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Significance
Cobalamin dependence is scattered across the tree of life. In particular, fungi and plants have 

been deemed devoid of cobalamin. We demonstrate that cobalamin is utilized by all phyla of non-

Dikarya fungal lineages. This observation is supported by the identification of B12-dependent 

enzymes and cobalamin modifying enzymes in published fungal genomes. We found that 

cobalamin dependence was a widely distributed trait at least in Opisthokonta, across diverse 

microbial eukaryotes and likely in the LECA (last eukaryotic common ancestor). Moreover, the 

genes identified are actively transcribed in many taxa.

Abstract
Cobalamin is a cofactor present in essential metabolic pathways in animals and one of the water-

soluble vitamins. It is a complex compound synthesized solely by prokaryotes. Cobalamin 

dependence is scattered across the tree of life. In particular, fungi and plants were deemed devoid 

of cobalamin. We demonstrate that cobalamin is utilized by all non-Dikarya fungi lineages. This 

observation is supported by the genomic presence of both B12-dependent enzymes and 

cobalamin modifying enzymes. Fungal cobalamin-dependent enzymes are highly similar to their 

animal homologs. Phylogenetic analyses support a scenario of vertical inheritance of the 

cobalamin usage with several losses. Cobalamin usage was probably lost in Mucorinae and at 
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the base of Dikarya which groups most of the model organisms and which hindered B12-

dependent metabolism discovery in fungi. Our results indicate that cobalamin dependence was a 

widely distributed trait at least in Opisthokonta, across diverse microbial eukaryotes and was likely 

present in the LECA.

Introduction

Cobalamin, also known as vitamin B12, is the most common cobalt-containing compound in 

nature and one of eight known water-soluble vitamins grouped into B class. Cobalamin is an 

organometallic complex compound that contains a cobalt atom placed within a corrin ring. Vitamin 

B12 is derived from uroporphyrinogen III, which is also the first macrocyclic intermediate in a 

common pathway of heme and chlorophyll biosynthesis (Chatthanawaree 2011); (Dereven’kov et 

al. 2016); (Frank et al. 2005). In animals, cobalamin is used as a cofactor in myelin formation and 

thus is crucial for the proper functioning of the nervous system. A deficit of this vitamin in the diet 

may lead to sensory or motor deficiencies and to degeneration of the spinal cord (Dardiotis et al. 

2017).

Biosynthesis of cobalamin takes place only in bacteria and archaea which is quite unique for such 

a widely used vitamin. It is a very complex process involving more than 30 genes (Roth et al. 

1993) collectively conserved only in B12-producing prokaryotes which suggest a common origin 

of the whole pathway. Nonetheless, animals and some protists, but not fungi, are known to utilize 

cobalamin in their metabolism so they have to intake this vitamin with food. Interestingly, several 

eukaryotic microorganisms, including Phytophthora (Oomycota) and Dictyostelium (Amoebozoa), 

do possess B12-dependent enzymes (Grenville-Briggs et al. 2005); (Crona et al. 2013)). Some 

algae like Porphyridium purpureum and Amphidinium operculatum, can obtain the cobalamin 

cofactor from associated bacteria (Croft et al. 2005). Plants and fungi are believed to neither 

synthesize nor even have a need for the cobalamin (Jah et al. 2002; Duda, Pedziwilk, and Zodrow 

1957). Even more, they are regarded as devoid of cobalt at all (Zhang, Ying, and Xu 2019).

In Eukaryotes, B12-dependent enzymes are used in diverse processes ranging from the 

regeneration of methionine from homocysteine, catabolic breakdown of some amino acids into 

succinyl-CoA (necessary for citric acid cycle) and proper myelin synthesis. Only seven enzymes 

from the above pathways seem to be uniquely present in B12-dependent organisms. They either 

modify cobalamin or use it as a cofactor. The former group contains methylmalonyl Co-A mutase-

associated GTPase Cob (MeaB), cob(I)yrinic acid a,c-diamide adenosyltransferase (CblAdo 
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transferase), cyanocobalamin reductase (CblC), and cobalamin trafficking protein D (CblD) 

proteins, while the latter includes methionine synthase (MetH), methylmalonyl-CoA epimerase 

(MM-CoA epimerase) and methylmalonyl-CoA mutase (MM-CoA mutase) (Kräutler 2012). All 

these proteins are present in animals, including Holozoa e.g. Monosiga brevicollis. There is one 

more cobalamin-dependent enzyme that is present uniquely in archaebacteria, eubacteria, and 

bacteriophages. This enzyme called ribonucleotide reductase class II (RNR class II) takes a part 

in DNA replication and repair ((Herrick and Sclavi 2007); (Larsson et al. 2004)). For consistency 

and clarity, we will use the names of human representatives (given above) to tag the above seven 

enzymes and a bacterial representative for the last one. 

RNR is an enzyme that catalyzes the formation of deoxyribonucleotides from ribonucleotides. It 

plays a pivotal role in the synthesis, reparation, and regulation of the total rate of DNA synthesis 

(Herrick and Sclavi 2007); (Larsson et al. 2004). RNRs are divided into three classes that are 

working based on similar mechanisms but using a different compound to generate free radicals. 

Class I reductases are divided into IA and IB subclasses. These reductases generate tyrosyl free 

radicals from iron. Subclass IA is distributed in eukaryotes, eubacteria, and viruses. Subclass IB 

can be found only in eubacteria. Class II reductases use free radicals from cobalamin and are 

distributed in archaebacteria, eubacteria, and bacteriophages. The same distribution applies to 

class III, but this class uses a glycine radical (Kolberg 2004). Most eukaryotes, including animals, 

use class IA reductases, but surprisingly Phytophthora spp. uses cobalamin-dependent class II 

RNR.

Methionine synthetase (MetH) comes in two variants: cobalamin-dependent MetH (EC 2.1.1.13) 

and cobalamin-independent MetE (EC 2.1.1.14). MetH catalyzes the final step in the 

remethylation of homocysteine which explains increased levels of homocysteine upon vitamin 

B12 deficiency. In animals, this may lead to blindness, neurological symptoms, and birth defects 

(Outteryck et al. 2012). MetH requires Cyanocobalamin reductase (CblC) and Cobalamin 

trafficking protein (CblD) for proper function. ClbC catalyzes the decyanation of cyanocobalamin 

and the dealkylation of alkylcobalamins. In bacteria, an analog of CblC/D, namely TonB, is 

involved in energy transduction for the uptake of cobalamin (Lerner-Ellis et al. 2006); (Hannibal 

et al. 2009). CblD interacts with CblC and directs CblC-cob(II)alamin molecules to the 

mitochondrion. Consistently, ClbC localizes either to cytoplasm or mitochondria, while ClbD 

remains in the cytosol (Gherasim et al. 2013; Mah et al. 2013).
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CblAdo transferase, cob(I)yrinic acid a,c-diamide adenosyltransferase, converts cobalamin into 

adenosylcobalamin (AdoCbl). AdoCbl is a cofactor of multiple enzymes that catalyze unusual 

rearrangement or elimination reactions. Some of them are restricted to prokaryotes e.g. lysine-

5,6-aminomutase, isobutyryl-CoA mutase and glutamate mutase. Others are present also in 

Eukaryotes eg. methylmalonyl-CoA mutase (Mera and Escalante-Semerena 2010); (Marsh and 

Meléndez 2012).

In humans, MM-CoA epimerase and MM-CoA mutase are both involved in fatty acid catabolism. 

MM-CoA epimerase catalyzes the rearrangement of (S)-methylmalonyl-CoA to the (R) form and 

uses a vitamin B12 cofactor (Overath et al. 1962). MM-CoA mutase induces the formation of 

adenosyl radical from AdoCbl cofactor and subsequently initiates a free-radical rearrangement of 

its substrate, (R)-methylmalonyl-CoA to succinyl-CoA - a key molecule of the citric acid cycle 

(Mancia et al. 1996). Methylmalonyl Co-A mutase-associated GTPase Cob (MeaB) is crucial for 

the proper functioning of methylmalonyl-CoA mutase (Takahashi-Iñiguez et al. 2017). Mutational 

analysis of this protein performed in Methylobacterium sp. showed an inability to convert 

methylmalonyl-CoA to succinyl-CoA caused by an inactive form of methylmalonyl-CoA mutase 

(Froese, Sean Froese, et al. 2010).

Kingdom Fungi comprises several lineages of non-Dikarya which, in the order of divergence, are 

classified into Chytrydiomycota (Chang et al. 2015; Liu and Stajich 2015) and Blastocladiomycota 

(Tabima et al. 2020) grouping many aquatic organisms, fully terrestrial animal-related 

Zoopagomycotina (Ahrendt et al. 2018), Entomophthoromycotina, Kickxellomycotina (Chang et 

al. 2015) and plant/soil/dung-associated Mucoromycotina (Mondo et al. 2017), 

Mortierellomycotina (Uehling et al. 2017) and Glomeromycotina (Chen et al. 2018). We can also 

list Microsporidia, that are described as the earliest diverging clade of fungi (Capella-Gutiérrez et 

al. 2012). The remaining Dikarya include evolutionary youngest and best-studied fungal phyla - 

Ascomycota and Basidiomycota (Spatafora et al. 2016). None of the aforementioned B12-related 

enzymes has been reported from fungi. Yet non-Dikarya, early diverging lineages of fungi share 

multiple ancestral traits with animals and microbial eukaryotes. Here we show that all B12-

dependent eukaryotic pathways are present in non-Dikarya fungi as well.
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Results 

Our initial searches showed that only eight enzymes are uniquely present in B12-dependent 

organisms (Table 1). All of them have their homologs within early-diverging fungal lineages 

(Supplementary Table S1).
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Table 1. B12-specific enzymes used for the identification of B12-dependent pathways in fungal 

proteomes with the total number of homologs identified in this study.

Human 
gene EC Enzyme name Reference Pfam name Pfam ID

Structure 
ID

No. of 
fungal 
proteins

No. of 
fungal 
species

MUT 5.4.99.2 Methylmalonyl-CoA mutase, 
MM-CoA mutase

(Forny et al. 
2014)

MM_CoA_mutase PF01642 2XIJ 39 36

MCEE 5.1.99.1 Methylmalonyl-CoA epimerase, 
MM-CoA epimerase

(Bobik and 
Rasche 2001)

Glyoxalase_4 PF13669 1JC5 42 32

MMAA 3.6.5.- Methylmalonyl Co-A mutase-
associated GTPase, MeaB

(Bobik and 
Rasche 2001; 
Froese, 
Kochan, et al. 
2010)

MeaB PF03308 2WWW 30 24

MTR 2.1.1.13 Methionine synthase, MetH (Bobik and 
Rasche 2001; 
Froese, 
Kochan, et al. 
2010; Bassila 
et al. 2017)

Met_synt_B12 PF02965 2O2K 65 53

MMAB 2.5.1.17 Methylmalonic aciduria and 
homocystinuria type B family, 
CblAdo transferase

(Mera et al. 
2007)

Cob_adeno_trans PF01923 2R6X 71 50

MMACHC 1.16.1.6 Methylmalonic aciduria and 
homocystinuria type C family, 
CblC

(Kim et al. 
2009)

CblC PF16690 3SBZ 23 20

MMADHC - Methylmalonic aciduria and 
homocystinuria type D family, 
CblD

(Coelho et al. 
2008)

CblD PF10229 5CV0 55 47

- 1.17.4.2 Ribonucleoside-diphosphate 
reductase class II,  RNR class II

(Booker and 
Stubbe 1993)

RNR_Alpha PF17975 1L1L 24 13

Distribution of B12 dependent enzymes in Fungi

Cobalamin-dependent enzymes were identified in 50 out of 59 analyzed non-Dikarya fungi (Table 
1, see Supplementary Table S2 for detailed lists of all protein accessions). This dataset contains 

all genome derived protein predictions for all non-Dikarya isolates deposited in GenBank by 

October 2019, with representatives of all main lineages.. The distribution of cobalamin-related 

enzymes among non-Dikarya fungi is shown in Fig. 1 and per organism occurrence of B12-related 

protein-coding genes is summarized in supplementary Table S1 ). The whole set of studied 

enzymes is present in five non-Dikarya fungal proteomes, four of them belonging to the 

Glomeromycotina (Mucoromycota). The occurrence of cobalamin-related enzymes is common for 

all Mucoromycota species, but worth noting are the differences between Glomeromycotina, 

Mortierellomycotina, and Mucoromycotina (the latter comprising saprotrophic  Mucorales, 

Umbelopsidales and plant symbionts Endogonales). In Mucorales only three families of 
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cobalamin-dependent enzymes are conserved (CblD, MetH, and CblAdo transferase). For other 

Mortierallomycotina and Endogonales, it is common to retain four or more of the analyzed protein 

families. The whole set of enzymes can be found also in Blastocladiomycota. Other taxa with a 

high occurrence of cobalamin-dependent enzyme families are the animal-related 

Entomophthoromycotina, Kickxellomycotina, and Zoopagomycotina. All of them have homologs 

from four up to seven families. 

Nine of the analyzed proteomes, all belonging to Chytridiomycota, do not contain any of the 

studied enzymes. The presence of six out of eight studied proteins in Chytridiales and 

Monoblepharidiales shows that not all Chytridiomycota are devoid of B12-dependent genes. 

Neocallimastigomycetes stand out especially here - none of the analyzed four proteomes from 

this taxon had any homologs of the cobalamin-related proteins family. 
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Figure 1. Distribution of B12-dependent protein families projected onto a partial eukaryotic tree 

of life. The schematic tree is based on (Davis et al. 2019; (Spatafora et al. 2016) for fungi and 

on (Burki et al. 2020) for remaining lineages. 

Conservation of B12 processing pathways

Cobalamin-dependent enzymes play roles in three pathways associated with RNR class II, MetH, 

and MM-CoA mutase. Obtained results suggest that among early-diverging fungi there is a 

tendency to conserve the key enzymes rather than whole pathways. This is especially true in 

Mucorales which retained only CblAdo transferase and part of MetH pathways. In other non-

Dikarya fungi, MM-CoA mutase associated pathway is also well conserved. The B12-dependent 

ribonucleotide reductase is least conserved but this might be associated with the presence of 

different RNR classes.

In order to ensure that all housekeeping functions provided by RNR class II, MM-CoA mutase, 

and MetH pathways are maintained in all of the studied isolates, even those devoid of B12-

dependent enzymes, we searched for cobalamin-independent alternatives. We looked for  MetE 

which can substitute MetH (González et al. 1996), RNR class I instead of class II (Jordan and 

Reichard 1998), and methylcitrate cycle (MCC) as an alternative to MM-CoA mutase pathway 

(Dubey et al. 2013). We found that all these enzymes involved in B12-independent metabolic 

tracks can be identified in Dikarya and some of the non-Dikarya fungi providing the required 

enzymatic activity without B12 cofactor. The B12-independent alternatives are differently 

distributed  among studied genomes compared to their B12-dependent counterparts. RNR class 

I and MCC synthase were found in all analyzed genomes and in other early-diverging fungi that 

have not been included in our analysis but were present in the NCBI NR database. Some early-

diverging fungi  do not have B12-dependent enzymes at all for instance Batrachochytrium spp. 

have these two alternative B12-independent traits. Interestingly, both methionine synthases MetE 

and MetH can also co-occur in one genome - we observed co-occurrence of these two enzymes 

in 45 analysed genomes. MetE which is an alternative to B12-dependent MetH is present in 51 

studied genomes, mostly in Mortierellomycotina but also in genomes that do not have B12-

dependent enzymes (e.g. Piromyces finnis). Seven Mortierellomycotina genomes, which were not 

included in our datasets, have also MetE copies. This might suggest that the metabolic pathways 

which first required B12  are still conserved among fungi, but have become independent of 

cobalamin for some organisms.
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Since most of the identified homologs of eight B12-dependent enzymes are annotated as 

hypothetical unknown proteins without experimental characterization, we performed tblastn 

searches on them against the NCBI EST database. This served as intermediate evidence that 

the predicted B12-related proteins in non-Dikarya fungi originate from active genes. Tblastn 

search results allow also to expect that genes encoding all identified proteins will be expressed.

Figure 2.  ML phylogenetic tree of methionine synthase MetH homologs. The tree was built 

based on 72 sequences from non-Dikaryal proteomes analysed in this study, aligned with their 
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291 homologues from NCBI non-redundant database (Methods). Sequences marked with red 

labels are likely contaminations eg. Coffea in a fungal clade.

Phylogenetic analysis of protein homologs associated with B12 utilization

To trace the evolution of the studied proteins, phylogenetic trees for each of the eight protein 

families were inferred using Bayesian (BA) and Maximum Likelihood (ML) approaches  

(Supplementary Dataset DS1), except for MeaB and CblAdo transferase (with highest numbers 

of identified homologs) where BA analyses did not converge to a reliable level of the standard 

deviation of split frequencies. We present an ML tree of MetH homologs as an example. All 

characteristic observations are common for all eight enzyme trees and are clearly visible on the 

MetH phylogenetic tree (Fig.2). 

We noticed single bacterial sequences misannotated as fungal due to likely bacterial 

contamination of the fungal DNA samples. We also noticed single fungal sequences grouping 

within their bacterial relatives. In most cases these were proteins homologous to our enzyme yet 

with other function, e.g. MeaB is similar to other GTPases (KAA6408927.1). Non-Dikarya fungal 

sequences rarely grouped with bacterial sequences with the exception of MM-CoA mutase from 

Syncephalis pseudoplumigaleata (RKP28319.1, RKP28318.1) which displayed a very high 

sequence identity reaching 100% with Afipia alphaproteobacteria which might indicate sample 

contamination. Notably, misannotated Dikarya sequences, like other Dikarya representatives, 

could not be found in  Eukaryotic clades for the analyzed enzymes.

Exclusively fungal clades can be observed in five protein families (Fig.3). For the other three 

enzymes, there are clades composed mostly of fungal homologs and ones belonging to other 

eukaryotic microorganisms (Holozoa, Amoebozoa, and SAR). Observed topologies in the 

eukaryotic part of the trees generally are congruent with the species tree. Interestingly, in two 

cases (CblAdo transferase and RNR class II) Oomycota and Fungi clades are sisters to each 

other. Sequences identity of randomly chosen homologs is ~63% for RNR class II (ETI40368.1 

and KNE69215.1) and ~52% for CblAdo transferase (XP_002997018.1 and KNE71581.1).

For MeaB, CblD, MetH, MM-CoA mutase, and RNR class II, fungal sequences form a sister clade 

to Fonticula alba (Holomycota), the closest relative of fungi belonging to Nucleariida. This pattern 

was observed for class II with the following score of aLTR support of the fungal clade: MeaB - 

1.00, CblD - 1.00, MetH - 1.00, MM-CoA mutase - 1.00, and RNR class II - 0.98. In the case of 

CblAdo transferase, CblC and MM-CoA epimerase fungal sequences group together with either 
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ancient Metazoa representatives (CblAdo transferase) or with microbial eukaryotes from 

Holomycota, Amoebozoa and SAR groups (MM-CoA epimerase). Importantly, non-Dikarya fungal 

sequences are always sister to other Eukaryotic sequences which rules out bacterial 

contamination. Sequences from model organisms belonging to diverse lineages of microbial 

eukaryotes, not only Opisthokonta, were represented in these clades, including representatives 

from Polysphondylium pallidum and Dictyostelium spp. (Amebozoa), Thecamonas trahens 

(Apusozoa), Chlamydomonas reinhardtii (Chlorophyta), Stentor coeruleus (Alveolata), Emiliania 

huxleyi (Haptophyta), Thalassiosira pseudonana, and Blastocystis spp. (Heterokonta), Naegleria 

gruberi and Euglena gracilis (Excavata).
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Figure 3.  Unrooted ML trees of eight B12-related protein family representatives.

Discussion

Our discoveries contradict the current opinion that fungi neither synthesize nor use cobalamin 

(Jah et al. 2002; Duda, Pedziwilk, and Zodrow 1957) and do not have cobalt at all (Zhang, Ying, 

and Xu 2019). This claim remains true for Dikarya, but we demonstrate that the early diverging 

fungi do have proteins that either process or use cobalamin as a cofactor.

In Eukaryotes three main metabolic pathways use cobalamin - RNR class II, MM-CoA mutase 

and MetH pathways. Functions provided by these pathways are needed for the independent 

functioning of a living cell and can be lost in parasites (Zhang et al. 2009). Transport and trafficking 

of cobalamin in the cell is described in animals but homologs of the proteins responsible for the 

cobalamin transport e.g. LMBR1-like membrane protein transporters have a universal distribution 

in the Opisthokonta. This means that non-Dikarya fungi also have other components that are 

necessary for processing of cobalamin. Many of the enzymes involved in the MM-CoA mutase 

and MetH pathways, like mevalonate kinase and methionine synthase reductase, respectively, 

are conserved independently of B12 usage.

We found traces of all of these pathways among all lineages of early diverging fungi. The 

distribution of the genes encoding the above-mentioned enzymes is not uniform across the 

analyzed organisms. For non-Dikarya fungi, it is common to either have two out of three pathways 

or to have them incomplete.

Only Glomeromycotina and Blastocladiomycota have all three complete B12-dependent 

pathways. These two taxonomic groups are evolutionary and ecologically distant, they share only 

a few characteristics among others some of these fungi possess relatively big genomes. The latter 

may be a highlight of relaxed pressure on genome compactness.

The least conserved among fungal lineages is the RNR class II pathway. Organisms missing this 

class use cobalamin-independent RNR class I, which is the RNR used by animals. It is worth 

noticing that organisms are not limited to having only one class of RNRs at once (Jordan and 

Reichard 1998). Cobalamin-dependent RNR class II appears mostly in bacteria and, according 

to our results, also in non-Dikarya fungi and Oomycota. Additionally, RNR class II sequences from 

fungi and Oomycota form  sister clades in phylogenetic trees (this is also true for CblAdo 
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transferase homologs). This may suggest an ancient horizontal gene transfer between Oomycota 

and fungi resulting in nonidentical but highly similar sequences. This is yet another parallel 

molecular trait that groups fungi and other filamentous fungi-like organisms together, next to 

similarities in weaponry to attack plants (Latijnhouwers, de Wit, and Govers 2003), the evolution 

of the nitrate assimilation pathway (Ocaña-Pallarès et al. 2019), and the role of horizontal gene 

transfer (Soanes and Richards 2014; Rosewich and Kistler 2000). This trait is exquisitely 

interesting because it is shared by eukaryotic microorganisms but is absent from big multicellular 

forms. 

The best-conserved pathway in non-Dikarya fungi - MetH - can be substituted with a cobalamin-

independent enzyme called MetE (González et al. 1996). We checked if this enzyme variant also 

can occur in non-Dikarya fungi proteomes. MetE is present in all non-Dikarya fungi phyla, even in 

Neocallimastigomycetes, which do not have any other cobalamin-dependent or independent 

alternatives of studied pathways. For some of the non-Dikarya fungi, lack of CblC protein can be 

observed. We did not look for substitutes for this protein, because the cooperation of CblC and 

CblD in the MetH pathway was described only for animals - outside this group, the exact function 

of CblD protein is not documented, and perhaps in other organisms, CblC is sufficient to perform 

its function by itself. One might speculate that other proteins are recruited to catalyze decyanation 

of cyanocobalamin and dealkylation of alkylcobalamins in non-animal organisms.

MM-CoA mutase pathway is more or less conserved among early-diverging fungal lineages. 

Interestingly, all Mucorales members lack all three B12-dependent enzymes of that pathway. We 

checked for alternatives for this metabolism track and it turned up to be more complex than in the 

other two cases. In Dikarya propionate metabolism is carried out in the methylcitrate cycle (MCC). 

Three key enzymes for this track are methylcitrate synthase (MCS), methylcitrate dehydrogenase 

(MCD), and methylisocitrate lyase (MCL) (Dubey et al. 2013). All of them are present in Dikarya 

and, interestingly also in Choanoflagellida and Metazoa, but not in early-diverging fungal and 

other ancient lineages like Ichthyosporea and in Fonticula. MCS and MCL are conserved as well 

in old fungal phyla as in Dikarya, but that does not apply to MCD. Following information about the 

MCC gene cluster (Santos et al. 2020) genomic context of this pathway was checked for 

Batrachochytrium and Mucor representatives showing no synteny. Moreover, no candidate 

dehydrogenases were found upstream or downstream of MCS and MCL genes. We assume that 

the function of MCD can be taken over by other dehydrogenases.
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According to our results, we can speculate the best-conserved elements of cobalamin-dependent 

pathways are key enzymes. For example, in the MetH pathway, the best-conserved element is 

MetH protein. On the contrary, it is quite common to lose CblC and CblD proteins from the 

proteome (Supplementary Table S1). The question is why in some organisms only the main part 

of pathways is conserved and how it is possible for these pathways to work without helper protein. 

We speculate that our results may be biased towards the main enzymes because they are well-

known, especially have a well-known active site what allows for more rational data curation. 

Because our selection of potentially active homologs heavily relied on identified active site 

residues, it could have resulted in an underestimate of helper protein identification. Additionally, 

the MetH pathway is well described only in animal metabolism, so we cannot be sure about the 

role of CblC and CblD in fungal metabolism and about the necessity of having these proteins. On 

the other hand, the best-conserved protein in the MM-CoA mutase pathway is CblAdo 

transferase. For Mucorales, it is common to have only this one protein from the whole MM-CoA 

mutase pathway. It is worth noticing that this protein is responsible for synthesizing  AdoCbl 

cofactor for MM-CoA mutase which is the only protein in fungal metabolism that is known to 

require the AdoCbl cofactor. The question is why in Mucorales proteomes there is still pressure 

to conserve CblAdo transferase while it is common to lose MM-CoA mutase.

Literature suggests that host-associated organisms have a tendency for the loss of cobalt 

utilization pathways (Zhang et al. 2009). Our results suggest that non-Dikarya fungi comply with 

this assumption. Chytridiomycota phylum combines amphibian parasites Batrachochytrium sp. 

and herbivorous mammals symbionts from class Neocallimastigomycetes. For these organisms, 

no cobalamin-dependent enzyme was found. These organisms may obtain the required resources 

from the host. However, our observations for plant-associated fungi are different. Mycorrhizal 

fungi from Glomeromycotina and Endogonales, despite maintaining extensive symbiotic 

relationships with 80% of plant species (Smith and Read 2010), retain well-conserved cobalamin-

dependent pathways. It is possible that plant-associated non-Dikarya fungi kept these pathways 

simply because plant metabolism lacks cobalamin. The difference between plant and animal 

associated fungi may be a consequence of different pressures in such diverse ecological niches. 

Generally, parasites and obligate symbionts are biotrophs characterized by reduced genome size. 

However, in the case of mycorrhizal fungi, for a yet unknown reason, the pressure to reduce the 

genome seems to be relaxed (Lynch and Conery 2003); (James et al. 2020).

The question that still remains is what is the source of cobalamin for fungi. We speculate that 

fungi are able to accumulate B12 acquired from bacterial sources. B12 cofactor supply for at least 
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some of the fungi with B12-dependent enzymes may be mediated by endohyphal bacteria with 

an intact B12 synthesis pathway. All crucial components of the B12 de novo synthesis pathway 

required for such a relationship were found in the case of symbiosis between Glomeromycotina 

fungus Gigaspora margarita and β-proteobacterium Candidatus Glomeribacter gigasporarum 

(Ghignone et al. 2012). Further experimental verification will be required to validate this 

hypothesis and confirm bacterial contribution to fungal B12 metabolism. There is also another 

open question of how fungi acquire the essential cofactor when growing in pure culture or in 

nature.

During the analysis of obtained results, we tried to understand the evolution of cobalamin-

dependent metabolic pathways among kingdom Fungi. To widen the picture we checked studied 

proteomes for cobalamin-independent alternative metabolic pathways, and we confirmed their 

occurrence. Based on current knowledge we hypothesized that B12-dependent pathways are 

replaced by B12-independent alternatives in course of the evolution, and finally disappear in 

Dikarya lineages. In fact, the ability to utilize cobalamin is either retained or lost independently 

from the time of phyla divergence. Surprisingly we observed a correlation between the 

preservation of this ability and fungal ecology. As we observe, cobalamin-dependent pathways 

are more common in fungi associated with plants, than in species associated with animals and 

living as soil saprophytes. Correlation like this is unclear for mycoparasites. In our dataset, we 

have three fungi representing such a lifestyle and they have different enzyme distribution. In this 

case, we observed a correlation that mycoparasites which have B12-dependent enzymes infect 

fungi that also possess such enzymes (e.g. Rozella allomycis -  Allomyces sp.). Similarly, 

parasites of organisms without B12-dependent genes do not have any of these enzymes 

themselves (Caulochytrium protostelioides - Sordaria sp.). This remark needs further 

investigation because we do not have enough data to form a reliable conclusion. Our discovery 

challenges the current view that fungi can neither synthesize nor utilize cobalamin. We proved 

that non-Dikarya fungal proteomes contain three metabolic pathways utilizing vitamin B12. We 

speculate these organisms have the possibility to accumulate cobalamin. Yet, these genomic 

observations need to be tested experimentally. Our discoveries may open the way for the 

selection of B12 over accumulating strains of food fermenting fungi without the need for genetic 

material manipulation.
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B12 enzymes in other eukaryotes

We also confirmed the occurrence of B12 related enzymes in other Holomycota taxa like 

Cryptomycota (Rozellida and Microsporidia) and Fonticulida. These organisms retain a maximum 

of only six out of the eight enzymes, but it is worth noting they are not independent, free-living 

organisms.

Studied enzymes are also present in Amoebozoa and Oomycota. Some other species from the 

SAR supergroup, to which Oomycota belongs (Burki et al. 2020), are known to have cobalamin-

dependent methionine synthase (Boudouresque 2015). The matter is not clear about B12 

utilization in Amoebozoa. There is contradictory information on the necessity to supplement the 

culture of Dictyostelium discoideum with that vitamin (Stephan et al. 2003). In addition, class II 

RNR has been observed in D. discoideum previously (Crona et al. 2013). B12-dependent 

enzymes are encountered also in green algae (Chlorophyta), red algae (Rhodophyta) (Croft et al. 

2005; Thi Vu et al. 2013)) and Excavata  (Helliwell et al. 2016). Green algae are known to acquire 

vitamin B12 through a symbiotic relationship with bacteria (Croft et al. 2005; Thi Vu et al. 2013).

Taken together, B12 dependence seems to be a widely distributed trait in Eukaryotes and was 

likely present in the last common ancestor of Eukaryotes. Several multicellular lineages including 

vascular plants and Dikarya developed B12-independent alternative pathways and, eventually, 

lost the B12 metabolism completely. The main question that remains about our discovery is the 

actual role of conserving B12-dependent enzymes in early diverging lineages of fungi - is this 

dependency on cobalamin operative or is it just a relic from shared ancestry with animals and 

amoebae?

Methods

Fifty-nine predicted non-Dikarya proteomes were downloaded from NCBI in October 2019 

(Sayers et al. 2020) (Supplementary Table S3). Next, a pfam_scan.pl (default settings) (Mistry, 

Bateman, and Finn 2007) search of all protein sequences against a library of Pfam HMMs was 

performed. To expand our dataset NCBI NR database was searched for homologs of those non-

Dikarya fungal B12-dependent proteins and additionally for homologs of proteins from model 

eukaryotic organisms with known B12 dependent enzymes (Homo sapiens, Dictyostelium 

discoideum, Fonticula alba, Phytophthora infestans) using PSI-BLAST (evalue=0.001, 

num_iterations=3) (S. F. Altschul et al. 1997). The dataset was unified and clustered with CD-HIT 
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(n=4, c=0.7, aS=0.95, aL=0.95), all fungal hits were retained regardless of their sequence 

similarity. To get only homologs of a protein of our interest, there was a need to discard homologs 

from related protein families. To do this we visualized protein pairwise similarity using CLANS 

(Mistry, Bateman, and Finn 2007; Frickey and Lupas 2004) and selected separated groups of 

sequences. Dikarya sequences did not group together with the non-Dikarya-animal-protist 

clusters, except for single cases of clear contamination.

In the next step, sequences were aligned using local iterative mode in Mafft v. 3.7 (localpair, 

maxiterate=100) (Katoh et al. 2002). The alignment was additionally cleared manually from 

potential inactive homologs. All sequences that showed a lack of amino-acids crucial for enzyme 

activity or substitution of them with amino-acids that are not able to maintain enzyme activity, 

were discarded from the set. 

All alignments were trimmed with TrimAl (model=gappyout) (Capella-Gutiérrez, Silla-Martínez, 

and Gabaldón 2009) to remove poorly conserved regions. Then, by using ProtTest (all-matrices, 

all-distributions) (Capella-Gutiérrez, Silla-Martínez, and Gabaldón 2009; Abascal, Zardoya, and 

Posada 2005), we appointed the best amino-acid substitution models based on Akaike 

Information Criterion AIC. Phylogenetic trees were built using LG model for each of the B12 

metabolism-related enzymes with Bayesian (BA) and Maximum likelihood (ML) approaches using 

MrBayes 3.2.7a x86_64 (Huelsenbeck and Ronquist 2001) and PhyML (Guindon et al. 2010) 

respectively. ML trees were estimated with a gamma distribution of rates between sites (four 

categories and alpha parameter estimated by PhyML) and aLRT Chi2-based parametric branch 

supports. In the course of BA inference, four Markov chains were run for 3 runs from random 

starting trees for 107 generations, and trees were sampled every 2.5x102 generations. The first 

one-fourth of generations were discarded as burn-in. Then, we used the remaining samples to 

calculate the tree of maximum clade credibility. 

Expression of representatives of each of the protein sets (three randomly chosen homologs from 

each family) was confirmed by tblastn (Stephen F. Altschul et al. 1990) (default settings) searches 

against the EST database at NCBI website. 

Created phylogenetic trees were visualized and edited by iTOL v4 (Letunic and Bork 2019). Some 

bacterial sequences were misannotated as fungal due to likely bacterial contamination of the 

fungal DNA samples. A similar situation applies to some fungal sequences grouping within their 

bacterial relatives. In most cases, these proteins belong to another subfamily of homologous 

proteins with different substrate specificity. For instance, MeaB protein family groups diverse 
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GTPases processing different substrates and only one of the subfamilies interacts with 

methylmalonyl-CoA mutase.

Legends 
Table 1. B12-specific enzymes used for the identification of B12-dependent pathways in fungal 

proteomes with the total number of homologs identified in this study.

Figure 1. Distribution of B12-dependent protein families on a dendrogram showing a part of the 

eukaryotic tree of life, the schematic tree is based on (Davis et al. 2019, (Spatafora et al. 2016) 

for fungi and on (Burki et al. 2020) for remaining lineages. For each taxon, symbols on the right 

represent B12-dependent enzymes found in their proteome. X symbol means no identified 

homologs of the enzyme in the whole taxon; empty shape refers to the occurrence of the enzyme 

in less than half of studied representatives, filled shape means that half or more representatives 

have the enzyme in their proteomes.

Figure 2. Phylogenetic tree of methionine synthase MetH homologs. The tree was built based on 

72 sequences from non-Dikaryal proteomes, aligned with their homologs from NCBI non-

redundant database 291 (Methods). Sequences marked with red labels do not belong to 

organisms to which they were assigned.

Figure 3. Unrooted ML trees of eight B12-related protein family representatives.
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Figure 1. Distribution of B12-dependent protein families projected onto a partial eukaryotic tree of life. The 
schematic tree is based on (Davis et al. 2019; (Spatafora et al. 2016) for fungi and on (Burki et al. 2020) 

for remaining lineages. 
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Figure 2. ML phylogenetic tree of methionine synthase MetH homologs. The tree was built based on 72 
sequences from non-Dikaryal proteomes analysed in this study, aligned with their 291 homologues from 

NCBI non-redundant database (Methods). Sequences marked with red labels are likely contaminations eg. 
Coffea in a fungal clade. 
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Figure 3. Unrooted ML trees of eight B12-related protein family representatives. 
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