Mispair specificity resulting in AT to GC and CG to TA substitutions on both DNA strands in *psf1-1* cells

In the *POL3* strain with the *URA3* coding sequence replicated as a lagging strand (OR1), T to C substitution was almost 12-fold more frequent than A to G substitution, while the G to A versus C to T ratio was 5 (Figure 4A, upper panel), which is consistent with Pol δ specificity and data obtained by others [51].

As expected, when the *URA3* reporter was inserted in the inverse orientation (OR2) and its coding sequence was replicated as the leading strand, A to G and C to T substitutions slightly dominated over T to C and G to A, respectively (Figure 4A, lower panel). These ratios were significantly different from those observed in the other *URA3* orientation (OR1) presented above (p=0.002 and p<0.0001, Table S4) and were consistent with the model in which Pol ϵ performed the majority of DNA synthesis on the leading strand. However, the ratios were inverted in the *psf1-1* mutant strain with the OR2 *URA3* orientation: the T to C versus A to G substitution ratio increased from 0.8 to >11, and the G to A versus C to T ratio increased from 0.4 to 1.1 (Figure 4A and B, lower panel), with *p* values <0.0001 and 0.0171, respectively (Table S4).

Mispair specificity resulting in GC to TA substitutions on both DNA strands in psf1-1 cells

In our analysis, G to T dominated over C to A in POL3 cells in both the OR1 and OR2 orientations of URA3 (where the coding sequence was replicated as the lagging and leading strands. respectively). However, the ratios were significantly different (p=0.0003) in the two orientations, with higher domination of G to T in OR2 cells (C to A versus G to T ratio of 0.13) and only a two-fold difference in OR1 (C to A versus G to T ratio of 0.56) (Figure S1A upper panel and Table S5). Importantly, a similar two-fold higher G to T mutation rate compared with C to A was observed in URA3 OR1 in the msh6 Δ background in a study describing mismatch repair activity on the lagging DNA strand [86]. A later study conducted in the msh2 background showed an orientation bias for GC to TA substitutions with similar rates of C to A events in both OR1 and OR2 and much higher rates of G to T events in OR2 compared with the OR1 orientation of the reporter gene [54]. Moreover, given the location of the closest ARS, these substitutions were attributed to C•dT mispairs formed on the lagging strand. Because the coding sequence of URA3 in the OR2 position is replicated as the leading strand, these mispairs are observed as G to T substitutions. These observations explain our results showing low C to A versus G to T ratios in POL3 cells with URA3 in the OR2 position, as shown in Figure S1A. Importantly, in *psf1-1* mutant cells with an OR1 orientation of URA3, we observed a large increase in G to T substitution rates (7.8-fold), resulting in a significant decrease in the C to A versus G to T ratio (Figure S1A and B, upper panel and Table S5). This result reflects increased rates of C•dT mispairs during replication of the leading strand by Pol δ in the *psf1-1* mutant in URA3-OR1 cells, which equates to the situation in which URA3 is in the OR2 orientation and Pol δ replicates the lagging strand. In parallel, the C to A versus G to T ratio increased in psf1-1 cells with URA3 in the OR2 position (Figure S1A and B, lower panel and Table S5), which resulted from a slight increase in C•dT mispairs produced by Pol δ replication on the leading strand. Together, these results indicate a role for Pol δ in leading strand replication in the *psf1-1* mutant, resulting in significant changes in the ratios of specific mispairs.

L612M Pol δ -specific mispair specificity resulting in GC to TA substitutions observed on both DNA strands in *psf1-1* cells

In the *pol3-L612M* strain with the *URA3* coding sequence replicated as the lagging strand (OR1), our results showed a 2-fold preference for the C to A substitution over the G to T substitution, which was significantly different (*p*=0.0002) from the 0.56-fold ratio observed in *POL3* cells (Figure S1A and C, upper panel and Table S5). This phenomenon resulted mainly from the almost 5-fold higher rates of C to A changes (0.92×10^{-6} in *pol3-L612M* compared with 0.19×10^{-6} in *POL3*) and only 1.4-fold higher rates of G to T substitutions (0.46×10^{-6} compared with 0.34×10^{-6}). Importantly, in the *pol3-L612M psf1-1* strain with *URA3* in OR1, the C to A versus G to T ratio was reduced from 2 in *pol3-L612M* to 0.89 (*p*<0.0001) (Figure S1C and D, upper panel and Table S5).

In *pol3-L612M* with *URA3* in OR2 with replication of the coding sequence as the leading strand, G to T domination was stronger than in the *POL3* strain (C to A versus G to T ratio decrease from 0.13 to <0.02) due to an 8-fold increase in G to T rates (8.68×10^{-6} in *pol3-L612M* compared with 1.09×10^{-6} in *POL3*), while C to A changes were not detected in *pol3-L612M* (a single C to A event would represent a 1.6-fold rate increase) (Figure S1A and C, lower panel and Table S5). Interestingly, in *pol3-L612M psf1-1 URA3* OR2 cells, the mispair ratio was <0.01, with no significant difference compared with *pol3-L612M* (Figure S1C and D, lower panel and Table S5).

These results are consistent with previous work [52], in which the C to A versus G to T ratio was 1.8 in *pol3-L612M* cells while the combination of *pol3-L612M* with the *pol2-16* mutation (inactivating the catalytic activity of Pol ϵ) reduced the ratio to 1. Therefore, we again concluded that the increase in C to A substitutions resulted from C•dT mispairs generated by Pol δ during leading strand replication in *psf1-1* cells.

G to T mutation hotspots in pol3-L612M and pol3-L612M psf1-1 cells

In the *pol3-L612M* mutant, we also observed hotspots of substitutions at positions 679 and 706 (1.66×10^{-6} when the reporter was in OR2) (Figure S2C, Table S3). These hotspots were previously reported in *pol3-L612M* cells [54,88]. In *URA3* OR1, this type of substitution was absent (Figure S2C, Table S3). The contribution of G to T changes at other sites was also 15-fold higher in strains with *URA3* in OR2 than in OR1, with mutation rates of 7.02×10^{-6} and 0.46×10^{-6} , respectively (Figure S2C), *p*<0.0001 (Table S7). These results are consistent with the mutational signature of Pol δ L612M characteristic for the lagging DNA strand.

In *pol3-L612M psf1-1* cells with the reporter gene in the OR1 orientation, we observed a significant relative increase in G to T substitution at 679/706 (Figure S2C and D; *p*<0.0001, Table S6). Similar effects were observed for these substitutions in general at all sites, including hotspots (Figure S2C and D; *p*<0.0001, Table S7). This finding again reflected an increase in C•dT mispair rates occurring during replication of the leading strand by Pol δ in *psf1-1 URA3*-OR1.

pol3-L612M-specific deletions

Previous work has assigned single nucleotide deletions in *URA3* characteristic of L612M Pol δ namely, deletion of T at 201-205 and at 255-260 in OR1 and deletion of A at 174-178 in OR2 [89]. In that study, this type of error constituted almost one-third of all observed mutations. In our analysis, deletions constituted 1.1 - 4% of the total mutation events in *pol3-L612M* mutants and 1.3 - 5.3% of the total mutation events in *POL3* strains. Consequently, when compared to previously published data [89], we did not observe an important contribution of T deletions in *pol3-L612M* cells at positions 201-205, 255-260 or at other sites in the *URA3* OR1 mutation spectrum (Table S3). In total, only 5 of 176 events were deletions, which occurred at a rate of 1.15x10⁻⁶ of 176 events (two deletions in the TTTTTT run at position 255-260 and three deletions at other sites) (Table S3). In strains with *URA3* in OR2, we found only one minus T event (outside of homopolymeric runs) among 172 events analyzed, representing a rate of 0.18×10⁻⁶ (Table S3). Similarly, we found no minus A events at hotspots in *pol3-L612M* cells; at other sites, they were formed at a rate of only 0.37×10⁻⁶ in OR2 and 0.23×10⁻⁶ in OR1 orientation of the reporter gene (Table S3).

The difference between our results and those obtained previously for *pol3-L612M* might be explained by the observation that in our study MMR was partially inactivated by deletion of the *MSH6* gene, while in the cited study *MSH2* was deleted. The MMR system operates by two protein complexes, MutS β composed of Msh2-Msh3 (correction of small and large insertions and deletions) and MutS α composed of Msh2-Msh6 (correction of mismatched bases and single-base insertions or deletions) [86]. Deletion of the *MSH2* gene results in a much stronger increase in mutagenesis rates than deletion of *MSH6* [5,87]. Therefore, given that we expected a strong increase in mutagenesis rates in the double replication mutant *psf1-1 pol3-L612M* (Table S3), to better visualize the replication errors in our study, we chose to delete the *MSH6* gene. Since Msh6 plays only a minor role in the repair of insertion/deletion mispairs [87], the observed differences in single deletion contributions to total mutagenesis in *msh2* Δ and *msh6* Δ can be explained by different extents of MMR defects.

SUPPLEMENTARY DATA

Increased contribution of DNA polymerase delta to the leading strand replication in yeast with an impaired CMG helicase complex Dmowski *et al.*, <u>https://doi.org/10.1016/j.dnarep.2022.103272</u>

Figure S1. Mutation rates calculated for specific substitutions [5-FOA^R×10⁻⁶] in strains with *psf1-1* and/or *pol3-L612M* mutations in the *rev3* Δ *msh6* Δ background. Details of the mutation spectra are shown in Table S3. The statistical analysis is shown in Table S5.

SUPPLEMENTARY DATA

Increased contribution of DNA polymerase delta to the leading strand replication in yeast with an impaired CMG helicase complex Dmowski *et al.*, <u>https://doi.org/10.1016/j.dnarep.2022.103272</u>

Figure S2. Mutation rates calculated for G to T substitutions including the *pol3-L612M*-characteristic hotspot [5-FOA^R×10⁻⁶] in strains with *psf1-1* and/or *pol3-L612M* mutations in the *rev3* Δ *msh6* Δ background. Details of the mutation spectra are shown in Table S3. The statistical analysis is shown in Table S6 and Table S7.

SUPPLEMENTARY DATA

Increased contribution of DNA polymerase delta to the leading strand replication in yeast with an impaired CMG helicase complex Dmowski et al., https://doi.org/10.1016/j.dnarep.2022.103272

Figure S3. Mutation rates calculated for specific substitutions $[5-FOA^R \times 10^{-6}]$ in strains with *pol2-L612M* or *pol2-L612M psf1-1* mutations in the *rev3* Δ *msh6* Δ background. Open bar indicates mutation rate that would be observed if a single event was detected. Details of the mutation spectra are shown in the associated Data in Brief paper by Dmowski *et al.*

Strain	Relevant genotype	Description	Source
YTAK001	agp1::URA3-OR1		[57]
Y467	agp1::URA3-OR1 rev3∆	REV3 disruption in YTAK001	This work
Y473	agp1::URA3-OR1 rev3∆ PSF1	PSF1-LEU2 derivative of Y467	This work
Y485-3	agp1::URA3-OR1 rev3∆ PSF1 msh6∆	MSH6 disruption in Y473	This work
Y485-4	agp1::URA3-OR1 rev3∆ PSF1 msh6∆	MSH6 disruption in Y473	This work
Y479-1	agp1::URA3-OR1 rev3∆ psf1-1	psf1-1-LEU2 derivative of Y467	This work
Y479-3	agp1::URA3-OR1 rev3_psf1-1	psf1-1-LEU2 derivative of Y467	This work
Y495-3	agp1::URA3-OR1 rev3∆ psf1-1 msh6∆	MSH6 disruption in Y479-1	This work
Y497-8	agp1::URA3-OR1 rev3∆ psf1-1 msh6∆	MSH6 disruption in Y479-3	This work
YTAK002	agp1::URA3-OR2		[57]
Y468	agp1::URA3-OR2 rev3∆	REV3 disruption in YTAK002	This work
Y474	agp1::URA3-OR2 rev3∆ PSF1	PSF1-LEU2 derivative of Y468	This work
Y486-2	agp1::URA3-OR2 rev3∆ PSF1 msh6∆	MSH6 disruption in Y474	This work
Y486-5	agp1::URA3-OR2 rev3∆ PSF1 msh6∆	MSH6 disruption in Y474	This work
Y480-1	agp1::URA3-OR2 rev3∆ psf1-1	psf1-1-LEU2 derivative of Y468	This work
Y480-2	agp1::URA3-OR2 rev3∆ psf1-1	psf1-1-LEU2 derivative of Y468	This work
Y498-6	agp1::URA3-OR2 rev3∆ psf1-1 msh6∆	MSH6 disruption in Y480-1	This work
Y499-2	agp1::URA3-OR2 rev3∆ psf1-1 msh6∆	MSH6 disruption in Y480-2	This work
SNM12	pol3L612Magp1::URA3-OR1		[54]
Y469	pol3L612Magp1::URA3-OR1 rev3∆	REV3 disruption in SNM12	This work
Y477-1	pol3L612Magp1::URA3-OR1 rev3∆ PSF1	PSF1-LEU2 derivative of Y469	This work
Y477-2	pol3L612Magp1::URA3-OR1 rev3∆ PSF1	PSF1-LEU2 derivative of Y469	This work
Y491-3	pol3L612Magp1::URA3-OR1 rev3∆ PSF1 msh6∆	MSH6 disruption in Y477-1	This work
Y492-1	pol3L612Magp1::URA3-OR1 rev3∆ PSF1 msh6∆	MSH6 disruption in Y477-2	This work
Y481-1	pol3L612Magp1::URA3-OR1 rev3∆psf1-1	psf1-1-LEU2 derivative of Y469	This work
Y481-2	pol3L612Magp1::URA3-OR1 rev3∆ psf1-1	psf1-1-LEU2 derivative of Y469	This work
Y481-3	pol3L612Magp1::URA3-OR1 rev3∆ psf1-1	psf1-1-LEU2 derivative of Y469	This work
Y501-3	pol3L612Magp1::URA3-OR1 rev3∆psf1-1 msh6∆	MSH6 disruption in Y481-1	This work
Y502-3	pol3L612Magp1::URA3-OR1 rev3∆ psf1-1 msh6∆	MSH6 disruption in Y481-2	This work
Y503-3	pol3L612Magp1::URA3-OR1 rev3∆ psf1-1 msh6∆	MSH6 disruption in Y481-3	This work
Y638-1	POL3/pol3L612M agp1::URA3-OR1/agp1::URA3-OR1 rev3Δ /rev3Δ PSF1/psf1-1 MSH6/msh6Δ	Diploid strain	This work
Y638-2	POL3/pol3L612Magp1::URA3-OR1/agp1::URA3-OR1 rev3Δ /rev3Δ PSF1/psf1-1 MSH6/msh6Δ	Diploid strain	This work
Y649	pol3L612Magp1::URA3-OR1 rev3∆psf1-1 msh6∆	Segregant of Y638-1	This work
Y652	pol3L612Magp1::URA3-OR1 rev3∆psf1-1 msh6∆	Segregant of Y638-1	This work
Y654	pol3L612Magp1::URA3-OR1 rev3∆psf1-1 msh6∆	Segregant of Y638-2	This work
Y655	pol3L612Magp1::URA3-OR1 rev3∆psf1-1 msh6∆	Segregant of Y638-2	This work
Y656	pol3L612Magp1::URA3-OR1 rev3∆psf1-1 msh6∆	Segregant of Y638-2	This work
SNM 24	pol3L612Magp1::URA3-0R2		[54]
Y470	pol3L612Magp1::URA3-0R2 rev3∆	REV3 disruption in SNM24	This work
Y478-1	pol3L612Magp1::URA3-OR2rev3∆PSF1	PSF1-LEU2 derivative of Y470	This work
Y478-2	pol3L612Magp1::URA3-OR2rev3∆PSF1	PSF1-LEU2 derivative of Y470	This work
Y493-1	pol3L612Magp1::URA3-OR2rev3∆PSF1msh6∆	MSH6 disruption in Y478-1	This work
Y494-1	pol3L612Magp1::URA3-OR2rev3ΔPSF1msh6Δ	MSH6 disruption in Y478-2	This work
Y482-1	pol3L612Magp1::URA3-OR2rev3∆psf1-1	<i>psf1-1-LEU</i> 2 derivative of Y470	This work
Y482-2	pol3L612Magp1::URA3-OR2 rev3∆psf1-1	psf1-1-LEU2 derivative of Y470	This work
Y482-4	pol3L612Magp1::URA3-OR2 rev3∆psf1-1	psf1-1-LEU2 derivative of Y470	This work
Y504-4	pol3L612Magp1::URA3-OR2 rev3Δpsf1-1msh6Δ	MSH6 disruption in Y482-1	This work
Y505-4	$pol3L612Magp1::URA3-OR2rev3\Delta psf1-1msh6\Delta$	MSH6 disruption in Y482-2	This work
Y507-6	pol3L612Magp1::URA3-OR2 rev3∆psf1-1 msh6∆	MSH6 disruption in Y482-4	This work
Y639-1	POL3/pol3L612Magp1::URA3-OR2/agp1::URA3-OR2 rev3Δ /rev3Δ PSF1/psf1-1 MSH6/msh6Δ	Diploid strain	This work
Y662 Y663	pol3L612Magp1::URA3-OR2 rev3∆psf1-1 msh6∆ pol3L612Magp1::URA3-OR2 rev3∆psf1-1 msh6∆	Segregant of Y639-1 Segregant of Y639-1	This work This work

Table S1. Yeast strains used in this study.

Primer	Sequence 5'-3'
Rev3_UPTEF	CAATACAAAACTACAAGTTGTGGCGAAATAAAATGTTTGGAAATGAGATCTGTTTAGCTTGCC
Rev3_DN TEF	ATAACTACTCATCATTTTGCGAGACATATCTGTGTCTAGATTATTCGAGCTCGTTTTCGACAC
msh6UTEF	CAGATAAGATTTTTTAATTGGAGCAACTAGTTAATTTTGACAAAGCCAATTTGAACTCCAAAAGATCTGTTTAGCTTGCC
msh6DTEF	CAACGACCAAAACTTTAAAAAAAAAAAAGTAAGTAAAAATCTTACATACA
Rev3-R4	TGACCACTCACATGGCGCTTTG
Rev3 A	AATTCTGCCAATCTATTTGATCTTG
nat1UO	ACCGGTAAGCCGTGTCGTCAAG
Rev3-F4	AAAGGGCGAGCACAACTACTAC
Rev3 D	CACCAGATAGAGTTTTGAACGAAAT
nat1DO	GCTTCGTGGTCGTCTCGTACTC
MSH6-UO	TAAAGTCGCTGGAGTAGG
msh6up2	GAATCCTTGGAGGAAGAC
HPH-UO	ACAGACGTCGCGGTGAGTTCAG
MSH6-DO	TCAAGCACCATCCTCAAG
msh6dw2	CCCATTCTTGCCCAAGATGC
HPH-DO	TCGCCGATAGTGGAAACCGACG
URA3F393	AACGAAGGAAGGAGCACAGAC
URA3R412	CCGAAATTCCTGGGTAATAAC

Table S2. Primers used in this study.

Table S3. Mutation rates calculated for specific mutation types in the *URA3* sequence in the *rev3* Δ *msh6* Δ background.

Туре	O	R1	0	R2	ps O	<i>f1-1</i> R1	ps O	f1-1 R2	pol3 C	- <i>L612M</i> DR1	pol3 C	- <i>L612M</i>)R2	p pol:	osf 1-1 3- <i>L 612M</i> OR1	p pol:	sf1-1 3-L612M OR2
Transitions	103 ^a	1.39 ^b	37	0.57	82	4.33	78	4.03	161	36.93	112	20.70	554	154.93	326	159.24
T→C total	23	0.31	5	0.08	16	0.84	11	0.57	53	12.16	2	0.37	128	35.80	28	13.68
$T \rightarrow C at 97^{c}$	7	0.09	1	0.02	7	0.37	0	0.00	24	5.51	0	0.00	51	14.26	7	3.42
$T \rightarrow C at OS^d$	16	0.22	4	0.06	9	0.47	11	0.57	29	6.65	2	0.37	77	21.53	21	10.26
A→G	2	0.03	6	0.09	0	0.00	0	0.00	0	0.00	18	3.33	4	1.12	37	18.07
C→T total	13	0.18	18	0.28	12	0.63	32	1.65	1	0.23	85	15.71	44	12.31	218	106.48
$C \rightarrow T$ at 310	4	0.05	11	0.17	9	0.47	19	0.98	1	0.23	43	7.95	28	7.83	128	62.52
$C \rightarrow T at OS$	9	0.12	7	0.11	3	0.16	13	0.67	0	0.00	42	7.76	16	4.47	90	43.96
G→A total	65	0.88	8	0.12	54	2.85	35	1.81	107	24.54	7	1.29	378	105.71	43	21.00
$G \rightarrow A at 764$	18	0.24	2	0.03	16	0.84	6	0.31	45	10.32	2	0.37	132	36.92	9	4.40
$G \rightarrow A at OS$	47	0.64	6	0.09	38	2.00	29	1.50	62	14.22	5	0.92	246	68.80	34	16.61
Transversions	54	0.73	87	1.35	67	3.53	65	3.35	8	1.84	54	9.98	65	18.18	88	42.98
G→T total	25	0.34	70	1.09	50	2.64	46	2.37	2	0.46	47	8.68	18	5.03	67	32.73
$G \rightarrow T at 679/706$	8	0.11	44	0.68	18	<i>0.</i> 95	23	1.19	0	0.00	9	1.66	2	0.56	24	11.72
$G \rightarrow T at OS$	17	0.23	26	0.40	32	1.69	23	1.19	2	0.46	38	7.02	16	4.47	43	21.00
C→A	14	0.19	9	0.14	7	0.37	12	0.62	4	0.92	0	0.00	16	4.47	0	0.00
T→G	9	0.12	4	0.06	1	0.05	0	0.00	1	0.23	0	0.00	8	2.24	3	1.47
A→C	2	0.03	1	0.02	0	0.00	0	0.00	0	0.00	3	0.55	7	1.96	7	3.42
A→T	2	0.03	0	0.00	4	0.21	0	0.00	1	0.23	0	0.00	8	2.24	4	1.95
T→A	1	0.01	3	0.05	5	0.26	5	0.26	0	0.00	4	0.74	7	1.96	7	3.42
G→C	1	0.01	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	1	0.28	0	0.00
C→G	0	0.00	0	0.00	0	0.00	2	0.10	0	0.00	0	0.00	0	0.00	0	0.00
Indels	9	0.12	8	0.12	7	0.37	6	0.31	7	1.61	6	1.11	9	2.52	14	6.84
ΔΑ	3	0.04	2	0.03	2	0.11	0	0.00	1	0.23	2	0.37	1	0.28	3	1.47
ΔA at 174-178	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00
ΔA at US ΔT	3	0.04	2	0.03	2	0.11	1	0.00	5	0.23	2 1	0.37	0	0.28	3	<i>1.41</i> 1.95
ΔT at 201-205	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	Ö	0.00	0	0.00	1	0.49
ΔT at 255-260	0	0.00	1	0.02	0	0.00	0	0.00	2	0.46	0	0.00	0	0.00	0	0.00
∆T at OS	1	0.01	1	0.02	0	0.00	1	0.05	3	0.69	1	0.18	0	0.00	3	1.47
ΔC or ΔG	0	0.00	0	0.00	0	0.00	0	0.00	1	0.23	1	0.18	6	1.68	2	0.98
≥2 deletions	2	0.03	3	0.05	2	0.11	1	0.05	0	0.00	0	0.00	0	0.00	0	0.00
single insertions	3	0.04	1	0.02	2	0.11	4	0.21	0	0.00	2	0.37	2	0.56	5	2.44
≥2 insertions	0	0.00	0	0.00	1	0.05	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00
TOTAL	166	2.25	132	2.05	156	8.23	149	7.69	176	40.37	172	31.78	628	175.63	428	209.06
95% CI		1.4		1.7		4.8		6.3		28.5		23.1		174.3		208.2
		2.8		2.9		9.9		9.9		55.5		38.2		267.6		327.3

^a Number of events identified for given classes.

^b Mutation rates [5-FOA^R×10⁻⁶] for specific mutation types are shown in boldface.

° Specific hotspot positions in the URA3 coding sequence are indicated.

^d OS – Other Sites.

Table S4. The statistical analysis of the mutation spectra is presented in Figure 4. *p* values were calculated using Fisher's exact test.

T→C vs A→G	PSF1	psf1-1	PSF1	psf1-1
G→A vs C→T	POL3 OR2	POL3 OR1	<i>pol3-L612M</i> OR1	<i>pol3-L612M</i> OR2
	0.002	0.0778	0.0007	ND ^a
PSFT POL3 OR1	<0.0001	0.7703	<0.0001	ND
$\mathbf{p} \neq 1 \mathbf{P} \cap 2 \mathbf{OP2}$	<0.0001	>0.9999	ND	ND
psil-1 FOLS ORZ	0.0171	<0.0001	ND	ND
DSE1 pol2 L612M OB2	0.0007	ND	<0.0001	<0.0001
PSFT pois-Lotzin Orz	<0.0001	ND	<0.0001	<0.0001
nsf1-1 nol2-1 612M OP1	ND	ND	<0.0001	<0.0001
	ND	ND	<0.0001	<0.0001

^a ND – not determined

Table S5. The statistical analysis of the mutation spectra is presented in Figure S1. *p* values were calculated using Fisher's exact test.

G→T vs C→A	PSF1 POL3 OR2	psf1-1 POL3 OR1	PSF1 pol3-L612M OR1	psf1-1 pol3-L612M OR2
PSF1 POL3 OR1	0.0003	0.0001	0.0002	NDª
psf1-1 POL3 OR2	0.0255	0.0059	ND	ND
PSF1 pol3-L612M OR2	<0.0001	ND	<0.0001	>0.2298
psf1-1 pol3-L612M OR1	ND	ND	<0.0001	<0.0001

^a ND – not determined

Table S6. Statistical analysis of data showing the contribution of substitutions at specific hotspots to the total mutagenesis is presented in Figure 5 and Figure S2. *p* values were calculated using Fisher's exact test.

T→C at 97ª C→T at 310 G→A at 764 G→T at 679/706	PSF1 POL3 OR2	psf1-1 POL3 OR1	PSF1 pol3-L612M OR1	psf1-1 pol3-L612M OR2
	0.0649	0.8556	<0.0001 ↑	ND ^d
PSE1 POL 3 OP1	0.0072 [2] ^b	0.0362 ↑ ^c	0.0140 ↓	ND
	<0.0001 [1]	0.8051	<0.0001 ↑	ND
	<0.0001 [2]	0.0026 ↑	<0.0001 ↓	ND
	0.0441 ↓	<0.0001 [1]	ND	ND
ngf1-1 POL3 OP2	0.0881	<0.0001 [2]	ND	ND
	0.0867	<0.0001 [1]	ND	ND
	<0.0001 ↓	0.0227 [2]	ND	ND
	0.0037 ↓	ND	<0.0001 [1]	<0.0001 ↑
PSE1 pol3-1 612M OP2	<0.0001 ↑	ND	<0.0001 [2]	<0.0001 ↑
	0.7325	ND	<0.0001 [1]	0.0002 ↑
	<0.0001 ↓	ND	<0.0001 [2]	0.4058
	ND	ND	<0.0001 ↓	<0.0001 [1]
ncf1 1 no/2 / 612M OP1	ND	ND	<0.0001 ↑	<0.0001 [2]
	ND	ND	<0.0001 ↓	<0.0001 [1]
	ND	ND	<0.00 01 ↑	<0.0001 [2]

^a Substitutions at specific hotspots are color-coded.

^b The URA3 orientation with a higher contribution of substitutions at specific hotspots is shown in brackets: [1] – OR1, [2] – OR2.

^c For *psf1-1* and *pol3-L612M* mutants, an increase \uparrow or decrease \downarrow of substitutions at specific hotspots compared with the *PSF1 POL3* strain, is shown; for *psf1-1 pol3-L612M* mutants, an increase \uparrow or decrease \downarrow of substitutions at specific hotspots compared with the *pol3-L612M* strain, is shown. ^d ND – not determined **Table S7.** The statistical analysis of data showing the contribution of specific substitutions to the total mutagenesis is presented in Figure 5 and Figure S2. *p* values were calculated using Fisher's exact test.

T→C ^a C→T G→A G→T	PSF1 POL3 OR2	psf1-1 POL3 OR1	PSF1 pol3-L612M OR1	psf1-1 pol3-L612M OR2
	0.0003 [1] ^b	0.1473	<0.0001 ↑	ND ^d
DSE1 DOL 3 OP1	0.0623	0.8880	<0.0001 ↓	ND
	<0.0001 [1]	0.2386	<0.0001 ↑	ND
	<0.0001 [2]	<0.0001 ↑°	<0.0001 ↓	ND
	0.0830	0.0524	ND	ND
nef1-1 POL3 OP2	0.0135 ↑	<0.0001 [2]	ND	ND
	<0.0001 ↑	<0.0001 [1]	ND	ND
	<0.0001 ↓	0.6270	ND	ND
	0.0049 ↓	ND	<0.0001 [1]	<0.0001 ↑
PSE1 pol3-1 612M OP2	<0.0001 ↑	ND	<0.0001 [2]	0.1141
	0.2045	ND	<0.0001 [1]	<0.0001 ↑
	<0.0001 ↓	ND	<0.0001 [2]	<0.0001 ↓
	ND	ND	<0.0001 ↓	<0.0001 [1]
nsf1_1_no/2_/ 612M OP1	ND	ND	<0.0001 ↑	<0.0001 [2]
	ND	ND	0.4867	<0.0001 [1]
	ND	ND	<0.0001 ↑	<0.0001 [2]

^a Specific substitution types are color-coded.

^b The URA3 orientation with a higher contribution of specific substitutions is shown in brackets: [1] - OR1, [2] - OR2.

^c For *psf1-1* and *pol3-L612M* mutants, an increase \uparrow or decrease \downarrow of specific substitutions compared with the *PSF1 POL3* strain, is shown; for *psf1-1 pol3-L612M* mutants, an increase \uparrow or decrease \downarrow of specific substitutions compared with the *pol3-L612M* strain is shown.

 $^{\rm d}$ ND – not determined

- [5] T.A. Kunkel, D.A. Erie, Eukaryotic Mismatch Repair in Relation to DNA Replication, Annu. Rev. Genet. 49 (2015) 291–313. https://doi.org/10.1146/annurev-genet-112414-054722.
- [51] S.A. Nick McElhinny, C.M. Stith, P.M.J. Burgers, T.A. Kunkel, Inefficient proofreading and biased error rates during inaccurate DNA synthesis by a mutant derivative of *Saccharomyces cerevisiae* DNA polymerase, J. Biol. Chem. 282 (2007) 2324–2332. https://doi.org/10.1074/jbc.M609591200.
- [52] M.A. Garbacz, P.B. Cox, S. Sharma, S.A. Lujan, A. Chabes, T.A. Kunkel, The absence of the catalytic domains of *Saccharomyces cerevisiae* DNA polymerase ε strongly reduces DNA replication fidelity, Nucleic Acids Res. 47 (2019) 3986–3995. https://doi.org/10.1093/nar/gkz048.
- [54] S.A. Nick McElhinny, G.E. Kissling, T.A. Kunkel, Differential correction of lagging-strand replication errors made by DNA polymerases α and δ, Proc. Natl. Acad. Sci. U. S. A. 107 (2010) 21070–21075. https://doi.org/10.1073/pnas.1013048107.
- [57] Z.F. Pursell, I. Isoz, E.-B. Lundström, E. Johansson, T.A. Kunkel, Yeast DNA polymerase ε participates in leading-strand DNA replication, Science. 317 (2007) 127–130. https://doi.org/10.1126/science.1144067.
- [85] Y.I. Pavlov, I.M. Mian, T.A. Kunkel, Evidence for Preferential Mismatch Repair of Lagging Strand DNA Replication Errors in Yeast, Curr. Biol. 13 (2003) 744–748. https://doi.org/10.1016/S0960-9822(03)00284-7.
- [86] G.T. Marsischky, N. Filosi, M.F. Kane, R. Kolodner, Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair, Genes Dev. 10 (1996) 407–420. https://doi.org/10.1101/gad.10.4.407.
- [87] R.E. Johnson, R. Klassen, L. Prakash, S. Prakash, A Major Role of DNA Polymerase δ in Replication of Both the Leading and Lagging DNA Strands, Mol. Cell. 59 (2015) 163–175. https://doi.org/10.1016/j.molcel.2015.05.038.
- [88] S.A. Nick McElhinny, D.A. Gordenin, C.M. Stith, P.M.J. Burgers, T.A. Kunkel, Division of Labor at the Eukaryotic Replication Fork, Mol. Cell. 30 (2008) 137–144. https://doi.org/10.1016/j.molcel.2008.02.022.