C.; Vanier, M.T.; Suzuki, K.K.K.; Morris, J.A.; Carstea, E.; Neufeld, E.B.; Blanchette-Mackie, E.J.;
Pentchev, P.G.; Blanchette-Mackie, J.E.; Pentchev, P.G. Niemann-Pick Disease Type C: A Lipid Trafficking
Disorder. In The Online Metabolic & Molecular Bases of Inherited Disease; Valle, D.L., Antonarakis, S., Ballabio, A.,
Beaudet, A.L., Mitchell, G.A., Eds.; McGraw-Hill: New York, NY, USA, 2004; pp. 1–44. ISBN 9780071459969.

171. Walkley, S.U.; Vanier, M.T. Secondary lipid accumulation in lysosomal disease. Biochim. Biophys. Acta
BBA Bioenerg. 2009, 1793, 726–736. [CrossRef]

172. Akgoc, Z.; Sena-Esteves, M.; Martin, U.R.; Han, X.; D’Azzo, A.; Seyfried, T.N. Bis (monoacylglycero)
phosphate: A secondary storage lipid in the gangliosidoses. J. Lipid Res. 2015, 56, 1006–1013. [CrossRef]

173. Walkley, S.U. Secondary accumulation of gangliosides in lysosomal storage disorders. Semin. Cell Dev. Biol.
2004, 15, 433–444. [CrossRef]

174. Schuchman, E.H.; Wasserstein, M.P. Types A and B Niemann-Pick disease. Best Pract. Res. Clin.
Endocrinol. Metab. 2015, 29, 237–247. [CrossRef]

175. Hulkova, H.; Cervenková, M.; Ledvinova, J.; Tochácková, M.; Hrebícek, M.; Poupětová, H.; Befekadu, A.;
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