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Abstract: For nearly half of the proteome of an important pathogen, Pseudomonas aeruginosa, the
function has not yet been recognised. Here, we characterise one such mysterious protein PA2504,
originally isolated by us as a sole partner of the RppH RNA hydrolase involved in transcription regu-
lation of multiple genes. This study aims at elucidating details of PA2504 function and discussing its
implications for bacterial biology. We show that PA2504 forms homodimers and is evenly distributed
in the cytoplasm of bacterial cells. Molecular modelling identified the presence of a Tudor-like
domain in PA2504. Transcriptomic analysis of a ∆PA2504 mutant showed that 42 transcripts, mainly
coding for proteins involved in sulphur metabolism, were affected by the lack of PA2504. In vivo
crosslinking of cellular proteins in the exponential and stationary phase of growth revealed several
polypeptides that bound to PA2504 exclusively in the stationary phase. Mass spectrometry analysis
identified them as the 30S ribosomal protein S4, the translation elongation factor TufA, and the global
response regulator GacA. These results indicate that PA2504 may function as a tether for several
important cellular factors.

Keywords: PA2504; TUDOR domain; Pseudomonas aeruginosa; sulphur metabolism; crosslink in vivo;
RppH; RNA-Seq; Nudix

1. Introduction

Pseudomonas aeruginosa is a Gram-negative bacterium widespread in the environment.
Due to its high adaptive abilities, regulated by many poorly characterised mechanisms,
it can colonise and infect diverse organisms. This pathogen is commonly present in the
hospital environment, where it imposes a great threat to immunocompromised patients,
especially those of the chirurgic, intensive care, and neonatal units (reviewed by Spagnolo
and colleagues [1]).

Both the cell cycle and virulence of P. aeruginosa are dependent on a variety of factors of
which secretion systems, quorum sensing, biofilm formation, motility and toxin production
have been widely studied (reviewed by Jimenez and colleagues [2]). Despite this, our
understanding of these and other processes of P. aeruginosa is certainly incomplete. Taking
into consideration that almost half of the proteins encoded by its genome still lack annotated
function [3], the question arises of which proteins are involved in the processes above-
mentioned.

When studying the Nudix type RppH hydrolase of P. aeruginosa, we observed that its
only partner was the previously uncharacterised protein PA2504.

In E. coli, RppH catalyses the removal of pyrophosphate from 5′-triphosphorylated
RNA transcripts and via participation in RNA decay regulates expression of different
genes [4]. It was later observed that RppH of P. aeruginosa can functionally substitute
for RppH in E. coli cells, indicating that, similar to its counterpart, it could also mediate
RNA turnover in vivo. The main phenotypic change caused by the absence of RppH in
P. aeruginosa was a significant increase in the level of the major virulence factor
pyocyanin [5].
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Up to now, the biological function of PA2504 has not been studied, but it has been
observed by different authors that the level of PA2504 transcript changed visibly depending
on the conditions of bacterial growth (Table 1).

Table 1. Cellular level of PA2504 transcript in different conditions of bacterial growth. Listed are the conditions from
which the samples were withdrawn, the P. aeruginosa strains used for the experiment (Strain), fold change of PA2504 gene
expression (FC), and source of the data.

Conditions Strain FC Source

Burn wound isolate (human) vs. stationary growth in rich liquid medium clinical isolate −11.0 [6]

Cystic fibrosis patient lung isolate vs. stationary growth in rich liquid medium clinical isolate −9.0 [6]

∆vqsR vs. WT, ABC minimal medium PAO1 +8.0 [7]

Murine tumour isolate (mouse) vs. stationary growth phase in rich liquid medium veterinary isolate −6.3 [6]

GUN (glucose uptake null) + glucose vs. WT PAO1 +3.6 [8]

GUN (glucose uptake null) + glucose vs. WT + glucose PAO1 +2.8 [8]

To elucidate the physiological role of PA2504 in P. aeruginosa, we applied a number of
techniques including phenotypic analysis of a PA2504 null mutant and RNA sequencing,
in vivo protein crosslinking with mass-spectrometry, and protein structure modelling. We
found that the PA2504 homodimer wasevenly distributed in the cytoplasm and most
probably serves as an assembly platform for several cellular proteins including TufA
(PA4265), S4 protein (PA4239), and GacA (PA2586).

2. Results
2.1. Phenotypic Characteristic of PA2504 Mutants

Recently, using a P. aeruginosa two-hybrid system library [9] and the one-to-one
bacterial two-hybrid method (BACTH), we found PA2504 to be the sole partner of the
RppH Nudix hydrolase (Figure S3, Supplementary Materials), earlier shown to function as
a global regulator influencing many of transcripts including those involved in P. aeruginosa
virulence [5]. This finding turned our attention to this uncharacterised PA2504 protein.

To establish the influence of PA2504 protein on P. aeruginosa functioning, cells carrying
chromosomal deletion or overexpressing the PA2504 gene were investigated. To test the
effect of the lack of PA2504 protein, the entire PA2504 gene was deleted using pAKE600
suicide vector and overexpression was conducted from an inducible arabinose promoter in
the pKGB as described in the Materials and Methods. Single bacterial colonies of each mu-
tant were transferred into L-broth or M9 minimal medium and growth was monitored. No
major differences in the growth rate were observed between the mutants and the parental
strain in either the exponential or stationary phase. (Figure S2a, Supplementary Materials).

Furthermore, the lack of PA2504 did not affect bacterial biofilm formation, motility,
and the response to any tested antibiotics compared to the parental strain (Figure S2b–d,
Supplementary Materials). These results indicate that PA2504 protein had no significant
influence on the tested bacterial features.

We have previously shown that RppH influences pyocyanin production in P. aeruginosa [5].
To see whether PA2504 is also important in this process, the level of pyocyanin was
determined in ∆PA2504, ∆rppH, and ∆PA2504∆rppH mutants. In ∆PA2504, the pyocyanin
production was the same as in the parental strain, and in the double mutant, it was similar
to that of the single ∆rppH mutant, indicating that the lack of PA2504 did not affected the
RppH activity in pyocyanin production (Figure 1).
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Figure 1. Pyocyanin production by P. aeruginosa strains at the stationary phase of growth. Determined
as in the “Materials and Methods”. Mean value of at least three independent replicates±SD is shown.

2.2. Structural Studies of PA2504 Protein

Since no indications pointing to a possible cellular function of PA2504 appeared from
the phenotypic analysis of the mutants, molecular modelling of the protein was performed
to search for specific domains in PA2504.

The PA2504 protein contains two domains: N-terminal DUF2314 (PF10077) and
C-terminal DUF2185 (PF09951), both found almost exclusively in bacteria (Firmicutes,
Proteobacteria, and many other unclassified bacterial species) and having no known func-
tion. According to the Pfam protein families database, the DUF2314-DUF2185 domain
tandem is present in multiple Firmicutes (Bacillales) and Proteobacteria (Alphaproteobacteria,
Gammaproteobacteria, and Burkholderiales).

Hhsearch detected a remote sequence similarity between the N-terminal domain of
PA2504 and the TUDOR-like domain of a hypothetical protein from Neisseria gonorrhoeae
(pdb|5ueb, no publication available) with the score of 34.88 and an estimated probability
of 93%. This result was confirmed by the TrRosetta modelling framework, which provided
consistent results with a confidence score of 0.71 for the full-length PA2504 (Figure 2a and
Figure S4, Supplementary Materials). The C-terminal domain of PA2504 displayed no
detectable sequence similarity to any protein of known structure or function. Additionally,
the model provided by TrRosetta for this domain was not similar to any protein of known
structure, suggesting that it could represent a novel protein fold.

TUDOR domains are widely recognised for their ability to bind modified amino
acid residues like methylated lysine within a structure called an aromatic cage—a pocket
formed by aromatic residues (Figure 2c). In this manner, they recognise methylated histones
(e.g., ZMYND8 (pdb|4cos) [10] and PHF1 (pdb|5xfo) [11]) for gene expression regulation,
or bind to other proteins (e.g., PHF20 (pdb|3p8d) [12] binding p53) and protecting it from
ubiquitination and, as aconsequence, from degradation or Fragile X mental retardation pro-
tein (FMRP) interacting with both tri-methylated lysine and with 82-FIP, one of the FMRP
nuclear partners [13,14]. Interestingly, unlike other histone-binding proteins, the model of
PA2504 lacked extensive positively charged patches (Figure S5, Supplementary Materials).
Overall, it was negatively charged with only a positively charged cleft between the N-terminal
TUDOR-like and C-terminal domains (blue area in Figure S5, Supplementary Materials).
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Figure 2. PA2405 contains N-terminal TUDOR-like domain and C-terminal domain of unknown function. (a) 3D model
of PA2504; β-strands of TUDOR-like and C-terminal domains are in yellow and orange, respectively. Residues forming
potential aromatic cage for ligand binding are shownas stick models and coloured blue. (b) Multiple sequence to structure
alignment of PA2504 homologs and hypothetical protein from N. gonorrhoeae of known structure. Residue character
conservation marked as follows: uncharged highlighted in yellow, polar in grey, and conserved aromatic residues in blue.
Secondary structure predicted for PA2504 and found in the PDB structure are given above the corresponding regions. The
number of residues omitted from the alignment is provided in parentheses. (c) 3D structures of other TUDOR-like proteins
in an orientation corresponding to the PA2504 model in (a) (discussed in text).

2.3. Oligomerisation of PA2504

To check whether PA2504 is monomeric or forms higher order structures, we in-
vestigated its ability to form homo-interactions in vivo using the BACTH system and
determined the size of purified PA2504 in solution by size exclusion chromatography
combined with multi-angle light scattering (SEC-MALS). Figure 3 shows that PA2504
can oligomerise in vivo and that its SEC-MALS profile corresponds to that of a dimer.
In conclusion, it is most likely that PA2504 is also a homodimer in vivo.
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Figure 3. Dimerisation of PA2504 protein. (a) Interaction between monomeric forms of PA2504 visualised on MacConkey
selective medium (red colonies). (b) SEC-MALS analysis of recombinant PA2504 protein. Purified protein was analysed on
a Superdex 200 column combined with the light scattering instrument HELEOS as described in the Materials and Methods.
LS—light scattering, MW—molecular weight.

2.4. Cellular Localisation of PA2504

To localise PA2504 in the cell, GFP tagged PA2504 was expressed in P. aeruginosa and
observed under a fluorescence microscope. As seen in Figure 4, PA2504 did not associate
with any particular cellular structure and was evenly distributed throughout the cells.
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Figure 4. Localisation of GFP-PA2504 protein in P. aeruginosa cells. Bright field, GFP fluorescence,
and merged are shown. The cells were visualised under a Zeiss Imager. M2 fluorescence microscope
as described in theMaterials and Methods.

2.5. Transcriptomic Analysis of ∆PA2504 Mutant

Since our preliminary analyses failed to indicate a biological function for PA2504, we
compared the transcriptomes of the ∆PA2504 and the wild-type PAO1161 strains using
high-throughput RNA sequencing (RNA-Seq). Since it was found that the level of the
PA2504 transcript was significantly higher (fold change = 6.81) in the stationary phase
than in the exponential phase of growth (Figure 5), we compared the transcriptomes in the
stationary phase of growth.
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Figure 5. Expression of the P. aeruginosa PA2504 gene. PA2504 mRNA was quantified by RT-qPCR in
exponential and stationary phase cultures of wild-type P. aeruginosa PAO1161 against nadB mRNA
used as the reference. The relative expression level in the exponential phase was taken as 1. Mean
value of three independent replicates ±SE is shown.

The lack of the PA2504 protein affected the level of 42 transcripts, of which 41 (97.6%)
were downregulated. Notably, 30 differentially expressed genes (71.4%) were related to
sulphur assimilation and metabolism (Table 2, Figure 6).

Table 2. Transcripts differentially expressed in ∆PA2504.

Gene ID Name Log2 FC Product Description

PA0280 cysA −2.70 Sulphatethiosulphate ABC transporter ATP-binding protein CysA

PA0281 cysW −2.76 Sulphate transporter CysW

PA0282 cysT −2.79 Sulphate transporter CysT

PA0283 sbp −3.13 Sulphate-binding protein

PA0284 oscA −3.11 Hypothetical protein/sulphur starvation response protein

PA0399 PA0399 −0.73 Cystathionine beta-synthase

PA0400 PA0400 −0.54 Cystathionine gamma-lyase

PA1245 aprX −0.92 Extracellular protease AprX

PA1246 aprD −0.70 Alkaline protease secretion ATP-binding protein AprD

PA1247 aprE −0.64 Alkaline protease secretion protein AprE

PA1248 aprF −0.73 Alkaline protease secretion protein AprF

PA1249 aprA −0.83 Alkaline metalloproteinase

PA1493 cysP −0.55 Sulphate ABC transporter substrate-binding protein

PA1756 cysH −0.98 Phosphoadenosinephosphosulphate reductase

PA1837 PA1837 −1.52 Hypothetical protein/oxidoreductase probably involved in sulphite reduction

PA1838 cysI −1.29 Sulphite reductase

PA1912 femI −0.39 ECF sigma factor FemI

PA2062 PA2062 −1.00 Probable pyridoxal-phosphate dependent protein/IscS subfamily cysteine
desulphurase

PA2086 PA2086 −1.12 Epoxide hydrolase

PA2202 PA2202 −1.79 Amino acid permease

PA2203 PA2203 −2.32 Amino acid permease
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Table 2. Cont.

Gene ID Name Log2 FC Product Description

PA2204 PA2204 −3.02 ABC transporter

PA2328 PA2328 −0.86 Hypothetical protein/nitrate transport protein NrtA precursor

PA2329 PA2329 −0.72 ABC transporter ATP-binding protein/nitrate/sulphonate/bicarbonate ABC
transporter ATPase

PA2330 PA2330 −0.74 Hypothetical protein/acyl-CoA/acyl-ACP dehydrogenase

PA2426 pvdS −0.43 Extracytoplasmic-function sigma-70 factor

PA2481 PA2481 +0.46 Hypothetical protein/thiosulphate dehydrogenase

PA2594 PA2594 −1.40 Putative periplasmic aliphatic sulphonate binding protein

PA2598 PA2598 −0.70 Hypothetical protein/methanesulphonate monooxygenase

PA2786 PA2786 −1.10 Hypothetical protein/GAF domain-containing protein

PA3441 ssuF −3.07 Molybdopterin-binding protein/organosulphonate utilisation protein SsuF

PA3931 PA3931 −2.58 Putative methionine-binding protein

PA3932 PA3932 −0.97 Transcriptional regulator

PA4067 oprG −0.49 Outer membrane protein OprG

PA4195 PA4195 −1.64 Putative amino acid ABC transporter substrate-binding protein/ABC
transporter glutamine-binding protein GlnH precursor

PA4442 cysN −1.87 Bifunctional sulphate adenylyltransferase subunit 1/adenylylsulphate kinase

PA4443 cysD −2.22 Sulphate adenylyltransferase subunit 2

PA4470 fumC1 −0.29 Fumarate hydratase

PA4471 PA4471 −0.58 Hypothetical protein

PA5024 ytnM −0.44 Hypothetical protein/sulphite exporter TauE/SafE

PA5025 metY −0.62 O-acetylhomoserineaminocarboxypropyltransferase

PA5103 puuR −1.03 Hypothetical protein/PhnD/SsuA/transferrin family substrate-binding protein

Listed are transcripts with the log2 fold change (FC) (differences statistically significant; with FDR-adjusted p ≤ 0.05). In bold—genes
related to sulphur metabolism. In italics are descriptions of close homologs of P. aeruginosa genes identified using the BLASTP® program.
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Genome database or Blast®homology.

Downregulated transcripts connected to sulphate and thiosulphate import included
cysA, cysW, cysT, sbp, cysP, and PA2329; those connected with the transport of aliphatic
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sulphonic acids were PA2594 and PA5103 and with the import of cysteine and methionine
PA2202, PA2203, PA2204, PA3931, and PA4195. The second group related to the conversion
of sulphate to sulphite and further to sulphide: cysD, cysN, cysH, and cysI. Furthermore,
transcripts coding for enzymes participating in the transformation of L-homocysteine to
L-cysteine (review [15]), cystathionine beta-synthase (PA0399), and cystathionine gamma-
lyase (PA0400) were downregulated in the ∆PA2504 mutant, as was PA2562, a homolog of
the E. coli iscS gene coding for L-cysteine desulphurase [16] (Table 2).

2.6. Growth of ∆PA2504, ∆rppH, and ∆PA2504∆rppH Mutants on Different Sulphur Sources

The transcriptomic analysis suggested that PA2504 could be involved in sulphur
transport and metabolism. Therefore, we compared the growth of the ∆PA2504 and
PAO1161 parental strains on M9 minimal medium supplemented with different sulphur
source such as sulphate, thiosulphate, or amino acids cysteine and methionine. Surprisingly,
no major differences were seen between the two strains in the exponential or stationary
phase of growth regardless of the sulphur source (Figure 7).

To confirm these results, the Biolog system, which allows a simultaneous measure-
ment of bacterial growth on many different sulphur sources, was used. Again, no signif-
icant differences in growth between the mutant and the parental strain were observed
(Figure S6, Supplementary Materials).

Since PA2504 is the partner of RppH, whose involvement in sulphur metabolism was
noticed [17], we asked whether the absence of RppH could affect growth on various sulphur
sources in the presence or absence of PA2504. The growth curves of ∆PA2504, ∆rppH, and
the double mutant ∆PA2504∆rppH on different sulphur sources were determined. Notably,
the ∆rppH strain showed slower growth on cysteine, methionine, taurine, and MOPS than
∆PA2504 and the parental strain, but this effect was not influenced by the absence of PA2504
(strain ∆PA2504∆rppH) (Figure S7, Supplementary Materials).

Taken together, these results show that despite affecting the expression of numerous
sulphur related genes, PA2504 is not involved in the transport or metabolism of any of the
tested sulphur compounds.
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Figure 7. Growth of P. aeruginosa strains on ∆PA2504 mutant in modified M9 minimal medium
supplemented with different sulphur sources (0.5 mM).

2.7. Search for PA2504 Cellular Partners

To further search for PA2504 function, we attempted to identify its protein partners
other than RppH. To this end, His-tagged PA2504 was expressed in P. aeruginosa grown to
exponential or stationary phase, in vivo protein crosslinking was performed, and PA2504
proteins were separated by electrophoresis following crosslink reversal as described in the
Materials and Methods.

Interestingly, following crosslink, two protein bands appeared specifically in the
stationary phase of culture growth (Figure 8).



Int. J. Mol. Sci. 2021, 22, 9833 9 of 18

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 8 of 18 
 

 

 

Figure 7. Growth of P. aeruginosa strains on ΔPA2504 mutant in modified M9 minimal medium 

supplemented with different sulphur sources (0.5 mM). 

2.7. Search for PA2504 Cellular Partners 

To further search for PA2504 function, we attempted to identify its protein partners 

other than RppH. To this end, His-tagged PA2504 was expressed in P. aeruginosa grown 

to exponential or stationary phase, in vivo protein crosslinking was performed, and 

PA2504 proteins were separated by electrophoresis following crosslink reversal as de-

scribed in the Materials and Methods. 

Interestingly, following crosslink, two protein bands appeared specifically in the 

stationary phase of culture growth (Figure 8). 

 

Figure 8. Search for PA2504 partners. Expression of PA2504 was induced with 0.2% arabinose in P. 

aeruginosa ΔPA2504 carrying pKGB2504. The potential PA2504 complexes were crosslinked with 

0.4% formaldehyde for 10 min, and purified as described in the Materials and Methods. Crosslinks 

were reversed by heating at 100 °C for 10 min and the proteins were separated by SDS-PAGE. (a) 

Proteins interacting with PA2504 in the exponential phase. (b) Proteins interacting with PA2504 in 

the stationary phase. In the enlarged fragments, arrows indicate additional bands specific to sta-

tionary phase located between 35 kDa and 45 kDa and below 25 kDa. Uncropped photos of the gels 

are presented in Supplementary Figure S8. 

A mass spectrometry analysis of the first band identified, with high confidence, 

based on the mascot score and emPAI values, the 43.4 kDaTufA translation elongation 

factor (PA4265), while in the second band, the presence of the 23.3 kDa S4 ribosomal 

protein (PA4239) and the 23.6 kDa GacA transcription regulator were detected. The re-

Figure 8. Search for PA2504 partners. Expression of PA2504 was induced with 0.2% arabinose in
P. aeruginosa ∆PA2504 carrying pKGB2504. The potential PA2504 complexes were crosslinked with
0.4% formaldehyde for 10 min, and purified as described in the Materials and Methods. Crosslinks
were reversed by heating at 100 ◦C for 10 min and the proteins were separated by SDS-PAGE.
(a) Proteins interacting with PA2504 in the exponential phase. (b) Proteins interacting with PA2504
in the stationary phase. In the enlarged fragments, arrows indicate additional bands specific to
stationary phase located between 35 kDa and 45 kDa and below 25 kDa. Uncropped photos of the
gels are presented in Supplementary Figure S8.

A mass spectrometry analysis of the first band identified, with high confidence, based
on the mascot score and emPAI values, the 43.4 kDaTufA translation elongation factor
(PA4265), while in the second band, the presence of the 23.3 kDa S4 ribosomal protein
(PA4239) and the 23.6 kDa GacA transcription regulator were detected. The results of mass
spectrometry analysis are presented in Table S3 in the Supplementary Materials.

Interestingly, RppH was not observed under the experimental conditions used, sug-
gesting that if the interaction between RppH and PA2504 occurs in P. aeruginosa cells, it
happens under different circumstances.

3. Discussion

A variety of techniques were used to search for the biological function of PA2504
protein, the alleged only partner of the RppH hydrolase from P. aeruginosa. A lack or over-
production of PA2504 did not affect bacterial growth in various experimental conditions,
nor was there an influence of PA2504 on biofilm formation, motility, or antibiotic resistance.
In contrast to RppH, whose absence dysregulates pyocyanin production [5], a lack of
PA2504 did not affect it, suggesting that pyocyanin synthesis does not require the presence
of the putative PA2504/RppH protein complex. Additionally, PA2504 did not associate
with any particular cellular structure that could point into its function.

In addition, despite the results of a transcriptomic analysis strongly suggesting an
indirect involvement of PA2504 in sulphur metabolism, its absence alone or in combination
with RppH did not affect bacterial growth on a large array of sulphur compounds. However,
taking into consideration the substantial number of sulphur derivatives found in nature
and the enormous environmental adaptability of P. aeruginosa, one cannot exclude that
PA2504 does in fact participate in a yet unrecognised sulphur pathway. In this context, our
finding that the absence of RppH hampered growth on some of the sulphur sources tested
seems interesting and worthy of further studies.

Having found virtually no physiological consequences of PA2504 absence, we were
nevertheless able to gain some insight into its possible role by identifying its in vivo protein
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partners. Notably, these interactions appeared to be specific to the stationary phase of
growth, when PA2504 is known to be upregulated. The partners included the elongation
factor TufA (EF-TuA), the ribosomal protein S4, and the global response regulator GacA.

S4 ribosomal protein is essential for 30S ribosome assembly (for review see [18]).
Mutation of the gene encoding this protein increases the level of translation errors [19].
Apart from its role in ribosome biogenesis, S4 may function as a general anti-termination
factor in transcription [20].

Similarly to S4, the elongation factor EF-Tu, whose canonical role is to transport
aminoacylated tRNA to the ribosome [21], has evolved the ability to perform other func-
tions. Its involvement in cell adhesion and biofilm formation, pathogenesis, and stringent
response has beenreported [22–24] and possibly the list of diversities is not close yet.

GacA is a component of the global signal transduction system GacS/GacA highly
conserved in Gram-negative bacteria. This regulatory system is required for the production
of many secondary metabolites and extracellular enzymes including virulence factors and
biocontrol factors linked with the adaptability to the environment [25]. In addition, a
transcriptomic analysis of a P. aeruginosa gacA mutant also showed that transcripts coding
for proteins of primary metabolism including those involved in sulphur metabolism were
affected [26].

Interestingly, as shown by molecular modelling, PA2504 contains a Tudor-like domain.
Tudor domain proteins, identified and extensively studied in eukaryotes, function as
molecular adaptors, binding methylated arginine or lysine residues on their substrates to
promote physical interactions and assembly of macromolecular complexes participating in
diverse cellular pathways mostly connected with nucleic acid metabolism. Moreover, it
was observed that the specificity of some Tudor domain proteins depend on their ability
to form homodimers (review, [12,27]). Although similar complexes are yet to be found in
prokaryotic cells, Tudor-like domains have been identified in several bacterial species [28–31].
There is also increasing evidence for protein arginine methylation in prokaryotes. Recently,
a proteomic analysis found methylated arginine in the outer membrane protein TamA of
E. coli [32] and Mycobacterium tuberculosis methylation at lysine and/or arginine residues
was identified in nine proteins including MtrA, an essential response regulator of a two-
component signalling system. The methylation of MtrA attenuated its binding to DNA [33].
In addition, it was shown that trimethylation of lysine 5 of EF-Tu was important for
initial adhesion of P. aeruginosa cells to host epithelium [34]. Moreover, it was noticed that
this modification had no impact on the primary function of EF-Tu [35], suggesting that
depending on posttranslational modifications, the protein may play a different role.

Although, the Tudor-like domain of PA2504 seems to retain an aromatic cage, probably
for accepting modified amino acids of other proteins, its more detailed biological function
remains elusive. Proteins interacting with histones present extensive positively charged
patches on their surfaces [10,11] and those specialised in binding to one well-defined protein
display unique electrostaticpatterns [12–14]. It appears that PA2504 is negatively charged
at its surface, which suggests that it will rather not interact with proteins immediately
attached to nucleic acids. On the other hand, it might hijack positively charged nucleic
acids-binding proteins and block their native functions.

Further studies are needed to explain in detail how homodimeric PA2504 influences
the biological function of S4, EF-TuA, and GacA, but it could be speculated that it might be
required to bind these factors in order to fine tune cellular response to external conditions
(e.g., stationary phase-dependent nutrient shortage).

4. Materials and Methods
4.1. Bacterial Strains and Growth Conditions

The E. coli and P. aeruginosa strains used in this study are listed in Table S1 in the
Supplementary Materials and the plasmids in Table 3. Bacteria were grown routinely in
Luria-Bertani (L-broth) medium or on L-agar (L-broth with 1.5% (wt/vol) agar) at 37 ◦C.
To determine growth on different sulphur sources, P. aeruginosa strains were grown in
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modified M9 minimal medium (33.7 mM Na2HPO4, 22 mM KH2PO4, 8.55 mM NaCl, 9.35
mM NH4Cl, 1.0 mM MgCl2, 0.3 mM CaCl2, 152 mM leucine, 134 µM FeCl3, 20 mM sodium
citrate), and supplemented with appropriate sulphur sources (0.5 mM). Growth curves
were obtained with the use of a Varioscan Lux multimode plate reader (Thermo Scientific™)
in 96-well plates.

Where needed, appropriate antibiotics were added to the media as follows: ampi-
cillin, 100 µg mL−1 for ApR in E. coli, kanamycin sulphate, 50 µg mL−1 for KmR in E. coli,
25 µg mL−1 chloramphenicol for CmR in E. coli, and 200 µg mL−1 in P. aeruginosa; carbeni-
cillin disodium salt, 300 µg mL−1 for CbR in P. aeruginosa; rifampicin, 300 µg mL−1 for RifR

in P. aeruginosa.

Table 3. Plasmids used in this study.

Plasmid Relevant Features Source

pKGB pKGB8.0.2 vector, in this work referred to as pKGB; araBADp, araC, CmR,
broad-host-range expression vector

[36]

pQE-80L oriColE1ApR T5p lacOlacIq His6 tag, expression vector Qiagen

pAKE600 oriMB1 oriRK2ApRsacB [37]

pKT25 ori P15A, KmR, lacp–cyaT25 [38]

pKNT25 orip15, KmR, lacp–cyaT25 [38]

pUT18C oriColE1, ApR, lacp–cyaT18 [38]

pBAD24-sfGFPx1 araBADp, araC, ApR, Superfolder GFP ORF cloned into pBAD24 for
expression in E. coli

[39]

pAKE2504
pAKE600 plasmid with 275 bp upstream region of PA2504 gene with start

codon and 253 bp downstream region of PA2504 gene with stop codon,
inserted as EcoI-PstI and PstI-BamHI fragments

This work

pQE2504 pQE-80L with PA2504 without start codon, inserted as BamHI-SalI fragment This work

pKGB2504 pKGB with PA2504Hisx6 inserted as EcoRI-SalI fragment This work

pKGBgfp2504 pKGB with sfGFP without stop codon, inserted as an EcoRI-HindIII fragment,
and PA2504 without start codon, cloned as XbaI-SacI fragment This work

pKT2504 pKT25 with PA2504 without start codon, inserted as BamHI-EcoRI fragment This work

pNTrppH pKNT25 with PA2504 without stop codon, inserted as BamHI-EcoRI fragment This work

p18C2504 pUT18C with PA2504 without start codon, inserted as BamHI-EcoRI fragment This work

4.2. Deletion of PA2504

∆PA2504 and ∆PA2504∆rppH mutants were obtained as follows: PA2504 upstream
and downstream DNA fragments of about 300–500 nucleotides each were amplified by
PCR using chromosomal DNA as a template and subsequently ligated into the suicide
pAKE600 vector. pAKE600 carries the pMBIori, allowing replication in P. aeruginosa [37].
E. coli S17-1 was transformed with the obtained pAKE2504 plasmid and the transformants
were conjugated with P. aeruginosa PAO1161 (for ∆PA2504) or ∆rppH (for ∆PA2504∆rppH)
using the procedure described by [40]. Following removal of the integrated suicide vector,
P. aeruginosa colonies were analysed by RT-PCR to determine whether the allele exchange was
successful, and the transcript of the gene was absent (Figure S1, Supplementary Materials).

4.3. Overproduction of PA2504

The PA2504 gene without the start codon was cloned into the pQE-80L vector to obtain
a His6PA2504 fusion. The His6PA2504 fragment was cloned into the pKGB vector under
the control of an arabinose inducible promoter to obtain the pKGB2504 plasmid. The
obtained plasmid was introduced into suitable P. aeruginosa strains by conjugation as stated
above. For protein overproduction, overnight cultures of P. aeruginosa carrying the plasmid
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were diluted in L-broth or M9 medium 1:100 and protein production was induced by the
addition of 0.02% arabinose.

4.4. Pyocyanin Quantification

Overnight cultures of P. aeruginosa PAO1161 and mutant strains were inoculated 1:100
in 20 mL of L-broth and grown in triplicate at 37 ◦C with aeration. After 12 h of incubation,
two 7.5 mL samples were withdrawn from each culture and extracted with 4.5 mL of
chloroform and then 1.5 mL 0.2 M HCl was added to the extract, causing the colour change.
OD520 was determined and the obtained values were converted to pyocyanin content
following [41]. The experiment was repeated at least three times.

4.5. Molecular Protein Modelling

Sequence similarity searches were performed using hhsearch, a highly sensitive meta
profile comparison engine for remote homology detection [42]. Additionally, the full-length
PA2504 protein was modelled with TrRosetta [43], which combines energy minimisation
with restraints estimated by the neural network. Multiple sequence alignments were
obtained with Mafftlinsi flavour [44] for accuracy. Secondary structure was predicted using
PSIPRED [45]. Proteins similar in structure to the PA2504 model were identified using the
DALI server [46]. Electrostatic analysis was done with the APBS [47] plugin to PyMOL. All
3D structure visualisations were prepared in PyMOL.

4.6. Purification of His6-Tagged PA2504 by Affinity Chromatography

The pQE2504 plasmid carrying the PA2504 gene coding a protein in fusion with a
His6-tag was introduced into E. coli BL21-DE3. An overnight culture of E. coli transformant
was diluted 1:50 in 100 mL of L-broth and grown at 37 ◦C to OD600 = 0.6. Then, IPTG was
added to 0.2 mM, cells were grown for the next 3–4 h, and pelleted by centrifugation for
10 min at 4 ◦C. The pellets were suspended in 8 mL of sonication buffer (300 mM NaCl,
100 mM Tris-Cl, pH 7.5, 5 mM β-mercaptoethanol) containing protease inhibitors (Roche,
Basel, Switzerland or Sigma Aldrich Saint Louis, MO, USA) and disrupted by sonication
(5 × 1 min). The obtained cell extract was cleared by centrifugation at 4 ◦C for 30 min at
14,000 g. The supernatant was incubated with 200 µL of Ni2+-NTA resin (Sigma Aldrich,
Saint Louis, MO, USA) for 2 h with gentle shaking at 4 ◦C. The resin was washed twice
with sonication buffer, then three times with sonication buffer containing 10 mM imidazole
(Sigma Aldrich, Saint Louis, MO, USA), and three times with sonication buffer containing
20 mM imidazole. Resin-bound proteins were then eluted with three 200 µL portions of
250 mM imidazole and dialysed overnight against dialysis buffer (50 mM Tris-Cl, pH 7.0,
2 mM EDTA, 2 mM DTT). Protein purity was analysed by SDS-PAGE and concentration
measured using the Bradford reagent [48].

4.7. SEC-MALS Analysis

The purified recombinant PA2504 protein was loaded onto a Superdex200 column
combined with a multi-angle light scattering instrument HELEOS (WYATT Technology,
Santa Barbara, CA, USA). The proteins were eluted with 50 mM Tris-Cl buffer, pH 7.0,
300 mM NaCl, at a flow rate of 0. 5 mL min−1. Each fraction was automatically analysed
by multi-angle light scattering.

4.8. Bacterial Two-Hybrid System (BACTH)

DNA fragments encoding PA2504 and RppH were PCR-amplified using P. aeruginosa
genomic DNA as template with appropriate primers (Table S2). The obtained fragments
were cloned into the plasmids of the BACTH system [38]. Resulting plasmids pKT2504,
pNTrppH, and p18C2504 were co-transformed into the E. coli BTH101 cyaA strain as needed.
The transformants were analysed on MacConkey selective medium plates with maltose. As
negative controls, the BTH101 strain transformed with one empty vector and one encoding
the hybrid protein was used.
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4.9. Bacterial Two-Hybrid Library Screening

A library of the P. aeruginosa PAO1161 genome in the pUT18C plasmid was used [9].
Briefly, DNA from P. aeruginosa PAO1161 was fragmented with helium at 0.9 Pa for 4 min,
precipitated, dried, and dissolved in water. The DNA fragments were treated with Klenow
DNA polymerase I and T4 phage polymerase and then ligated into the SmaI-treated and
dephosphorilated pUT18C BACTH vector. The obtained plasmids were introduced into
the E. coli cells. The bacteria were collected to obtain a 10-fold coverage of the whole
P. aeruginosa PAO1161 genome and inoculated into LB medium for library isolation. Three
milligrams of plasmid DNA library was used for further experiments.

The pNTrppH plasmid and the pUT18C library were co-transformed into the E. coli
BTH101 cyaA strain. A four-step verification was used. First, the transformed cells were
spread on LB plates with 0.5 mM IPTG and 40 µg mL−1 X-Gal. The plates were incubated
for five days at 28 ◦C. Blue colonies were replicated on MacConkey selection medium and
incubated 48 h in 28 ◦C. Plasmids where isolated from streaks thatchanged in colour to red.
The obtained plasmids were co-transformed with pNTrppH into E. coli BTH101 cyaA and
the bacteria were spread on LB X-Gal IPTG plates. Library plasmids from blue colonies
were sequenced in house and the sequences were verified for protein-coding correct frame
orientation. When the above conditions were met, the protein encoded by the fragment
was considered as a potential partner of RppH. To confirm the interactions, the entire genes
encoding the identified proteins were cloned in pUT18C and then co-transformed with
pNTrppH into the E. coli BTH101 cyaA and selected LB X-Gal IPTG medium. In each step
of the procedure a positive and a negative control was used.

For the identification of the protein partners of RppH, 21 co-transformations of the
pNTrppH with the pUT18C library were performed. Of the approximately 35,000 colonies
analysed, 24 showed a change incolour. After MacConkey medium selection, eight clones
were selected for further analysis. Upon re-analysis, only two clones showed a change
incolour on the selection medium and upon sequence analysis, only one carrying the
PA2504 gene encoding an unknown protein was accepted. The interaction of PA2504 with
RppH was confirmed as detailed above.

4.10. Cellular Localisation of PA2504

PA2540 protein was localised in P. aeruginosa cells by cloning the PA2504 and sfGFP
(super folder GFP) fragments in to the pKGB to give pKGBgfp2504. PA2504 was amplified
on the PAO1161 strain genomic DNA template and sfGFP fragment on the pBAD24-
sfGFPx1 plasmid [39]; pKGBgfp2504 was introduced into the P. aeruginosa ∆PA2504 by
conjugation [40]. An overnight culture was diluted 1:150 and incubated for 4 h at 37 ◦C, then
1.5 mL of the culture was centrifuged and resuspended in 20 µL of fresh LB medium and
1 µL of the suspension was placed on a microscope slide covered with polylysine (Thermo
Scientific). Cells were studied using a Zeiss Imager. M2 fluorescence microscope with a
100× 1.30 NA Plan-Neofluar lens and Zeiss AxioCam MRc5 camera with ta 470/40 nm
excitation filter, 495 nm dichroic beam-splitter, and 525/50 nm emission filter. AxioVision
(AxioVs40 V 4.8.2.0, Carl Zeiss MicroImaging) software was used.

4.11. In Vivo Protein Crosslinking and Purification of Protein Complexes

Crosslinking experiments were based on [49]. The minimal concentration of formalde-
hyde and incubation time required to induce sufficient crosslinking were determined
experimentally. P. aeruginosa ∆PA2504 strain carrying the pKGB2504 plasmid, encoding
His6-taged PA2504, was used. An overnight culture was diluted 1:100 in fresh L-broth
medium with 0.2% arabinose and chloramphenicol and grown for 18 h at 37 ◦C with
vigorous shaking. Formaldehyde was added to cultures in a range of concentrations from
0.1% to 1% and the bacteria were incubated for 15 min at room temperature with gentle
shaking every 3 min. The formaldehyde was quenched by the addition of 1/10 culture
volume of ice cold 0.125 M glycine in PBS and 100 mL of each culture was centrifuged in
5000 rpm for 30 min, washed with 50 mL of cold PBS, and centrifuged again. The pellets
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were suspended in 8 mL of sonication buffer (300 mM NaCl, 100 mM Tris-Cl, pH 7.5,
5 mM β-mercaptoethanol) containing protease inhibitors (Sigma Aldrich, Saint Louis, MO,
USA) and disrupted by sonication (5 × 1 min). The obtained cell extracts were cleared by
centrifugation at 4 ◦C for 30 min at 14,000 g. Supernatants were incubated with 200 µL
of Ni2+-NTA resin (Sigma Aldrich, Saint Louis, MO, USA) for 2 h with gentle shaking
at 4 ◦C. The resin was washed twice with sonication buffer and then three times with
sonication buffer containing 10 mM imidazole (Sigma Aldrich, Saint Louis, MO, USA)
and three times with sonication buffer containing 20 mM imidazole. His6-tagged PA2504
crosslinked with its protein partners was eluted from the nickel resin with three portions
of 200 µL of 400 mM imidazole (then pooled). The proteins were incubated with loading
dye at 65 ◦C for 20 min, which preserves the crosslinking [50]. The crosslinked proteins
were separated on SDS-PAGE gel followed by western blotting. Aconcentration of 0.4%
formaldehyde and 10 min incubation were chosen for further experiments based on the
visibility of the PA2504 dimer and larger complexes. For mass spectrometry identification
of the crosslinked proteins, the Ni–NTA-isolated complexes were incubated with the load-
ing dye for 10 min at 100 ◦C, which disrupted the formaldehyde crosslinks. Proteins from
three separate biological replicates treated with 0.4% formaldehyde and three not treated
with formaldehyde were separated in 12% SDS-PAGE gel.

4.12. Mass Spectrometry

The bands of interest were cut out from the gel and fragmented to 1–2 mm pieces
with sterilised scalpel. For Coomassie Brilliant blue removal, gel fragments were covered
with destaining solution (50% acetonitrile in 50 mM NH4HCO3) and vortexed until fully
destained. The gel fragments were dried with 100% acetonitrile, followed by cysteine
reduction with a solution of 10 mM DTT, 100 mM NH4HCO3 for 30 min in 57 ◦C. The
gel was dried again as previously described and cysteine alkylation was performed by 45
min of incubation in alkylation solution (50 mM iodoacetamid, 100 mM NH4HCO3). Any
residue of used solutions were washed away with 100 mM NH4HCO3 and subsequently
with 100% acetonitrile, used twice, alternately. The gel was dried again as previously
described. The dry gel fragments were covered with a trypsin solution (10 ng/µL in 25 mM
NH4HCO3) and incubated at 37 ◦C overnight. The obtained peptides were extracted with
30 µL of 0.1% trifluoroacetic acid, and 0.2% acetonitrile solution. The peptide mixture
was separated with liquid chromatography, followed by mass measurements with an
Orbitrap spectrometer (Thermo). The peptides were annotated to the P. aeruginosa proteome
with the use of the Pseudomonas genome data base [3] with the use of MASCOT (http:
//www.matrixscience.com (accessed on 22 April 2021 and 9 August 2021)).

4.13. RNA Isolation

For isolation of total cellular RNA for next-generation sequencing (RNA-Seq) or RT-
qPCR, P. aeruginosa PAO1161 and ∆PA2504 strains were inoculated 1:100 in fresh L-broth
and incubated for 18 h with shaking at 37 ◦C, then 1.5 mL samples were taken from three
independent biological replicates and immediately treated with RNA protect Bacteria
Reagent (Qiagen, Hilden, Germany) and spun down. RNA was isolated from the cell
pellet with the RNeasy Mini Kit (Qiagen) and digested with DNase I using the RapidOut
DNA Removal Kit (Thermo Scientific, Waltham, MA, USA). RNA quality and integrity was
assessed with a bioanalyzer (Agilent Technology, Santa Clara, CA, USA), and concentration
was estimated using a Nano Drop ND-1000 spectrophotometer.

4.14. RT-qPCR

Total RNA (800 ng) from three biological replicates of each strain was used for cDNA
synthesis using a QuantiTect Reverse Transcription Kit (Qiagen). The cDNA then served as
a template for qPCR with gene-specific primers (Table S2, Supplementary Materials) and
5× HOT FIREPolEvaGreen qPCR Mix Plus (Solis Biodyne) in a LightCycler 480 II System
(Roche Molecular Diagnostics). Relative transcript level was determined by a comparisonof

http://www.matrixscience.com
http://www.matrixscience.com
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crossing points (Cp) for the target and the reference gene (nadB). Three technical repetitions
were undertakenfor each primer pair. The ratio/fold change was calculated using Pfaffl’s
formula [51].

4.15. RNA-Seq Analysis

RNA as above prepared was subjected to next-generation sequencing by a commer-
cial provider. Ribosomal RNA was depleted using QIAseqFastSelect (Qiagen). cDNA
libraries were prepared with the NEBNext® Ultra ™ II Directional RNA Library Prep Kit
for Illumina® (New England Biolabs) with information about the transcription direction
preserved and sequenced on a NextSeq500 device (Illumina) with 75-nt paired-end reads.

4.16. Bioinformatic Analysis of RNA-Seq Results

First, for each file with raw sequencing data, a data quality report was prepared
with the use of FASTQC [52]. The reads were mapped with TopHat program [53] to
the P. aeruginosa PAO1 genome using the fr-firststrand option and in the nonovel-juncs
mode. The percentage of reference mapping reads was then verified. The number of
mapped base pair reads for individual genes was counted with HTseq [54] with distinction
considering the transcript strand (–stranded=reverse). Genes were annotated based on the
P. aeruginosa PAO1 gene descriptions from PseudoCap. Final results were prepared in the
R environment (https://www.r-project.org/ (accessed on 9 June 2020)) with the use of the
DESeq2 package [55]. Differential expression was analysed statistically with the Walds
test. Obtained p-values were FDR-adjusted using the Benjamini–Hochberg method [56].
The RNA-Seq results were deposited at NCBI’s Gene Expression Omnibus [57] and are
accessible via the GEO Series Accession Number GSE179150 at [58] (https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE179150).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22189833/s1. All supplementary materials are provided in a single pdf file. The content is
as follows: Supporting Materials and Methods; Table S1: Bacterial strains used in this study; Table S2:
Primers used in this study; Table S3: Proteins identified by mass spectrometry analysis of bands
cut from SDS-PAGE gel; Figure S1: Control of PA2504 gene deletion; Figure S2: Effect of PA2504
depravation and overproduction on growth, biofilm production, motility, and antibiotic susceptibility;
Figure S3: Interaction between PA2504 and RppH; Figure S4; Figure S5: Molecular surfaces of PHF1,
ZMYND8, and PA2504 coloured according to calculated electrostatic potential; Figure S6: Effect of
PA2504 depravation and overproduction in the presence of different sulphur sources; Figure S7:
Growth curves of the P. aeruginosa wild-type PAO1161 strain and ∆rppH, ∆PA2504, ∆PA2504∆rppH
mutantstrains in M9 minimal medium supplemented with a sulphur source; Figure S8: Uncropped
pictures of SDS-PAGE gels used to prepare Figure 8.
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BACTH Bacterial two hybrid
DTT Ditiotreitol
EDTA Ethylenediamine tetraacetic acid
FC Fold change
IPTG Isopropyl ß-D-1-thiogalactopyranoside
RNA-Seq High-throughput RNA sequencing
RT-PCR Reverse transcription PCR
RT-qPCR Reverse transcription quantitative PCR
SEC-MALS Exclusion chromatography combined with multi angle light scattering
X-Gal 5-Bromo-4-Chloro-3-Indolyl β-D-Galactopyranoside
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