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ABSTRACT Pseudomonas aeruginosa, a facultative human pathogen causing noso-
comial infections, has complex regulatory systems involving many transcriptional
regulators. LTTR (LysR-Type Transcriptional Regulator) family proteins are involved in
the regulation of various processes, including stress responses, motility, virulence,
and amino acid metabolism. The aim of this study was to characterize the LysR-type
protein BsrA (PA2121), previously described as a negative regulator of biofilm forma-
tion in P. aeruginosa. Genome wide identification of BsrA binding sites using chroma-
tin immunoprecipitation and sequencing analysis revealed 765 BsrA-bound regions
in the P. aeruginosa PAO1161 genome, including 367 sites in intergenic regions. The
motif T-N11-A was identified within sequences bound by BsrA. Transcriptomic analy-
sis showed altered expression of 157 genes in response to BsrA excess; of these, 35
had a BsrA binding site within their promoter regions, suggesting a direct influence
of BsrA on the transcription of these genes. BsrA-repressed loci included genes
encoding proteins engaged in key metabolic pathways such as the tricarboxylic acid
cycle. The panel of loci possibly directly activated by BsrA included genes involved
in pilus/fimbria assembly, as well as secretion and transport systems. In addition,
DNA pull-down and regulatory analyses showed the involvement of PA2551,
PA3398, and PA5189 in regulation of bsrA expression, indicating that this gene is
part of an intricate regulatory network. Taken together, these findings reveal the ex-
istence of a BsrA regulon, which performs important functions in P. aeruginosa.

IMPORTANCE This study shows that BsrA, a LysR-type transcriptional regulator from
Pseudomonas aeruginosa, previously identified as a repressor of biofilm synthesis, is
part of an intricate global regulatory network. BsrA acts directly and/or indirectly as
the repressor and/or activator of genes from vital metabolic pathways (e.g., pyruvate,
acetate, and tricarboxylic acid cycle) and is involved in control of transport functions
and the formation of surface appendages. Expression of the bsrA gene is increased
in the presence of antibiotics, which suggests its induction in response to stress,
possibly reflecting the need to redirect metabolism under stressful conditions. This is
particularly relevant for the treatment of infections caused by P. aeruginosa. In sum-
mary, the findings of this study demonstrate that the BsrA regulator performs impor-
tant roles in carbon metabolism, biofilm formation, and antibiotic resistance in P.
aeruginosa.

KEYWORDS Pseudomonas aeruginosa, LysR-type transcriptional regulator, LTTR, BsrA
regulon, tricarboxylic acid cycle, regulatory network

Regulation of transcription is the principal mechanism controlling gene expression and
the most economical way for a cell to respond to a rapidly changing environment.

One of the largest groups of transcriptional regulators, with representatives in bacteria,
archaea, and even eukaryotic organisms (1, 2), is the LysR Type Transcriptional Regulator
(LTTR) family (3). Most LTTRs have two conserved and similarly organized functional
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domains (1, 4). The N-terminal DNA-binding domain (DBD) with a winged helix-turn-helix
motif mediates binding to cognate promoter sequences. The C-terminal effector-binding
domain (EBD), usually composed of two response subdomains (RD1 and RD2), is involved
in ligand recognition and modulation of DBD activity (1, 3, 5). The conserved subdomain
RD1 is also important for DNA interactions, whereas the more diverse RD2 contains an
effector binding site (1, 6). LTTRs mediate signal-dependent and signal-independent tran-
scriptional regulation of genes involved in numerous cellular processes, such as oxidative
stress response, cell wall shape determination, quorum sensing, regulation of efflux pumps,
secretion, motility, nitrogen fixation, virulence, cell division, metabolism, and recognition of
environmental stimuli and stresses (1).

The targets of LTTR regulation are often transcribed from a promoter that is very
close to and may overlap that of a divergently transcribed regulator gene. In many
cases, the LTTR positively regulates the target promoter in an effector-responsive man-
ner, while negatively autoregulating its own promoter in the absence of an inducer
(7–11). LTTRs can bind to target promoters in two conformations, depending on the
presence of an effector. Ligand binding by the LTTR triggers a conformational change
that permits binding to a DNA sequence involved in the regulation of its target gene.
LTTRs may act as multimers, most frequently tetramers (12). Studies on several LTTRs
have shown that the apoproteins can bind their promoters as tetramers, causing an
extended DNase I footprint and a high-angle DNA bend, while the corresponding holo-
proteins produce a smaller footprint and lower DNA bend angle (1, 5). LTTRs usually
bind to a sequence of approximately 50 to 60 bp, containing two distinct sites: a recog-
nition-binding site or repression-binding site (RBS), encompassing the sequence T-N11-
A (LTTR box), often located around position -65 relative to the start of transcription,
and an activation-binding site (ABS) consisting of the 235 (ABS-35) and 210 (ABS-10)
promoter regions (1, 5). In the absence of inducer, the LTTR tetramer binds to an RBS,
but also with low affinity to the ABS-10 site, causing a bend in the DNA, leading to
repression of the target gene by blocking availability of the 235 promoter region
(13–15). The bent DNA is relaxed upon effector binding to the LTTR, leading to the for-
mation of an active complex with RNA polymerase to initiate transcription. A “sliding
dimer” mechanism was proposed in which activation of the LTTR leads to a shift in the
binding site from RBS/ABS-10 to RBS/ABS-35, releasing the 235 box for RNA polymer-
ase recognition and subsequent gene expression (16, 17). Concomitantly, the autoreg-
ulatory properties of LTTRs are thought to be connected only with the dimeric form of
the protein and not bound to the effector. The LTTR might bind to the RBS region of
its own gene in a ligand-independent manner to regulate its expression (1).

One of the largest repertoires of LTTRs is encoded in the genome of Pseudomonas
aeruginosa, an opportunistic human pathogen causing nosocomial infections, includ-
ing septicemia, urinary tract infections, pneumonia, and skin and wound infections
(18–22). About 10% of all P. aeruginosa genes (usually around 6,000) encode transcrip-
tion factors. In the first sequenced P. aeruginosa genome of reference strain PAO1 (23),
113 genes are annotated as encoding LysR-type transcriptional regulators, but their
functions remain largely unknown. P. aeruginosa LTTRs with known roles include
PA0133 (BauR) (24), PA0739 (SdsB1) (25), PA1413 (26), PA1422 (GbuR) (27), PA1998
(DhcR) (28), PA2076 (OdsR) (29), PA2206 (30), PA2258 (PtxR) (31), PA2432 (BexR) (32),
PA2838 (33), PA3225 (34), PA3587 (MetR) (35), PA3630 (GfnR) (36), PA4109 (AmpR) (37),
PA4203 (38), PA5437 (PycR) (39), PA1003 (MvfR, also called PqsR) (40–42), PA5344
(OxyR) (43–45), and PA2492 (MexT) (46, 47). The membrane-associated multiple viru-
lence factor regulator MvfR was shown to be necessary for P. aeruginosa virulence (40).
MvfR positively regulates production of the Pseudomonas quinolone signal (PQS), one
of three P. aeruginosa quorum-sensing systems (48, 49), by controlling the pqsABCDE
operon (50), as well as the phnAB genes involved in the biosynthesis of phenazine and
anthranilic acid, a precursor of PQS (50, 51). Recent reports indicate that MvfR binds to
dozens of loci across the P. aeruginosa genome at promoter regions and within and
outside the coding sequences of genes, recognizing different DNA binding motifs (41,
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42), suggesting its involvement in the regulation of multiple genes. OxyR, another well
characterized P. aeruginosa LTTR, is involved in the oxidative stress response, acting as
a redox sensor (43). OxyR is activated by hydrogen peroxide (H2O2) and protects cells
from toxic oxygen derivatives by stimulating the expression of the katA, katB, ahpB,
and ahpCF genes encoding catalases and alkyl hydroperoxide reductases (43, 52). It
was recently shown that OxyR also regulates several other processes such as iron ho-
meostasis, pyocyanin production, and quorum sensing by binding to an AT-rich motif
(44, 45, 53). Another example of a P. aeruginosa LTTR with multiple roles is MexT
(PA2492), an activator of the mexEF-oprN operon encoding a multidrug efflux pump
involved in resistance to quinolones, chloramphenicol, trimethoprim, and imipenem
(46, 47, 54). Except for these few well-studied examples, the majority of LTTRs in this
important pathogen remain uncharacterized.

Recently, a putative LTTR PA2121 was shown to negatively affect biofilm synthesis
in the P. aeruginosa strain PAK and was therefore named biofilm synthesis repressor
BsrA (55). It was shown that the bsrA gene is regulated by the small regulatory protein
SrpA during phage infection (56). SrpA is a key regulator controlling core cellular proc-
esses in P. aeruginosa PAK, including biofilm formation, and this factor binds to the
motif TATC-N9-GATA identified within the bsrA promoter region.

Here, we analyzed the role of BsrA in P. aeruginosa strain PAO1161, a derivative of
PAO1 (57). In contrast to PAK, neither of these strains encodes srpA homologues. Our
data indicate that the mode of BsrA action may differ in the strains PAK and PAO1161,
because under the conditions tested, BsrA deficiency or overproduction had no influ-
ence on biofilm formation in PAO1161. Using RNA sequencing and chromatin immu-
noprecipitation, we identified a BsrA regulon, which encompasses a gene encoding a
key enzyme of the tricarboxylic acid cycle (TCA), a small RNA, as well as genes engaged
in different cellular processes, including some that are potentially involved in biofilm
production. Using a DNA pull-down assay and regulatory experiments, we show that
other LysR-type regulators bind and regulate the bsrA promoter. Thus, BsrA is a part of
an intricate regulatory network, that controls metabolic pathways during adaptation to
a changing environment.

RESULTS
Impact of bsrA deficiency or overexpression on bacterial physiology. To analyze

the role of BsrA in P. aeruginosa, a PAO1161 DbsrA mutant was constructed. This mu-
tant strain did not display any significant differences in growth in Luria-Bertani (LB) or
M9 medium, colony morphology, swimming or swarming, compared to the wild type
(WT) parental strain PAO1161 (see Fig. S1A to C in the supplemental material). In parallel,
the effect of bsrA overexpression was tested by linking the gene to an IPTG (isopropyl-b-D-
thiogalactopyranoside)-inducible promoter in plasmid pMEB63 (lacIq-tacp-bsrA). No effects
of BsrA overproduction on bacterial growth were observed when IPTG concentrations of
#0.25mM were used (see Fig. S1D), whereas 0.5mM IPTG reduced the rate of growth sig-
nificantly compared to cells carrying the empty vector (see Fig. S1D).

Since bsrA was initially identified as a repressor of biofilm synthesis, the formation
of biofilms by the strains lacking or overproducing BsrA was examined. The absence of
bsrA had no effect on the production of a biofilm by cells grown in either LB or M9 me-
dium (Fig. 1A). Furthermore, the addition of arginine or a subinhibitory concentration
of streptomycin to the growth medium, two compounds known to promote biofilm
synthesis in P. aeruginosa (58, 59), resulted in comparable increases in biofilm forma-
tion in WT and DbsrA cells (Fig. 1A). Similarly, an excess of BsrA did not affect biofilm
formation (Fig. 1B). These data suggested that BsrA may play an auxiliary or strain-spe-
cific role in biofilm formation in P. aeruginosa.

Identification of BsrA-regulated genes and binding sites for this transcriptional
regulator in the P. aeruginosa genome. To identify genes that display BsrA-depend-
ent expression we used RNA sequencing analysis (RNA-seq) to characterize the
transcriptome of bsrA-overexpressing cells. In addition, we performed chromatin
immunoprecipitation and sequencing analysis (ChIP-seq) to identify BsrA binding sites
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in the P. aeruginosa genome. The rationale behind an analysis of cells with BsrA in
excess rather than the DbsrA mutant, was based on the following: (i) the relatively low
level of bsrA expression under standard growth conditions (LB or M9 medium; data not
shown); (ii) the likelihood that an excess of BsrA might mimic the induced, activated
state of the protein; and (iii) the fact that the effector for this LTTR is unknown.

RNA-seq was performed using material isolated from cultures of the strains
PAO1161 pMEB63 (lacIq-tacp-bsrA, hereafter called BsrA1) and PAO1161 pAMB9.37
(lacIq-tacp, empty vector [EV]) grown in selective LB medium supplemented with
0.05mM IPTG (see Data Set S1). Comparison of the BsrA1 and EV transcriptomes iden-
tified 157 loci with altered expression (fold change [FC] # 22 or $2, false discovery
rate [FDR] adjusted P# 0.01) (Fig. 2A; see also Data Set S2). The expression of 65 loci
was downregulated, whereas 92 loci displayed increased expression. For convenience,
we use the P. aeruginosa PAO1 gene names throughout the manuscript, although the
corresponding PAO1161 gene names are included in all tables. Functional classification
of the identified loci, based on PseudoCAP (60), showed that the upregulated genes
were mostly involved in protein secretion/export systems, adaptation, and protection,
as well as cell wall functions (Fig. 2B; see also Data Set S2). Decreased expression was
observed for several genes encoding proteins engaged in carbon compound metabo-
lism and central intermediary metabolism. The most severely downregulated genes
were PA3452 (mqoA), encoding a malate:quinone oxidoreductase from the TCA cycle,
and PA0887 (acsA) encoding an acetyl-coenzyme A synthetase (61, 62), while the most
highly upregulated loci were the mexXY operon, encoding a multidrug efflux RND
transporter (63–65), as well as genes encoding type VI secretion proteins (PA1657 to
PA1671) and transporters (PA4192 to PA4195, PA2202, PA2203, PA5024) (see Data Set
S2). The altered expression of selected loci in response to BsrA excess was confirmed
using RT-qPCR analysis (data not shown).

To identify BsrA binding sites in the P. aeruginosa genome, ChIP-seq analysis was
performed using an anti-FLAG antibody and DbsrA cells carrying plasmid pMEB99
(tacp-bsrA-flag), grown in selective LB medium supplemented with 0.05mM IPTG. The
addition of a FLAG tag to the C terminus of BsrA did not alter its ability to retard bacte-
rial growth when overproduced (see Fig. S2), indicating that the fusion protein is func-
tional. As a background control for the ChIP procedure, the DbsrA strain carrying plas-
mid pABB28.1 (tacp-flag) was grown under the same conditions, and samples were
processed in parallel. Comparison of BsrA-FLAG ChIP samples with control samples,
using a fold enrichment (FE) cutoff value of 2 (Fig. 2C) yielded 765 BsrA-FLAG ChIP-seq
peaks (see Data Set S3). The majority of peaks exhibited an FE of between 2 and 4,

FIG 1 A lack or excess of BsrA does not affect biofilm formation by Pseudomonas aeruginosa PAO1161. (A and B)
Biofilm production in static cultures of PAO1161 WT and the DbsrA strain grown in M9 medium supplemented with
citrate as the carbon source (with or without 20 mM arginine) or in LB medium (with or without 8mg/ml streptomycin)
for 48 h (A) and the strain carrying pMEB63 (lacIq-tacp-bsrA) overexpressing bsrA (BsrA+) and a control strain carrying
empty vector (EV) pAMB9.37 (lacIq-tacp), grown in medium supplemented with 0.05mM IPTG for 72 h (B). OD600 values
were measured and biofilm formation was assessed by staining with crystal violet, followed by measuring the OD580.
Data represent the mean OD580/OD600 ratios 6 the SD from five biological replicates. *, P , 0.05 in a two-sided
Student t test; NS, not significant (P. 0.05).
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FIG 2 Identification of BsrA-dependent genes and binding sites for this transcriptional regulator in P. aeruginosa. Transcriptomes of PAO1161 cells carrying
pMEB63 (tacp-bsrA, overexpressing BsrA [BsrA1]) or pAMB9.37 (tacp, empty vector control [EV]), grown under selection in LB medium supplemented with
0.05mM IPTG were analyzed by RNA-seq. (A) Volcano plot of RNA-seq data comparing the transcriptomes of BsrA1 and EV cells. Differentially expressed
genes (FC . 2 or , –2, and FDR-corrected P# 0.01) are indicated in red, and the genes with the most significant changes in expression are named. For
clarity, genes with a P, 0.1 are not shown. The numbers of up- and downregulated loci are presented at the top in red and blue arrows, respectively. (B)
Classification of loci with altered expression in response to BsrA excess according to PseudoCAP categories (60). When a gene was assigned to multiple
categories, the most informative category was selected (in boldface in Data Set S2). The PseudoCAP categories were additionally grouped into six classes
(103, 109). Red and blue bars correspond to the numbers of up- and downregulated genes, respectively. (C) Identification of BsrA binding sites in the P.
aeruginosa genome. Cells expressing BsrA-FLAG (or the control) were subjected to chromatin immunoprecipitation using anti-FLAG antibodies. Reads
obtained by sequencing of the ChIP DNA were mapped onto the PAO1161 genome (57), and peaks were called using MACS2. The chart represents the
distribution of fold enrichment (FE) values for the detected peaks. A cutoff value of 2 is indicated by a red line. (D) Width distribution of BsrA ChIP-seq
peaks. (E) Distribution of the distance between ChIP-seq peak summits and the nearest start codon. Bin width is 100 nucleotides. Peaks with distances of
.3 kbp are grouped together in boundary bins. (F) Sequence logo of the BsrA binding motif obtained by MEME (66). The reverse complement of this logo
and a proposed consensus sequence are presented below. B = C or G or T; Y = C or T; S = G or C; D = A or G or T; W = A or T; K = G or T. The LTTR box
(T-N11-A) is framed in black. (G) Overlap between RNA-seq and ChIP-seq results. A gene was classified as likely to be directly regulated by BsrA if the ChIP-
seq peak summit was located in the region 2500 to 1100 from its start codon (or the start codon of the corresponding operon).

Defining the Regulon of BsrA in P. aeruginosa

July/August 2021 Volume 6 Issue 4 e00015-21 msystems.asm.org 5

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 2

7 
Ju

ly
 2

02
1 

by
 2

12
.8

7.
29

.2
05

.

https://msystems.asm.org


although 166 had FE values of 4 to 10, and 21 had an FE of .10 (Fig. 2C). The mean
width of ChIP-seq peaks was ,1,000 (twice the length of the DNA fragments used for
ChIP), indicating BsrA binding to single or closely spaced binding site(s) (Fig. 2D). The
summits of 367 peaks (48%) mapped to intergenic regions (see Data Set S3). A similar
analysis of peak summit positions relative to the start codons of PAO1161 open reading
frames (or the first genes in operons) showed that 426 peaks were located in the 2500 to
1100 regions, which suggests that the expression of these loci could be regulated by BsrA
(Fig. 2E).

An extensive search for nucleotide motifs shared by sites bound by BsrA using MEME
(66) showed the presence of a consensus sequence resembling the T-N11-A motif (LTTR
box) (Fig. 2F) proposed as the binding site of other LTTRs (1, 67, 68). These data indicated
that BsrA has multiple binding sites in the P. aeruginosa genome, which suggests that
this factor may function as a modulator of gene expression in regulatory networks.

Genes under the direct control of BsrA. Interestingly, 35 of the 157 genes show-
ing altered expression in response to a BsrA excess possessed a binding site for this
transcriptional regulator within their promoter regions (Fig. 2G and Table 1). In
addition, 55 BsrA peaks detected in coding regions were in the vicinity of genes
that showed changes in expression level (FC. 1.5 or ,21.5) in RNA-seq analysis
(see Data Set S3), but the mechanism by which BsrA could influence their expres-
sion requires further studies.

Our analysis confirmed that BsrA might bind within the region preceding its own
coding sequence (Fig. 3A). A BsrA binding site was also detected in the putative promoter
of PA3452 (mqoA): the gene showing the most severe downregulation in the RNA-seq
analysis (FC= 23.86) (Fig. 3B). Among the genes that might be directly regulated by BsrA,
PA1112.1, encoding a small noncoding RNA of unknown function (69), had a peak with the
greatest fold enrichment (12.7) in the region preceding the structural gene (Fig. 3C).

To confirm the interactions of BsrA with putative promoters of these genes, we performed
electrophoretic mobility shift assays (EMSAs) using purified His6-BsrA and DNA fragments cor-
responding to the putative promoter regions of bsrA, PA3452, and PA1112.1. Shifts of the pro-
moter fragment DNA bands, but not of a nonspecific competitor DNA, were observed, indicat-
ing that His6-BsrA binds to these regions in vitro (Fig. 3D to F). To verify the importance of the
LTTR box sequences in DNA binding by BsrA, version of the PA1112.1 promoter fragment lack-
ing the T-N11-A motif was tested in an EMSA. No BsrA binding to this shortened fragment
(232bp instead of 303bp) could be detected (Fig. 3G).

To further examine the influence of BsrA on the expression of the three aforemen-
tioned genes, their promoter regions were cloned upstream of a promoter-less xylE
gene in the vector pPTOI. The bsrA and PA1112.1 promoters were active in the heterol-
ogous host Escherichia coli DH5a, whereas no activity was observed for PA3452p
(Fig. 3H and I and data not shown). Expression of BsrA in cells carrying plasmids with
bsrAp-xylE or PA1112.1p-xylE resulted in significantly reduced XylE activity in the corre-
sponding cell extracts (Fig. 3H and I). Moreover, RT-qPCR analysis of PA3452 (mqoA)
and PA1112.1 transcript levels in bsrA-deficient cells showed increased expression of
these two genes relative to WT cells, which supported the repressive effect of BsrA on
the transcription of these genes (Fig. 3J and K).

These data confirmed that BsrA binds to DNA fragments identified in ChIP-seq anal-
ysis and may regulate the activity of target promoters to influence gene expression. In
addition, the T-N11-A nucleotide sequence, known as the LTTR box, present in the bind-
ing sites of most LTTRs (1, 67), is recognized by BsrA.

Modulation of different cellular processes by BsrA. The RNA-seq results suggested
that BsrA is engaged in modulating the activity of proteins mediating the conversion of
malate to oxaloacetate in the TCA cycle by repressing the expression of the PA3452
(mqoA) and PA4640 (mqoB) genes (see Data Set S1). This is likely to influence subsequent
steps of the cycle, e.g., the availability of oxaloacetate, its conversion to citrate using acetyl
coenzyme A (acetyl-CoA) or the levels of acetyl-CoA generated via the pyruvate shunt
(Fig. 4A). In addition, several genes that are putatively involved in the acetate transport
(PA3233 and PA3234) (70) and acetate pathways (acsA [PA1562], acsB [PA1787], and exaC
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[PA1984]), encoding probable succinyl-CoA/acetate CoA-transferase (PA5445) (71), also
showed reduced expression (FC between 22 and 21.5) in response to BsrA (Fig. 4A; see
also Table S1) (72, 73), suggesting the involvement of this LTTR in controlling acetate me-
tabolism. We cultured the WT and DbsrA strains in minimal medium supplemented with ci-
trate or acetate as the sole carbon source, but no visible effects on the kinetics of growth
were observed (see Fig. S1B). To test the effect of BsrA on acetate metabolism, the two
strains were also cultured in medium containing a subinhibitory concentration of kanamy-
cin, following the report of Meylan and coworkers, showing the effect of central carbon
metabolite stimulation on aminoglycoside sensitivity in P. aeruginosa (74). The propagation
of cells from overnight cultures in M9 medium containing 50mg/ml kanamycin and ace-
tate as the sole carbon source resulted in an increase in CFU/ml (relative to the starting
point) of the DbsrA mutant, while the CFU/ml value of the WT strain was not significantly
changed (Fig. 4B). This effect was not observed when pyruvate and fumarate (compounds

FIG 3 Direct regulation of target promoters by BsrA binding. (A to C) ChIP-seq signal over the regions preceding the bsrA (A), PA3452 (B), and PA1112.1 (C)
genes. The plots show normalized read counts, averaged for ChIP replicates, for the indicated positions in the PAO1161 (CP032126.1) genome. Genes are
represented as arrows and the names of the PAO1 orthologues are shown for clarity. Sequences within the analyzed promoter fragments that correspond
to the T-N11-A motif are presented below the plots, including their positions relative to the start codon (underlined sequences indicate a pseudo-
palindrome). (D to G) EMSA analysis of His6-BsrA binding to regions preceding bsrA (D), PA3452 (E), PA1112.1 (F), and truncated PA1112.1p (lacking 71 bp
containing the T-N11-A motif) (G). DNA fragments (0.1mM) were incubated with the indicated amounts of His6-BsrA, and complexes were separated by
electrophoresis on 1.5% (D to F) or 2.5% (G) agarose gels subsequently stained with ethidium bromide. A 199-bp fragment of empty vector pCM132
(labeled as NS) was used as a control of binding specificity and a competitor DNA. (H and I) XylE activity in E. coli DH5a double transformants carrying
pMEB190 (bsrAp-xylE) (H) or pMEB232 (PA1112.1p-xylE) (I) plus pMEB63 (lacIq-tacp-bsrA) for BsrA overproduction (1) or control plasmid pAMB9.37 (2).
Strains were grown in selective LB medium. Data for cells carrying the promoter-less pPTOI (-xylE) and pAMB9.37 are shown as background controls. The
data represent the means 6 the standard deviations from three biological replicates. *, P, 0.05 in a Student two-tailed t test. (J and K) Relative expression
(RT-qPCR) of PA3452 (J) and PA1112.1 (K) in WT and DbsrA cells from exponentially growing cultures (OD600 0.2) normalized to the reference gene rpsL. **,
P, 0.01 in a Student two-sided t test assuming equal variance.
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from different parts of the TCA cycle) or acetate plus fumarate were used as the carbon
source(s). Thus, the P. aeruginosa DbsrA mutant exhibited higher survival and/or fitness
than the WT strain in the presence of kanamycin when grown in minimal medium supple-
mented with acetate as the sole carbon source, which confirmed the influence of BsrA on
acetate metabolism.

To test the effect of various antibiotics on bsrA expression, we performed RT-qPCR
using RNA isolated from PAO1161 cultures grown in medium supplemented with sub-
inhibitory concentrations of different antibiotics. This analysis showed no significant
difference in bsrA expression upon the addition of kanamycin or ciprofloxacin com-
pared to a negative control culture (Fig. 4C). Interestingly, the expression of bsrA was
significantly increased in response to spectinomycin, streptomycin, tetracycline, and
carbenicillin (Fig. 4C), which indicates that bsrA is induced in response to specific
antibiotics.

FIG 4 BsrA participates in the regulation of different processes in P. aeruginosa PAO1161. (A) Scheme of the TCA cycle (71, 73, 82, 96). Genes identified as
affected by BsrA overproduction are indicated in red (dark red: FC,22). Genes with BsrA binding sites in their promoters are underlined. (B) Viable cell
density (CFU/ml) of overnight cultures of PAO1161 and the DbsrA mutant grown in M9 medium with kanamycin (50mg/ml) and sodium acetate,
phosphoenolpyruvate (PEP) or fumarate added as the sole carbon source, in amounts adjusted to maintain a total carbon concentration of 60mM. *, P , 0.05
in a Student t test assuming equal variance. (C) Relative expression of bsrA in WT PAO1161 cells cultured in LB medium without antibiotic (LB) and with
different classes of antibiotic added at subinhibitory concentrations: spectinomycin, 128mg/ml (SPT); streptomycin, 4mg/ml (STR); tetracycline, 4mg/ml (TET);
carbenicillin, 32mg/ml (CRB); ciprofloxacin, 0.06mg/ml (CPX); and kanamycin, 10mg/ml (KAN). * and **, P , 0.05 and P , 0.01, respectively, in a Student two-
sided t test assuming equal variance. (D to F) Twitching (D), swarming (E), and swimming (F) motility of strain PAO1161 carrying pMEB63 (overexpressing bsrA,
BsrA1) or empty vector pAMB9.37 (control, EV) treated with 0.05mM IPTG.
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Our RNA-seq and ChIP-seq results also indicated increased expression of genes
involved in fimbria assembly (e.g., PA0499 and PA4648 to PA4653) in response to BsrA
in excess. PA0499 is a periplasmic protein predicted to act as a chaperone assisting the
assembly of appendages on the surface of the bacterium (75). PA4648 is the first gene
of the six-component cupE cluster encoding a so-called chaperone-usher pathway, the
activation of which leads to the production and assembly of CupE fimbriae on the cell
surface (76). These fimbriae are known to play a crucial role in biofilm development by
P. aeruginosa and the cupE operon is specifically expressed in biofilm-forming cells (76).
Since biofilm formation was unaffected in both the DbsrA and BsrA1 strains (Fig. 1), we
checked whether bsrA overexpression had any effect on swimming, twitching or swarming
motilities (77–79). BsrA1 cells showed differences in twitching (involves pili) and swarming,
as demonstrated by the presence of clear radiating motility zones (“lines”) spreading from
the center of bacterial colonies, that were not observed in the control strain. This may reflect
possible changes in radial expansion of the colony, which could be related to enhanced
appendage production in BsrA1 cells (Fig. 4D and E). No effect on swimming was observed
(Fig. 4F), indicating that BsrA overproduction does not have a general negative effect on the
motility of cells grown on plates. Thus, BsrA appears to be involved in the regulation of
swarming and twitching motilities, and possibly attachment to surfaces, the first stage in bio-
film formation.

Taken together, these results demonstrated the participation of BsrA in a number of
diverse cellular processes including the modulation of cellular metabolism in response
to growth conditions and the control of appendage formation leading to altered motil-
ity of P. aeruginosa cells.

BsrA is under the control of other transcriptional regulators in P. aeruginosa.
The findings of a previous study (55) and our data showed that the expression of bsrA is sub-
ject to autoregulation. To identify other proteins that can modulate bsrA transcription and in
consequence the level of BsrA, we used a bsrA promoter fragment as bait in a DNA pull-down
assay with P. aeruginosa PAO1161 cell extracts. The proteins bound to bsrAp were then charac-
terized by mass spectrometry analysis. Altogether, 39 proteins were identified as being able to
bind to bsrAp, but not to a control DNA fragment (see Data Set S4). Importantly, BsrA was
identified among the proteins with the highest scores, providing a positive control for this
approach and confirming the autoregulatory properties of the protein. Six other proteins were
identified with high scores for binding to bsrAp in two independently tested samples (eluates):
PA2551, PA3587 (MetR), PA4902, PA4462 (RpoN), PA5189, and PA3398. Interestingly, five of
these proteins are classified as LysR family transcriptional regulators, whereas PA4462 (RpoN)
is a s54 factor interacting with RNA polymerase (80). It is known that s54 factors direct RNAP
to conserved 212 (TGC) and 224 (GG) elements, and similar regions (TGA at position 212
and GG at position224) are present in the bsrAp.

To determine whether the proteins identified in pull-down analysis can indeed
affect the activity of the bsrA promoter, the PA2551, PA3398, PA3587, PA4902, and PA5189
genes were cloned under the control of tacp in vector pAMB9.37 and expressed in cells car-
rying plasmid pMEB190 (bsrAp-xylE). Measurements of XylE activity in cell extracts of the
double transformants showed that the expression of PA3587 and PA4902 did not signifi-
cantly influence bsrAp activity under the tested conditions (Fig. 5A). Notably expression of
PA2551, PA3398, or PA5189 resulted in major decreases in XylE activity, suggesting that these
proteins act directly as repressors of the bsrA gene. Interestingly, ChIP-seq analysis revealed
strong binding of BsrA upstream of the PA2551, PA3398, and PA5189 genes (Fig. 5B) but not
PA3587 or PA4902 (data not shown).

These results showed that BsrA is part of an intricate regulatory network involving
mutual regulation between BsrA and other LysR-type transcription factors.

DISCUSSION

In this study, we performed a functional analysis of the LysR-type transcriptional
regulator BsrA (PA2121) from P. aeruginosa, previously described as a repressor of bio-
film synthesis (55).
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Transcriptional analysis of a strain overproducing BsrA revealed the greatest
changes in gene expression for loci encoding enzymes engaged in carbon metabolism
(mainly downregulated) and for loci predicted or known to be involved in processes
connected with transport, biofilm, and type VI secretion systems (upregulated). In a P.
aeruginosa PAK mutant with disrupted bsrA, increased biofilm synthesis was observed
(55), while the PAO1161 DbsrA mutant constructed in this study did not show signifi-
cant changes in biofilm formation (Fig. 1). This difference could be related to the pres-
ence of the SrpA protein in the PAK strain, which is not encoded in the genome of
PAO1161 (or PAO1). Among its other functions, SrpA directly regulates expression of
the bsrA gene by binding to its promoter (56). Our data suggested that another mecha-
nism is responsible for regulating biofilm production, possibly involving BsrA-mediated
activation of genes such as PA0499 or PA4648, that have been connected with the for-
mation of biofilms (75, 76). The generation of biofilm structures is strictly linked to met-
abolic activity, which is inhibited in the cells of the mature biofilm matrix but increased
during early biofilm development (81). The role of BsrA in biofilm formation might be
related to the modulation of these processes. The relationship between SrpA and BsrA
in biofilm formation requires further study.

Our data suggested that BsrA is involved in the repression of metabolic functions
by direct or indirect downregulation of genes engaged in pyruvate metabolism and
the TCA cycle (Fig. 4A and 6). The most highly repressed gene, directly controlled by
BsrA, is mqoA (PA3452) encoding a putative malate:quinone oxidoreductase (MQO), a
FAD-dependent enzyme involved in the conversion of malate to oxaloacetate. The
gene encoding the second P. aeruginosa MQO, mqoB (PA4640), was also subject to
BsrA-mediated regulation, although to a lesser extent. The presence of mqoB is neces-
sary for the growth of cells on acetate and ethanol as sole carbon sources (82). Under
these conditions, one of the primary functions of MQOs is to replenish the oxaloace-
tate pool in the TCA cycle to allow further assimilation of acetyl-CoA and permit TCA
operation to provide intermediates for biosynthetic processes and respiration (82).
Both MQOs are produced by cells grown under standard aerobic conditions, but the
levels of MqoB are higher than those of MqoA (33, 73, 82). The precise role of MqoA in
P. aeruginosa awaits elucidation. Bacterial MQOs have previously been characterized in

FIG 5 Transcriptional regulators PA2551, PA3398, and PA5189 control expression of bsrA. (A) XylE activity in double transformants of
E. coli DH5a carrying promoter-less pPTOI or pMEB190 (bsrAp-xylE) plus vectors expressing the indicated genes under tac promoter
control. Cells were grown in selective LB supplemented with 0.05mM IPTG. Data represent the means 6 the standard deviations from
three biological replicates. *, P, 0.05 in a Student paired two-tailed t test. (B) ChIP-seq signals over regions preceding the PA2551,
PA3398, and PA5189 genes encoding regulators repressing bsrA expression. The plots show normalized read counts, averaged for
replicates, for the indicated positions in the PAO1161 (CP032126.1) genome.
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E. coli and Corynebacterium glutamicum as the principal enzymes catalyzing the oxida-
tion of malate (61, 83). In Pseudomonas putida the mqo-2 gene, encoding a malate:qui-
none oxidoreductase 2, is under the control of Crc, the global regulator of carbon
catabolite repression (CCR) (84). The assimilation of energetically favorable carbon
sources is the main bacterial strategy employed to optimize metabolism and growth.
Crc protein together with the RNA chaperone translational repressor Hfq and small
RNA(s) comprise the CCR regulatory system in pseudomonads (85, 86). In P. aeruginosa,
a specific sRNA named CrcZ has been identified as an antagonist of Crc and Hfq. CrcZ
binds to the Crc and Hfq proteins, trapping and sequestering them. The expression of
crcZ is under the control of a two-component system CbrA/CbrB, which reacts to car-
bon source availability (85, 87, 88). It is clear that a multilevel regulatory network
involving sRNAs plays an important role in metabolic regulation in pseudomonads,
which is interesting in light of our identification of a sRNA (PA1112.1) as a target of
BsrA regulation.

Our analysis of the phenotype of the bsrA-deficient mutant demonstrated its
increased fitness in the presence of kanamycin compared to the WT strain under spe-
cific conditions. It was previously recognized that the efficacy of aminoglycoside antibi-
otics depends on metabolic stimuli (74, 89, 90). As an aminoglycoside, kanamycin acts
by inhibiting protein synthesis through binding to the 30S subunit of the bacterial
ribosome. Killing of bacterial cells by kanamycin depends on proton-motive force
(PMF), which is required for the uptake of the antibiotic (89). PMF is related to the
NADH level, which is dependent on metabolism. Therefore, the cellular metabolic state
modulates the uptake and/or efficacy of the antibiotic (90). Although adaptation to
antibiotics is thought to be controlled at the transcriptional level by the induction of

FIG 6 BsrA regulatory network in P. aeruginosa and its impact on bacterial physiology. A black solid
line indicates direct repression by this transcriptional regulator; a dotted line indicates direct and/or
indirect involvement of BsrA in the control of gene expression and downstream processes.
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stress responses, several reports have indicated that there is a relationship between a
high concentration of certain endogenous metabolites and the level of bacterial resist-
ance (91–94). We found that the DbsrA mutant displayed better adaptation to kanamy-
cin under conditions of acetate supplementation, and it may be speculated that this is
due to altered drug uptake due to changes in PMF generation, a process connected
with the TCA cycle and cellular respiration (89, 90, 95). Growth on acetate requires the
activity of the glyoxylate shunt which supplies cells with malate and oxaloacetate
(Fig. 4A). It might be connected with reoxidization of the NADH excess generated by
the TCA cycle during growth on acetate and the need to coordinate the composition
of the electron transport chain at the level of the terminal oxidases, e.g., the proton
pumping NADH dehydrogenase I or Nqr (73). The DbsrA mutant had an increased level
of the transcript of malate dehydrogenase mqoA (Fig. 3J) and probably those encoding
several other enzymes from the TCA cycle and acetate metabolism. The lack of repres-
sion of TCA cycle enzymes or genes involved in acetate metabolism in the DbsrA mu-
tant in comparison to the WT strain may provide some advantage during growth on
acetate in the presence of kanamycin and adaptation to the stress caused by this
antibiotic.

Kanamycin sensitivity was examined in cells grown on other carbon sources, but a
significant difference in antibiotic adaptation of the DbsrA mutant was only observed
with acetate supplementation. The main reason for this may be the stage at which par-
ticular carbon compounds enter the TCA cycle, as shown by Dolan et al. (73). These
authors presented so-called “carbon fluxes” leading to metabolic and transcriptomic
changes caused by growth on acetate or glycerol. We speculate that the lack of BsrA
leads to elevated TCA cycle flux connected with metabolism remodeling when acetate
is the sole carbon source.

An interesting gene belonging to the BsrA regulon, potentially connected with TCA
cycle remodeling, is PA5445. This gene putatively encodes succinyl-CoA/acetate CoA-
transferase, an enzyme engaged in the conversion of succinyl-CoA and acetate to suc-
cinate and acetyl-CoA, which could modulate the TCA cycle and confer some advant-
age during growth on acetate. PA5445 displays almost 50% identity to AarC from
Acetobacter aceti, a bacterium utilizing a specialized TCA cycle (71). In this bacterium
AarC-mediated conversion of succinyl-CoA to succinate replaces the action of typical
succinyl-CoA synthetases (SucC and SucD) (71, 96). This modification is connected with
enhanced tolerance to low pH and acetate, produced by Acetobacter during fermenta-
tion. Many bacteria, including P. aeruginosa, possess homologues of aarC (asct) in addi-
tion to the sucC and sucD genes, which suggests the existence of an alternative path-
way in the TCA cycle, possibly conferring some advantage connected with acetate
metabolism (96).

Similar to mqoAp, the promoter region of PA5445 possesses few potential BsrA bind-
ing sites (matching the consensus in Fig. 2F), with one putative site (TTCGACCTTGGTA)
overlapping the predicted –10 promoter region and located very close to a BsrA ChIP-seq
peak summit. This suggests that BsrA may regulate genes encoding components of meta-
bolic pathways and can mediate metabolism remodeling, which could lead to increased
fitness of the DbsrAmutant in the presence of kanamycin.

Interestingly, bsrA (PA2121) was identified as one of a panel of genes containing
mutations in P. aeruginosa cystic fibrosis isolates, which may have been selected during
adaptation and evolution to promote survival during infection of the lungs of these
patients (97–99). In addition, Kong et al. (100), using a luxCDABE-based random pro-
moter library of P. aeruginosa PAO1, identified PA2121 (bsrA) as 1 of 45 genes that per-
form a role in long-term survival and thus may be involved in chronic infections of the
human body.

BsrA binds to numerous sites in the P. aeruginosa genome, and yet it only had a lim-
ited influence on the regulation of gene expression under the conditions tested (see
Data Set S3). The majority of BsrA binding sites contain the LTTR box, composed of the
sequence T-N11-A, but besides this element there is a low level of sequence
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conservation. It was not possible to define a more specific binding motif, which sug-
gests the involvement of other factors in mediating BsrA binding to DNA. This observa-
tion highlights the potentially broad role of BsrA in modulating gene expression in P.
aeruginosa, with the possible involvement of other regulatory proteins that associate
with sequences adjacent to BsrA binding sites under specific growth conditions. The
nature of the signal to which BsrA responds and the precise role of this factor require
further study.

Recently, high-throughput SELEX analysis has been used to define the preferred
binding motifs of 53 P. aeruginosa LysR-type transcriptional regulators (101). Most of
these LTTRs display dimeric binding to cognate sequences. The recognized binding
sites are mostly palindromic or have partial dyad symmetry and range in length from
12 to 24 bp. Sequence conservation is highest within the flanking regions, that usually
display dyad symmetry, whereas there is often very low sequence conservation inside
the motif. In most of the binding sites the LTTR-box (T-N11-A, T-N10-A, or T-N9-A) can
be identified as part of the sequence creating dyad symmetry. The motif preferentially
recognized by BsrA was identified as NAGTAGACNNGTCTACTN; however, no such
sequence was found in the genomes of PAO1 or PAO1161, and no highly similar
sequences were present in the regions identified using ChIP-seq analysis. FIMO analysis
(102) using 200-bp sequences encompassing the BsrA peak summits identified only 5
sequences with a P value of ,0.0001 resembling the proposed motif (peaks 682, 194,
367, 276, and 157 [see Data Set S3]) or 56 sequences when a P value cutoff of 0.001
was used. The preferential BsrA binding site motif identified in our analysis is more
generic but is recognizable as an LTTR box characteristic for LysR-type regulators and
better explains the presence of multiple LTTR binding sites within the promoters of
cognate genes.

LTTRs usually bind to promoters of target genes upstream from the transcription
start site. Among the tested promoter regions of BsrA regulated genes, i.e., bsrA, mqoA,
and PA1112.1, two to four T-N11-A motifs, closely resembling the BsrA binding site
(Fig. 2F) were identified (Fig. 3A to C). These are located at positions from 3 to 184 bp
from the start codon of these downregulated genes, so that BsrA binding to these sites
might reduce RNA polymerase access to the core promoter sequences (210, 235). To
specifically recognize and bind cognate DNA, LTTRs use highly conserved interactions
between amino acids and nucleotide bases as well as numerous less conserved sec-
ondary interactions (7, 68). One site, often called the recognition binding site, consists
of a T-N11-A motif with imperfect dyad symmetry. It is believed that interaction with
this site anchors the LTTR to the DNA and is often involved in repression, including
autoregulation. LTTRs are known to bind to longer sequences (50 to 60 bp) containing
a so-called activation binding site, and these interactions are usually driven by the
presence of a specific ligand or cofactor, which is bound by the LTTR. In addition,
LTTRs bind with higher or lower affinity to their binding sites depending on the pres-
ence or absence of its inducer or ligand, which modulates interaction with DNA.
Conformational flexibility of the created LTTR multimers (usually tetramers) causes
DNA bending or relaxation, which regulates the repression or activation state of the
regulator (13). Conformational changes may also permit transient contacts of the regu-
lator with DNA sequences flanking the T-N11-A motif, which might also be affected by
occupation by other DNA-interacting factors. The availability of the regulator in the
cell, the possibility of creating monomers or multimers to exert a regulatory effect on
target promoters, and the dynamic order in which different binding events take place
could provide further levels of control. Our pull-down results highlighted the existence
of an intricate regulatory network engaging in possible cross talk, cooperation, and/or
interconnection between different transcriptional regulators exerting an influence on
bsrA expression and further on its targets. Thus, different factors control LTTR interac-
tions with DNA, providing specificity of recognition and correct timing of this action.

Based on the presented results, we propose a model of the regulatory network
engaging BsrA in P. aeruginosa and its impact on bacterial physiology (Fig. 6). BsrA acts
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as the repressor of genes involved in carbohydrate metabolism (mqoA and acsA) influ-
encing the TCA cycle, the availability of acetyl-CoA, and overall cellular metabolism. In
addition, BsrA regulates the transcription of the uncharacterized sRNA PA1112.1, which
is possibly involved in posttranscriptional regulation of gene expression. Interestingly,
besides autoregulation, the bsrA gene is under the control of other LTTRs of P. aerugi-
nosa (PA2551, PA3398, and PA5189), indicating the ability to fine-tune the BsrA action
in the cell. This multilevel regulatory network plays a role in controlling carbohydrate
metabolism (TCA cycle, acetate, and pyruvate metabolism) and thus the energetic sta-
tus of the cell, which has implications for other functions such as cellular transport, the
response to antibiotic, phage infection, biofilm formation, virulence, and overall sur-
vival strategies. In line with this model, the induction of bsrA expression was observed
in the presence of antibiotics and also in parA and parB mutants characterized by
growth retardation and defects in chromosome distribution (103), which suggests the
release of bsrA expression in response to stress and the need to redirect metabolism to
cope with adverse conditions, that might be manifested by a slowdown of bacterial
growth.

MATERIALS ANDMETHODS
Bacterial strains, plasmids, and growth experiments. Bacterial strains used and constructed in

this study (listed in Table S1) were grown in LB or on LB-agar medium at 37°C and in M9 minimal me-
dium supplemented with sodium citrate (0.25%) or sodium acetate (20mM) as the carbon source, with
leucine (10mM) added in the case of P. aeruginosa PAO1161 leu mutant strains. For the selection of plas-
mids in E. coli, media were supplemented with 10mg/ml chloramphenicol, 50mg/ml kanamycin or ben-
zylpenicillin at a final concentration of 150mg/ml in liquid medium or 300mg/ml in agar plates. For P.
aeruginosa strains, carbenicillin (300mg/ml), rifampin (300mg/ml), kanamycin (250mg/ml in liquid me-
dium; 500mg/ml in plates), and chloramphenicol (75mg/ml in liquid medium; 150mg/ml in plates) were
applied as required.

For growth experiments, liquid media were inoculated with strains propagated on plates. These cul-
tures were grown overnight with shaking at 37°C, diluted 1:100 in fresh medium, and then incubation
was continued. Bacterial growth was monitored by the measurement of optical density at 600 nm
(OD600) at 1 h interval. Competent E. coli cells were prepared by treatment with CaCl2, and transformation
was performed according to a standard procedure (104). Competent P. aeruginosa cells were prepared
as described previously (105).

All plasmids used and constructed in this study are described in Table S1.
A P. aeruginosa PAO1161 DbsrA mutant was obtained by allele exchange (106). Competent cells of E.

coli S17-1 were transformed with plasmid pMEB14 (a derivative of suicide vector pAKE600) to create the
donor strain, and WT P. aeruginosa PAO1161 Rifr was used as the recipient. The allele exchange proce-
dure was performed as described previously (106, 107). Verification of the obtained mutant strain was
performed by PCR using primer pair 4/7 (see Table S2).

Measurements of biofilm amounts. Biofilm analyses were performed with the crystal violet staining
method according to a previously described method (104). Bacteria were incubated in LB or M9 minimal
medium with supplements as indicated.

Motility assays. Motility assays were performed as described previously (79), supplementing the
swimming, swarming, and twitching media, if necessary, with chloramphenicol (150mg/ml) and IPTG
(0.05mM). To standardize the assays, all plates contained the same volume of the medium.

RNA isolation, RNA-seq, and RT-qPCR. Total RNA was isolated from three independent replicate
samples of P. aeruginosa PAO1161 overexpressing the bsrA gene, as well as the control strain carrying
the empty vector or P. aeruginosa PAO1161 WT and the DbsrA strain. RNA isolation and analysis were
performed as described in Text S1 in the supplemental material.

Chromatin immunoprecipitation with sequencing. ChIP was performed according to the proce-
dure of Kawalek et al. (108) with some modifications, as described in Text S1.

Protein purification. E. coli BL21(DE3) transformed with pMEB10 encoding a His6-BsrA fusion pro-
tein was grown to exponential phase in autoinduction LB medium (Foremedium) containing 1% (vol/
vol) glycerol and 0.5% (wt/vol) NaCl. The cells were harvested by centrifugation, resuspended in phos-
phate buffer (50mM sodium phosphate [pH 8.0]) supplemented with lysozyme (1mg/ml), phenylmeth-
ylsulfonyl fluoride (1mM), and benzonase nuclease (250 U; Sigma), and then sonicated. His6-BsrA was
purified from the cell lysate by chromatography on Ni-agarose columns (Protino Ni-TED 1000; Macherey-
Nagel) with 300mM imidazole in phosphate buffer used for elution. The purification procedure was
monitored by SDS-PAGE using a Pharmacia PHAST gel system. Fractions containing the purified protein
were dialyzed overnight in Tris buffer containing 5% (vol/vol) glycerol and stored in small aliquots at
280°C.

In vitro protein-DNA interactions. An EMSA was performed to determine the ability of purified
BsrA to bind to selected promoter regions of P. aeruginosa genes in vitro, as described in Text S1.

Regulatory experiments with promoter-xylE fusions in E. coli. E. coli DH5a double transformants
carrying pPT01 derivatives with the promoter regions of selected P. aeruginosa genes fused to the xylE
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reporter gene plus pAMB9.37 (lacIq-tacp) derivatives expressing the tested proteins were assayed for cat-
echol 2,3-oxygenase activity (the product of xylE), as described in Text S1.

Tests of kanamycin sensitivity. The effect of kanamycin on PAO1161 cells was tested using the car-
bon source screening procedure (74, 89) described in Text S1.

DNA pull-down assay. Pull-down analysis was performed as described previously (108), with modifi-
cations summarized in Text S1.

Data availability. The raw RNA-seq and ChIP-seq data supporting the results of this article were de-
posited in the NCBI’s Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/)
under GEO Series accession numbers GSE163234 and GSE163233.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
FIG S1, TIF file, 1.5 MB.
FIG S2, TIF file, 1.1 MB.
DATA SET S1, XLSX file, 4.7 MB.
DATA SET S2, XLSX file, 0.05 MB.
DATA SET S3, XLSX file, 0.2 MB.
DATA SET S4, XLSX file, 0.01 MB.
TEXT S1, DOCX file, 0.03 MB.
TABLE S1, DOCX file, 0.02 MB.
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