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Summary

Fungi can be found in almost all ecosystems. Some
of them can even survive in harsh, anthropogenically
transformed environments, such as post-industrial
soils. In order to verify how the soil fungal diversity
may be changed by pollution, two soil samples from
each of the 28 post-industrial sites were collected.
Each soil sample was characterized in terms of con-
centration of heavy metals and petroleum derivatives.
To identify soil fungal communities, fungal internal
transcribed spacer 2 (ITS2) amplicon was sequenced
for each sample using Illumina MiSeq platform. There
were significant differences in the community struc-
ture and taxonomic diversity among the analysed
samples. The highest taxon richness and evenness
were observed in the non-polluted sites, and lower
numbers of taxa were identified in multi-polluted
soils. The presence of monocyclic aromatic hydro-
carbons, gasoline and mineral oil was determined as
the factors driving the differences in the mycobiome.
Furthermore, in the culture-based selection

experiment, two main groups of fungi growing on
polluted media were identified – generalists able to
live in the presence of pollution, and specialists
adapted to the usage of BTEX as a sole source of
energy. Our selection experiment proved that it is
long-term soil contamination that shapes the commu-
nity, rather than temporary addition of pollutant.

Introduction

Fungi are a diverse and abundant group of eukaryotic
organisms and their representatives are found in almost
all ecosystems (Bar-On et al., 2018), including deep
oceans (Nagano and Nagahama, 2012), deserts (Sun
et al., 2019) and the permafrost of Antarctica
(de Menezes et al., 2020). They are abundant not only in
various pristine habitats but they can also thrive in
anthropogenically shaped habitats, like urban soils
(Baruch et al., 2020), post-industrial sites (Thion et al.,
2012) and even jet fuel (Itah et al., 2009). With parasitic
and mutualistic symbionts, as well as saprotrophs among
them, they play many important roles in ecosystems
(Robson, 2017; Větrovský et al., 2019). Due to their abili-
ties to produce various extracellular enzymes, fungi are
responsible for decomposition of organic matter in soil
and thus play a crucial role in nutrient cycling and pedo-
genesis in all types of soils (Bardgett and van der
Putten, 2014).

Recent development of high-throughput sequencing
has facilitated the analysis of soil fungal communities
(Frąc et al., 2018; Landinez-Torres et al., 2019; Delgado
et al., 2021) and enabled their high throughput, global
comparisons (Tedersoo et al., 2014; Egidi et al., 2019;
Větrovský et al., 2019; Baldrian et al., 2021) leading to a
better understanding of the functioning of soil fungal com-
munities. The analysis of several amplicon-based
datasets in global scale showed that Ascomycota
encompassed the largest proportion of sequences in the
soil (55%–70%, depending on the dataset). Functionally,
almost half of detected fungi were assigned as
saprotrophs. However, significant differences in taxonom-
ical and functional composition were observed between
different sites (Tedersoo et al., 2014; Panelli et al., 2017;
Větrovský et al., 2019; Nicola et al., 2021). Community
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composition was also proven to change over time
(Dresch et al., 2019; Liu and Howell, 2021), as it is
shaped by several biotic and abiotic factors that are fre-
quently interconnected (Tokeshi, 1990). Soil fungal com-
munities were shown to strongly depend on the
vegetation type (Thion et al., 2012; Bourceret et al.,
2016; Hui et al., 2017), acidity, organic matter content
and climatic conditions (Tedersoo et al., 2014; Větrovský
et al., 2019; Shen et al., 2020; Bahram et al., 2021).
Organic and inorganic pollutants may also play a rele-

vant role in shaping soil fungal communities (Cachada
et al., 2018). Their presence in the environment may be a
consequence of natural processes (e.g. volcanic activity,
erosion, or forest fires), but most of them have evolved
due to anthropogenic activities (Dhaliwal et al., 2020).
This includes both heavy metals and petroleum-derived
contaminants, such as polycyclic aromatic hydrocarbons
(PAHs) and monocyclic aromatic hydrocarbons (BTEX –

benzene, toluene, ethylene and xylene isomers), which
are considered the most detrimental environmental pollut-
ants (Bourceret et al., 2016; Gałązka et al., 2020).
Despite that, some fungi are capable of growth in the
presence of all these pollutants, some may even be able
to use them as a carbon source (Prenafeta-Boldú
et al., 2002). Fungi that secrete extracellular enzymes pri-
marily used for cellulose and lignin decomposition
(e.g. cytochrome P450, lignin peroxidase, manganese
peroxidase and laccase) can be exploited for degradation
of various organic pollutants, including PAHs
(Baldrian, 2003; Harms et al., 2011). Although these
enzymes are most effectively produced by white-rot fungi
(e.g. Fulekar et al., 2013), they are also synthesized by
representatives of other ubiquitous fungal groups, like
Mucoromycota (Lisowska et al., 2006) and Ascomycota
(Aranda, 2016). Some fungi may also transform heavy
metal ions to their less toxic forms, while others produce
siderophores that form complexes with heavy metals and
can also play a significant role in bioremediation of other
pollutants.
The long-term experiments performed on multi-pol-

luted, post-industrial sites demonstrate that fungal com-
munities in this type of soil are dominated by
Ascomycota (Thion et al., 2012; Bourceret et al., 2016).
Recent studies of Gałązka et al. (2020) and Galitskaya
et al. (2021) reported also Basidiomycota
(e.g. Hypholoma, Coprinellus) and Mortierellomycota rep-
resentatives as characteristic for industrially polluted
soils. Slow-growing ascomycetous microfungi from the
Knufia, Exophiala, Cladophialophora and Phialophora
genera, often labelled as ‘black yeasts’, also thrive in
petroleum-polluted areas (Dolatabadi et al., 2019;
Gałązka et al., 2020). There is also evidence that overall
fungal diversity increases with time after the withdrawal
of the mining activity (Thion et al., 2012; Bourceret

et al., 2016). The emerging fungal community is strongly
linked with the succession of plants and fungi developing
either from indigenous resting spores or from surrounding
areas (Malloch and Blackwell, 1992; Thion et al., 2012).

To investigate the influence of the anthropogenic pol-
lutants on soil mycobiota, we performed a comparison of
soil fungal diversity between multi-polluted industrial sites
and non-polluted regions with special emphasis on the
adaptation and selection process. We hypothesized that
while a large number of evenly represented taxa would
be characteristic for the soil from the control sites, certain
species of well-adapted specialists would dominate in
polluted areas. Finally, we aimed to replicate this
contamination-driven selection process under the labora-
tory conditions, in order to empirically demonstrate to
what extent, the diversity may be shaped by soil
pollution.

Results

The comparison of edaphic characters between
sampling sites shows significant differences

Measurements of edaphic characteristics for 52 samples
from 25 locations in Poland and three in Iran
(Supplementary Table 1, Supplementary Fig. 1) were uti-
lized to cluster the samples. PCA was used to visually
represent the grouping (Fig. 1). Two first principal compo-
nents explained 70.6% of variance. The following groups
were delimited: (i) control sites without plants, (ii) control
sites with plants, (iii) metal-polluted areas, characterized
by increased content of Zn, Pb, Co and Cr ions and
(iv) multi-polluted sites, characterized by increased pres-
ence of mineral oils, gasoline, BTEX, PAHs and mercury.
This grouping of soil samples based on the numeric part
of edaphic data was justified by ANOVA (anosim) test
with 999 permutations (R2 = 0.4784, p = 0.001) which
confirmed that there are differences between these
groups (Fig. 1).

The fungal community structure differs between polluted
and control sites

From the Illumina sequencing, 10 909 541 paired-end
reads were obtained (Supplementary Table 2, rarefaction
curves can be found in Supplementary Fig. 2). After qual-
ity evaluation, which included denoising, length and qual-
ity trimming, and chimeric sequence exclusion, 5 506 508
sequences remained and were assigned into 9691
amplicon sequence variants (ASVs, Supplementary
Table 2). After identifying and removing erroneous and
redundant ASVs using LULU, 5005 ASVs remained.

Differences in taxon richness (Chao1 and Shannon
measures) between delimited groups (Fig. 2) were
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predominantly statistically significant (p < 0.005) as mea-
sured by Kruskal–Wallis test. However, the difference in
fungal species richness and evenness between control
sites without vegetation and metal-polluted ones was
not statistically significant. The highest richness was
observed in control sites covered with vegetation, while
the samples from multi-polluted sites were the least taxon
rich. At the same time, these samples were characterized
by significant dominance of certain taxa (Pielou and
Simpson evenness measures), while ASVs distribution in
other groups was more even (Fig. 2).

The differences between delimited groups are also pro-
nounced in taxonomic composition of analysed fungal
communities. The phylum represented by the greatest
number of ASVs (1693) and with the highest relative

abundance (66.76%) was Ascomycota. Relative abun-
dances of ascomycetous sequences in the soil samples
range from 15.29% to 99.86% (Supplementary Table 3).
The grouping of sampling sites by non-metric multi-
dimensional scaling (NMDS) of ASVs composition
reflected the one based on edaphic parameters of soils
(Fig. 3). The significance of differences in taxonomic com-
position between groups was confirmed by a one-way
ANOVA test (adonis), F(3,48) = 3.0976, p = 0.001.

The correlation between soil parameters and fungal
species composition was measured using Mantel test
based on Euclidean distance matrices. Total gasoline,
total BTEX, mineral oil, and mercury concentrations, as
well as carbon to nitrogen ratio, were the factors that cor-
related (Spearman correlation coefficient; p = 0.001) with

Fig. 1. PCA biplot based on the numeric part of edaphic characteristics of the samples. All values were logarithmically transformed prior to plot-
ting. Boxplots in the corner represent differences in concentrations of selected contaminants between groups.
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fungal ASVs composition. Therefore, these factors may
be treated as the ones shaping soil fungal communities,
rather than metallic contaminants on their own.
The indicator ASVs for each of the delimited groups were

also identified (Fig. 4) as described in the Methods section.
Generalists were recognized if they were present (with abun-
dance ≥5) in more than half of the samples. These taxa
belonged to the following genera: Alternaria, Aureobasidium,
Cladosporium, Epicoccum, Fusarium, Linnemannia and
Solicoccozyma. Furthermore, the highest number of charac-
teristic ASVs was detected for control sites without vegeta-
tion (30, numbers 9–38 in Fig. 4), while only few indicator
taxa were detected in multi-polluted sites (3, numbers 82–84
in Fig. 4). The ASVs shown to be characteristic for multi-

polluted sites represented the Malassezia, Ochroconis and
Kazachstania genera, while ones typical for metal-polluted
(numbers 59–81 in Fig. 4) sites were representatives of the
Bradymyces, Entrophospora, Mortierella, Trichoderma, Ser-
endipitia, Hirsutella, Metarhizium and Beauveria genera.
Although the majority of identified indicator taxa were
Ascomycota representatives, their percentage rate ranged
from 52% for metal-polluted sites to 100% for multi-polluted
ones. The control soils without vegetation were character-
ized by the abundance of indicator taxa from the Helotiales
order. The only Glomeromycotina indicator ASV
(Entrophospora sp. 59 in Fig. 4) was typical for metal-
polluted soils, probably due to the herbaceous vegetation
cover of these locations. Additionally, representatives of the

Fig. 2. Alpha diversity plots for each of the sample groups. Top two plots show richness measures (Chao1 index on the left and Shannon index
on the right). Bottom two plots represent evenness measures (Pielou index on the left and Simpson index on the right). Significance of the differ-
ences between groups in each measure (Kruskal–Wallis test) is shown above the line connecting groups. In the bottom left corner of every plot,
the significance of the global Kruskal–Wallis test is denoted.

© 2022 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.,
Environmental Microbiology, 24, 3809–3825

3812 A. Okrasi�nska et al.



GS11 clade (no. 60 in Fig. 4) of unidentified fungi from
Rozellomycota (as defined by Tedersoo et al., 2017) were
also selected as characteristic for metal-polluted sites. Mort-
ierellomycotina representatives were typical for control
(e.g. Entomortierella sp. 21 and Mortierella sp. 28 and 32 in
Fig. 4) and metal-polluted sites (e.g. Mortierella sp. 62,
65 and 77, Podila sp. 68, and Linnemannia sp. 72 in Fig. 4).

Fungal communities’ short-term adaptations to specific
pollutants

In the culture-based experiment, in which three mixtures
of soil samples (detailed description can be found in the
Experimental procedures section) were cultured on con-
trol (no pollutant added) and contaminated agar media,
extensive fungal growth was observed on all MEA-based
media, while it was very limited on plates with BTEX as
sole carbon source. No growth was observed on plates
with BTEX as a sole carbon source inoculated with soil
that originated from multi-polluted sites. From the Illumina
sequencing of 11 remaining sample sets, 4 862 646
paired-end reads were obtained. After the processing,
same as described for the main experiment, 2 891 220
assembled reads were analysed and assigned into
290 ASVs (Supplementary Table 2). After LULU

processing (analogous to the processing in the main
experiment), 84 ASVs remained.

The differences in taxon richness (Chao1 and Shannon
measures) and evenness (Pielou and Simpson evenness
measures) were observed between different growth media
(Fig. 5). However, due to small sample sizes, it was
impossible to measure the statistical significance of these
differences. On culture media without addition of pollut-
ants, the highest taxon richness and evenness were
observed for samples from control sites. Moreover, high
alpha diversity parameters were observed in samples from
multi-polluted sites cultured on a rich medium sup-
plemented with copper salts and BTEX mixture. This phe-
nomenon can be explained by the fact that all samples
from multi-polluted sites contained the same propagule
set, meaning they all had potential to develop the same
fungal community. However, in some cases, once the
BTEX mixture was added to culture media, generalists
(like Cladosporium sp. 20 in Fig. 7) were not able to
develop, while the otherwise slow-growing extremotolerant
organisms (e.g. Ochroconis sp. 48 in Fig. 7) had a chance
to expand. This adaptation pattern can also be observed
when analysing the Pielou evenness measures. Taxo-
nomic evenness was highest when added contaminant
corresponded with the type of pollutant in the original soil
sample. Similarly, the taxonomic composition of soil fungal

Fig. 3. NMDS plot showing variation of ASV communities within groups of soil samples. Prior to plotting, ASV communities were rarefied to even
depth.
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Fig. 4. Heatmap representing relative abundances of the generalists and indicator taxa (defined in the Methods section) in each sample. Horizon-
tal white lines divide groups of generalists and indicator taxa for each group. On the left side of the plot, the taxonomical identification and trophic
modes are given.
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communities depended on soil origin more than on the
pollutant addition (Fig. 6, confirmed by one-way ANOVA
p = 0.001 and p = 0.968 respectively). Another interesting
trend which can be observed in Fig. 5 is that in control
and BTEX-polluted sites, addition of copper salts to the
medium resulted in lower richness and evenness of fungal
community, whereas further addition of BTEX mixture
increased both these measures. It shows that BTEX
serves rather as an energy source than growth inhibitor for
some fungi (e.g. Absidia sp. 13 or Linnemannia sp. 33 in
Fig. 7). Although the group of generalists able to develop
on plates with BTEX as a sole carbon source was similar
for all types of soils (including Exophiala sp. 9, Penicillium
sp. 1–3, Trichoderma sp. 4, 6 in Fig. 7), some unique taxa
were also detected in each soil type, including,
e.g. Emericellopsis sp. 72, Absidia sp. 69 and Penicillium
sp. 70 for control soils, and Bradymyces sp. 59 and an
unidentified Cordycipitaceae (60) representative for metal-
polluted soils (Fig. 7). These are in concordance with the
results from the field diversity study because the same

taxa were detected as indicator ASVs for metal-polluted
soils in both experiments.

Most of the analysed samples were dominated by gen-
eralists such as Penicillium spp., Trichoderma spp.,
Phialocephala sp., Exophiala sp. and yeasts belonging to
the Meyerozyma and Debaryomyces genera. However,
the differences in their prevalence were observed
between samples, supporting the hypothesis on specific
adaptations of fungal communities. For example, the con-
trol plates (MEA without the addition of pollutants) inocu-
lated with soil from control sites were characterized by
extensive presence of the Trichoderma, Penicillium and
Absidia representatives, whereas the addition of copper
salts and BTEX eliminated organisms such as Mucor
sp. 64, Candida sp. 68, or Metapochonia sp. 22 and
24 while favouring Phialocephala sp. 10 and
Emericellopsis sp. 72 (Fig. 7). On the other hand, the
control plates inoculated with soil from metal-polluted
sites were characterized by the dominance of
Trichoderma and Penicillium that were not affected by

Fig. 5. Barplots representing ASV richness (top, Shannon index) and evenness (bottom, Pielou index) in the samples. Each group of bars repre-
sents one type of soil sample inoculated on four different media types [red: pure MEA, green: MEA with copper salts added, blue: MEA with cop-
per salts and aromatic hydrocarbons added, purple: WA with copper salts and aromatic hydrocarbons added]. No product was obtained for
BTEX-polluted soil samples inoculated on water agar with copper salts and BTEX.
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further addition of copper salts or BTEX
(e.g. Trichoderma sp. 5, Penicillium sp. 2 and 3 in
Fig. 7). Finally, on plates with BTEX as sole carbon
source, samples from control sites represented the most
even and species-rich fungal communities. This commu-
nity consisted, among else, of Clavicipitaceae
(Metapochonia sp. 24 and 52, Clavicipitaceae sp. 12),
Ophiostomataceae (Sporothrix sp. 29) and yeasts
(e.g. Candida sp. 41–43 and Solicoccozyma sp. 51 in
Fig. 7) – the taxa that are usually outgrown under optimal
conditions but become dominant when the sole carbon
source is BTEX.

Discussion

Fungal communities in polluted soils – selection and
adaptation processes

The soil fungal communities from multi-polluted sites
were characterized by the lowest alpha diversity mea-
sures (taxon richness and evenness), proving that mer-
cury and oil derivatives pollutants play an important role
in shaping these communities. This finding is in line with
some results of previous studies (e.g. Bell et al., 2014;
Bourceret et al., 2016). Based on the soil fungal diversity

analysis, the presence of the hydrocarbons has a higher
impact on the richness and taxonomic composition of
fungal community than the presence of heavy metals, as
indicated by both quantitative and qualitative data. A simi-
lar strong influence of multi-pollution on soil fungal com-
munities has already been demonstrated by other
authors (e.g. Thion et al., 2012; Bourceret et al., 2016).

Fungal communities, present in multi-polluted sites,
were characterized by the highest share of Ascomycota
representatives (in 12 out of 19 samples from this group
there were more than 90% of Ascomycota sequences,
see: Supplementary Table 3). Similar pattern was
observed in long-term experiments performed on multi-
polluted, post-industrial sites. In fact, Cébron et al.
(2009), Thion et al. (2012) and Bourceret et al. (2016)
observed that Basidiomycota representatives make up a
smaller percentage of fungal community in this type of
soil than in non-polluted sites.

Owing to large sampling in our study, the statistically
supported delimitation of fungal communities typical for
each particular soil contamination type was possible, and
we were able to identify indicator species associated with
a given type of pollution. The ASVs shown to be charac-
teristic for multi-polluted sites represented Malassezia,
Ochroconis and Kazachstania genera, while ones typical

Fig. 6. NMDS plot showing variation of ASV communities from polluted and non-polluted soil samples after inoculating them on different media.
Colours of the points represent the type of contamination of the soil from which the samples were taken (green: non-contaminated sites, red: aro-
matic hydrocarbons-contaminated sites, blue: metal-contaminated sites). Shapes represent the type of agar medium on which samples were cul-
tured [circle: pure MEA, triangle: MEA with copper added, square: MEA with copper and aromatic hydrocarbons added, cross: WA with copper
and aromatic hydrocarbons added]. Prior to plotting, ASV communities were rarefied to even depth.
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for metal-polluted sites were representatives of
Bradymyces, Entrophospora, Mortierella, Trichoderma,
Serendipitia, Hirsutella, Metarhizium and Beauveria gen-
era. All of these taxa were previously reported from

contaminated soils. However, taxa often indicated in the
literature as typical for oil-contaminated soils, such as
Knufia, Exophiala, Cladophialophora and Phialophora
(Dolatabadi et al., 2019; Gałązka et al., 2020), while

Fig. 7. Heatmap representing relative abundances of the fungal ASVs derived from culturing differently polluted soils samples on four different
media. Horizontal white lines divide groups (from the top) of generalists, BTEX-tolerant fungi and fungi present only in non-polluted sites. On the
left side of the plot, the taxonomical identification and trophic mode are given.
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being present in the samples, were not selected as indi-
cator taxa for multi-polluted soil (see Supplementary
Table 3 in comparison with Fig. 4). These taxa are slow-
growing extremotolerants that are able to develop in sites
polluted with oil derivatives, but also occur in other habi-
tats (Teixeira et al., 2017; Costa et al., 2020) where their
presence is more difficult to notice due to the dominance
of fast-growing representatives of Ascomycota, such as
Penicillium or Trichoderma. This phenomenon was con-
firmed in our culture-based experiment (see Fig. 7).
Bourceret et al. (2016) hypothesized that while a short-

term impact of contamination tends to decrease microbial
abundance, richness and diversity, the long-term contam-
ination leads to successive selection of unique and rela-
tively diverse microbial communities adapted to particular
types of pollutants. Our culture-based experiment con-
firmed this hypothesis, as evenness was highest when
added contaminant corresponded with the type of pollut-
ant in the original soil sample.

Metal-specific fungal communities

Metal ions have been known to impact fungal biology,
serving as micronutrients in small doses. In excessive
amounts, however, some of them can be used as antifun-
gal agents as they can disrupt fungal homeostasis. Some
fungi have thus developed resistance mechanisms against
high concentrations of these pollutants. These mecha-
nisms include binding protein modifications, efflux pumps,
overproduction of binding proteins, vacuole sequestration,
as well as various detoxifying mechanisms (reviewed by
Robinson et al., 2021). Although most of the toxicity and
resistance studies are performed on yeasts, there is some
research on the capabilities of filamentous fungi, mostly
Ascomycota, to absorb and detoxify certain metals (lead
and copper: Iskandar et al., 2011, zinc: Teng et al., 2018,
cobalt: C�ardenas Gonz�alez et al., 2019). Most of these
studies focus on well-studied and easy to cultivate fungi,
such as Aspergillus spp., Penicillium spp., Fusarium spp.,
or Trichoderma spp. In our study, one Penicillium ASV
(no. 71 in Fig. 4), one Trichoderma ASV (no. 75 in Fig. 4)
and two Fusarium ASVs (79 and 80 in Fig. 4) were identi-
fied as indicators for metal-polluted sites.
The taxa identified as indicators of metal (zinc, lead,

cobalt and chromium) polluted soils in our study include a
few entomopathogenic fungi (i.e. Metarhizium sp. 61,
Beauveria sp. 63 and Hirsutella sp. 64 in Fig. 4). Some
of the entomopathogenic taxa, e.g. Beauveria bassiana,
have been previously shown to effectively remove heavy
metals from soil via sorption and accumulation processes
(Gola et al., 2016). Another entomopathogenic fungus,
Metarhizium anisopliae, was shown to use its host’s chi-
tin to produce chitosan (de Assis et al., 2010), which has

been used as an adsorbent of heavy metal ions and
organic compounds (Peniche-Covas et al., 1992). There-
fore, the extensive presence of entomopathogenic taxa in
metal-polluted areas can be explained by several specific
adaptation mechanisms of this group of fungi.

Among the indicator taxa were also four exclusively
mycorrhizal fungi, including an arbuscular mycorrhizal fun-
gus – Entrophospora sp. 59 in Fig. 4 (Glomeromycota) –
and three basidiomycetous cap fungi which form
ectomycorrhizae with plants (namely, Serendipitia sp. 66,
Paxillus sp. 67 and Tricholoma sp. 78 in Fig. 4).
Arbuscular mycorrhizal fungi (AMF) were previously
shown to aid plants when growing in heavy metal-polluted
soil by accumulating part of the pollution in their structures
(review by Riaz et al., 2021). The AMF were shown to be
able to survive extremely high concentrations of heavy
metals (S�anchez-Castro et al., 2017) and they are com-
monly used to increase metal phytoremediation potential
of some plants (e.g. Chaturvedi et al., 2021).
Entrophospora sp., the AMF detected as indicator taxa in
our study, was also previously found in close proximity of
a copper mine in Brazil (da Silva et al., 2005). On the
other hand, there are very few studies on the benefits of
having ectomycorrhizal partners for plants under heavy
metal stress, and their presence in the samples can be
probably explained by tree roots’ presence in the sampling
plots. However, a recent study has shown that pine seed-
lings grow more efficiently in heavy metal-polluted soil
when they form ectomycorrhiza (Hachani et al., 2020).

Fungal communities of petroleum derivatives-
contaminated soils

Hydrocarbons have been present in nature for a long time
(i.e. produced by plants; Giger and Blumer, 1974). How-
ever, introduction of petroleum-based fuels made them
more ubiquitous and therefore more problematic. Some
bacteria, archaea and fungi have developed metabolic and
physiological adaptations to survive in the presence of
hydrocarbons, as well as to directly utilize them (Asperger
and Kleber, 1991; Robertson et al., 2007; Daccò
et al., 2020). Biological degradation of hydrocarbons can be
partial, resulting in partially oxidized intermediates, or com-
plete, when catabolic products are water and carbon diox-
ide (Abbasian et al., 2015). Aromatic hydrocarbons are
usually metabolized through one of the following oxidation
processes: (i) intracellular cytochrome P450 mono-
oxygenases activity, (ii) excreted laccases’ activity, or
(iii) excreted lignin-degrading peroxidases’ activity, which all
result in partially oxidized intermediates (Prenafeta-Boldú
et al., 2018). However, aliphatic hydrocarbons, which are
the main component of modern fuels, can be degraded by
fungi using the first process (Scheller et al., 1998).
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Lignin peroxidases are mainly known from basidiomy-
cetous fungi, but their presence in the cosmopolitan
fungi, such as Aspergillus, Penicillium and Fusarium
genera, was also confirmed (Rodríguez et al., 1996).
ASVs representing these taxa were found not only in
multi-polluted soils contaminated with aliphatic hydrocar-
bons (Fig. 4, Supplementary Table 3) but also on medium
with BTEX as the only carbon source (Fig. 7).

Laccases are more common in the fungal kingdom, as
these enzymes also play a role in the formation of fungal
melanin (Mayer and Staples, 2002). The representatives
of Dothideales genera Aureobasidium and Cladosporium
were shown to degrade PAHs by laccases secretion
(Potin et al., 2004; Leelaruji et al., 2014), while the repre-
sentatives of Chaetothyriales fungi, such as Exophiala,
are often isolated from sites that are polluted with mon-
oaromatic hydrocarbons, e.g. BTEX (Prenafeta-Boldú
et al., 2001a). In our experiments, several of these highly
melanized taxa representatives were shown to be able to
utilize aromatic pollutants for their own growth, as they
grew on agar plates where BTEX mix was the sole carbon
source (see Fig. 7, e.g. Exophiala sp. 9, Cladophialophora
sp. 57, Knufia sp. 58 and Bradymyces sp. 59).

The intracellular cytochrome P450 monooxygenases,
able to oxidize PAHs, were described in detail in
Phanerochaete chrysosporium and Cunninghamella
sp. (Juhasz and Naidu, 2000; Asha and Vidyavathi,
2009; Cerniglia and Sutherland, 2010; Syed et al., 2013).
However, some other taxa detected in our study, namely,
Beauveria, Penicillium, Exophiala, Cladosporium and
Cladophialophora, were also previously reported to grow
on toluene, ethylbenzene and styrene (Fedorak and
Westlake, 1986; Prenafeta-Boldú et al., 2018), degrading
them by oxidizing alkyl groups by specific CYP mono-
oxygenases (Weber et al., 1995; Cox et al., 1996;
Prenafeta-Boldú et al., 2001b; Prenafeta-Boldú
et al., 2002; Luykx et al., 2003). Interestingly, the same
pathway is used by several bacteria able to metabolize
n-alkylbenzenes (Finette et al., 1984). Blasi et al. (2017)
validated the existence of this metabolic pathway in a
transcriptomic analysis of Cladophialophora sp., claiming
that it was acquired from Pseudomonas-related bacteria
by horizontal gene transfer.

As fungi, bacteria and other soil microorganisms coex-
ist in the same niche, they often form alliances. These
interkingdom interactions can be physical, when fungal
hyphae facilitate the movement of bacteria, acting as
‘highways’ (Warmink et al., 2011), but often are also met-
abolic. For example, fungi secrete extracellular enzymes
which partially degrade various polymers (Boer
et al., 2005). Products of these processes can be further
utilized as an energy source by other microorganisms
present in the soil. Microbiomes of the soil, of which fungi
and bacteria are important components, are still poorly

studied (Zegeye et al., 2019). Therefore, synergistic inter-
actions between fungi and bacteria which can result in a
complete biodegradation of hydrocarbons need to be fur-
ther studied, as was already pointed out by Prenafeta-
Boldú et al. (2018). The fungal group well known for its
common and intimate interactions with bacteria, even on
endohyphal level, is Mucoromycota phylum (Bonfante
and Desirò, 2017; Pawlowska et al., 2018; Okrasi�nska
et al., 2021).

In the course of the culture-based experiment, we iso-
lated several Mucoromycota representatives which were
not previously proved to be indicator taxa for any of the
delimited groups (compare Figs 4 and 7). Some of them,
like Umbelopsis sp. 65 (Fig. 7), were present in control,
while absent in metal- and multi-polluted soils, and not
able to grow on media with BTEX as a sole carbon
source, which seems to confirm the hypothesis that some
Mucoromycota taxa (e.g. Umbelopsis) can be treated as
typical for soils that are not anthropogenically transformed
(Marfenina, 1999). Other Mucoromycota representatives,
like Mucor spp. 61–63 and Umbelopsis sp. 66 (Fig. 7),
were able to grow in the presence of BTEX, but not when
it was the only carbon source. Finally, there were also taxa
like Absidia sp. 13 or 69, which developed on plates with
BTEX as a sole carbon source. Interestingly, Absidia
belongs to the family Cunninghamellaceae, same as the
genus Cunninghamella, which was shown to oxidize
PAHs by intracellular cytochrome P450 monooxygenases
activity. Our study thus suggests that non-pathogenic
Mucoromycota representatives isolated from hydrocarbon
polluted areas, which are known to often interact with bac-
teria, seem to be the perfect group for further studies of
their bioremediation potential.

Experimental procedures

Sampling sites

Soil samples were collected in 25 locations in Poland
and three in Iran (in total 28 sites) between January 15th
and October 30th, 2018 (additional information on the
sites and samples can be found in Supplementary
Table 1). Two separate 500 g samples of topsoil
(A horizon) from each location were collected. In total,
56 samples from 28 sites were collected; however, only
52 of them were included in analysis due to low quality of
DNA isolates for four samples (sites represented by sin-
gle probe are marked by an asterisk in Supplementary
Table 1). The fifty-two analysed samples include 26 from
control sites with and without vegetation (18 and 8 probes
respectively), eight from metal-polluted areas (heaps and
wastelands around the copper mine) and 18 from multi-
polluted post-industrial sites (heaps and workings around
active and former oil mines or processing plants).
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Samples from each of the four groups represent similar
microhabitat conditions.

Chemical analysis of soil samples

Fresh soil sample of 200 g from each of 28 locations was
collected and sent directly to the laboratory for chemical
analysis. The concentrations of selected elements
(including heavy metals), i.e. As, Al, Cd, Co, Cr, Cu, Fe,
Mo, Mn, Ni, Pb, V and Zn in soil from all sites were deter-
mined by inductively coupled plasma optical emission
spectrometry. Additionally, concentration of mercury
(Hg) was measured using atomic absorption spectros-
copy with mercury analyser AMA 254. Metal pollution
index (Mi) was calculated according to Lemmel et al.
(2019). The concentrations of total petroleum hydrocar-
bons (C6–C12), mineral oils (C12–C35), BTEX [(ethyl)
benzene, toluene, three xylene isomers, styrene] and
PAHs were also determined using gas chromatography
with a mass spectrometer (GC–MS) (for qualitative analy-
sis) and gas chromatography with flame ionization detec-
tor (GC-FID) (for determining the total amounts of petrol,
mineral oils and PAHs). All these analyses were per-
formed by Wessling Company (https://pl.wessling-group.
com). The carbon, hydrogen, nitrogen and sulfur elemen-
tal contents were quantified using a CHNS Elemental
Analyser EA1112 (Thermo Finnigan, Italy), and carbon to
nitrogen ratio was used as a predictor of site fertility. The
presence of vegetation was assessed and encoded as
binary variable. The results of chemical analysis are
shown in Supplementary Table 1.

DNA extraction, amplification and sequencing

Total genomic DNA was extracted in five independent
biological replicates (each from 0.25 g of homogenized
soil) for every sample, using the FastDNA™ Spin Kit for
Faeces (MPBio, Carlsbad, CA, USA) according to the
manufacturer’s protocol. All five DNA isolates from each
site were mixed and used as a matrix for the PCR reac-
tion. Each PCR reaction was conducted in triplicate, and
subsequently three amplicons were mixed (to minimize
the PCR bias) and used for DNA sequencing.
For the preparation of the ITS2 region DNA amplicons,

the following primer pair with MiSeq adapters was used:
I_ITS3: 50 TCGTCGGCAGCGTCAGATGTGTATAAGAG
ACAGGCATCGATGAAGAACGCAGC 30 and I_ITS4: 50

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTC
CTCCGCTTATTGATATGC 30 (Tedersoo et al., 2014)
targeting the ITS2 region. Each reaction was prepared
using KAPA HiFi polymerase with appropriate ingredients
(KAPA Biosystems) in a T100™ Thermal Cycler (BioRad,
CA, USA). After 3 min of initial denaturation of DNA at
95�C, 29 cycles including denaturation (95�C, 30 s.),

primer annealing (60�C, 30 s.) and DNA synthesis (72�C,
30 s.) were performed. The last cycle was followed by 5
min of the final DNA extension (72�C).

The 52 amplicon libraries were sequenced using an
Illumina MiSeq instrument (Illumina, CA, USA) in the Bio-
bank Lab of the Department of Molecular Biophysics,
University of Lodz (Poland), with the use of a v3 MiSeq
chemistry kit in the paired-end mode. Raw sequencing
data were deposited in the National Center for Biotech-
nology Information’s Sequence Reads Archive under the
project number PRJNA767765.

Bioinformatic processing of the sequencing data

For fungal diversity analysis, raw Illumina MiSeq paired
reads obtained for ITS2 amplicon were processed, using
tools and pipelines wrapped by QIIME2 (version 2021.4,
Bolyen et al., 2019). The DADA2 QIIME2 plugin
(Callahan et al., 2016) was used to create the ASVs
table. Then, the taxonomy of each ASV was assigned
using the BLASTn algorithm with default QIIME2 options
(Altschul et al., 1990) with the UNITE fungal dynamic
database with singletons (developer version 8.3) as a ref-
erence (Nilsson et al., 2019). All further data manipulation
and statistics were conducted in RStudio 1.2 (RStudio
Team, 2020) with R 3.6.1 (R Core Team, 2020). ASVs
obtained with QIIME2 were processed with the LULU R
package (Frøslev et al., 2017) to remove erroneous
ASVs based on all against all BLASTn searches and
default LULU settings.

Diversity analysis

The grouping of soil samples based on logarithmically
transformed numeric part of edaphic data was justified by
ANOVA test with 999 permutations (on Euclidean dis-
tances) and represented using principal component anal-
ysis (PCA). Alpha diversity analysis was performed for
each sample using Chao1 and Shannon species rich-
ness indexes, and Pielou and Simpson evenness mea-
sures. The Kruskal–Wallis H test was used to estimate
the significance of differences between delimited groups.

The rarefied ASVs composition was compared
between all sites and represented using NMDS. The sig-
nificance of differences between delimited groups was
justified by ANOVA test with 999 permutations. The cor-
relation between soil parameters and fungal species
composition was measured using the Mantel test based
on the Euclidean distance matrix.

All above-mentioned alpha and beta diversity analyses
were performed with the application of vegan v2.5.6
(Oksanen et al., 2019), microbiome v1.6.0 (Lahti and
Sudarshan, 2017), phyloseq v1.28.0 (McMurdie and
Holmes, 2013) and reshape v1.4.3 (Wickham, 2007) R
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packages. Plots were generated with the ggplot2 v3.2.1
(Wickham, 2016) and lemon v0.4.5 (Edwards, 2020) R
packages. The .Rmd file is available as Supplementary
Material 1.

Indicator species analysis

The fungal ASVs characteristic for each group was
selected using multipatt function (IndVal.g) from
indicspecies R package (Caceres and Legendre, 2009).
The abundance of selected indicator taxa was shown on
heatmap only if (i) the level of statistical significance
derived from multipatt function was lower than 0.01 and
the ASV was identified at least to the genus level, or (ii) if
the ASV remained unidentified but was present in more
than one sample and constituted more than 10% of reads
in at least one of them. ASVs were considered generalists
if they were present in more than half of the samples and
were represented by at least five reads in each of them.
FungalTraits (Põlme et al., 2020) and FUNGuild (Nguyen
et al., 2016) were used for determining the trophic mode
of each genus. The heatmap with the genus level-
identified generalists and specialists was prepared using
the phyloseq R package (McMurdie and Holmes, 2013)
and InkScape software (Harrington, 2020). Taxonomic
assignment and trophic mode of selected indicator species
are also shown on heatmap. As several taxa were missing
in both FUNGuild and FungalTraits databases, trophic
modes were manually assigned based on literature
search.

Selection experiment

The selected soil samples from delimited groups were
mixed together as follows: (i) six soil samples from con-
trol sites with and without plants (namely, K_BEL_1,
P_WJB_1, P_WRJ_1, K_CSL_1, K_ZER_1, P_BEL_1),
(ii) three soil samples from metal-polluted sites (namely,
P_LEG_1, P_LEG_2, P_LEG_3) and (iii) three soil sam-
ples from multi-polluted sites (namely, P_BOB_1,
P_Ira_13, P_Rop_1). One gram of soil from each site
was used for mix preparation. The Warcup soil plate iso-
lation method (Warcup, 1950) was applied using zeolite
instead of sand in order to retain volatile compounds dur-
ing the experiment (i.e. 1.0 g of soil was mixed with
74.0 g of zeolite and plated afterwards). Each of the three
above-mentioned variants of soil mixtures was plated on:
(i) 4% malt extract agar (MEA); (ii) 4% MEA sup-
plemented with 1200 ppm of Cu(NO3)2�H2O; (iii) 4% MEA
supplemented with 1200 ppm of Cu(NO3)2�H2O, 0.12
ppm of benzene, 0.52 ppm of ethylbenzene, 0.17 ppm of
toluene and 9.83 ppm of xylenes mix; and (iv) water agar
(WA) with the same addition as in (iii). As BTEX are vola-
tile, they were added to zeolite prior to the Warcup

isolation procedure described above. The experiment
was performed in five replicates of each variant. For each
plate, 0.1 g of the mixture was used. The plates were fur-
ther incubated for 2 weeks at 17�C. Afterwards, total
genomic DNA was extracted jointly from all mycelia over-
growing each plate using the same protocol as in the
general experiment (3 soil types � 4 media types � 5
replicates; 60 isolations in total). Each DNA extract was
used as a template for three independent PCR reactions.
ITS2 amplicons from each soil variant were then mixed
and used for library preparation and sequencing. The
amplicons were sequenced and analysed as described
for the environmental samples. This part resulted in
11 amplicons, as there was no visible growth or PCR
product for BTEX-polluted soil plated on water agar with
BTEX and copper salts added.

Conclusions

The results presented here demonstrate that increasing
soil contamination leads to a decrease in overall soil fun-
gal diversity. However, it also enables selection of soil
fungal communities adapted to particular types of pollu-
tion out of the indigenous inoculum present on-site. As
these organisms possess specific mechanisms enabling
them to use particular pollutants as sole energy sources,
they should be further studied in order to understand spe-
cific molecular mechanisms underlying their adaptation
capacities.

In this study, closely related organisms belonging to
the same genus have been shown to differ in their ability
to use pollutants as the sole carbon source
(e.g. Absidia). The factors influencing this diversity seem
to be crucial in determining the further biotechnological
potential of these organisms.

Many fungi are able to partially degrade hydrocarbons
when on their own. It is however possible that a coopera-
tive community of various soil microorganisms may
completely degrade these pollutants. Therefore, studies
on whole communities’ bioremediation abilities are
needed, rather than single organisms. Still, some of the
strains isolated in this study turned out to be able to use
particular contaminants as sole energy sources which
make them potentially valuable for biotechnological pur-
poses. Further genomic, transcriptomic and proteomic
experiments on these strains can lead to describing deg-
radation pathways which can be of use in bioremediation.
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