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Abstract: Mutations in human VPS13A-D genes result in rare neurological diseases, including chorea-
acanthocytosis. The pathogenesis of these diseases is poorly understood, and no effective treatment is
available. As VPS13 genes are evolutionarily conserved, the effects of the pathogenic mutations could
be studied in model organisms, including yeast, where one VPS13 gene is present. In this review,
we summarize advancements obtained using yeast. In recent studies, vps13∆ and vps13-I2749 yeast
mutants, which are models of chorea-acanthocytosis, were used to screen for multicopy and chemical
suppressors. Two of the suppressors, a fragment of the MYO3 and RCN2 genes, act by downregulating
calcineurin activity. In addition, vps13∆ suppression was achieved by using calcineurin inhibitors.
The other group of multicopy suppressors were genes: FET4, encoding iron transporter, and CTR1,
CTR3 and CCC2, encoding copper transporters. Mechanisms of their suppression rely on causing
an increase in the intracellular iron content. Moreover, among the identified chemical suppressors
were copper ionophores, which require a functional iron uptake system for activity, and flavonoids,
which bind iron. These findings point at areas for further investigation in a higher eukaryotic model
of VPS13-related diseases and to new therapeutic targets: calcium signalling and copper and iron
homeostasis. Furthermore, the identified drugs are interesting candidates for drug repurposing for
these diseases.

Keywords: yeast; chorea-acanthocytosis; VPS13; VPS13A-D; calcium signalling; copper homeostasis;
iron homeostasis

1. Introduction

According to European Union law, a disease is considered rare when it affects no
more than 1 person per 2000. However, with around 7000 identified rare diseases, together
they affect 3.5–10% of the population, which corresponds to approximately 30 million
people in Europe and 300 million around the world [1]. A multitude and variety of rare
diseases pose huge diagnostic difficulties. It often takes several years from occurrence
of symptoms to the correct diagnosis of a rare disease [2–9]. Despite recent advances,
such as new-generation sequencing (NGS), the time and accuracy of diagnosis of rare
diseases have not much improved. Identifying a pathogenic mutation among thousands
of detected single-nucleotide polymorphisms in NGS results is challenging. Functional
studies of pathogenic mutations could be performed in laboratory model organisms, and
yeast proved to be particularly important [10–14].

Another obstacle that the patients face is a great limitation of therapies. For a significant
majority of rare diseases, current treatment is only symptomatic and focuses on improving
the quality of patients’ life; however, the disease itself is not cured. Therefore, there is a
great need to find new drug targets and drugs for rare diseases. Drug targets can be easily
identified in yeast models by genetic methods, such as second-site suppressor screens and
multicopy suppressor screens, which indicate where to hit to overcome observed defects.
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The costs of launching a new drug to the market may reach up to several billions of dollars,
and the rare disease market is very limited [1]. In order to ease the market introduction of a
drug for a rare disease, one can apply a drug repurposing approach. Drug repurposing
aims to find new indications of drugs that are already approved for use in humans for other
diseases [1]. Repurposed drugs can be directly tested in human clinical trials, even with
low numbers of patients [1,15]. Drug repurposing is therefore an attractive and reasonable
approach to rare diseases that promises the fast development of new therapies.

Here, we summarize attempts to improve our understanding of the pathogenesis
and to identify potential therapeutic targets and repurposable drugs for rare diseases
associated with mutations in VPS13 (vacuolar protein sorting 13) genes using yeast as a
model organism. Emphasis was given to recently published work on VPS13 proteins in the
Special Issues of IJMS entitled “Yeast Models and Molecular Mechanisms of Neurodegen-
erative Diseases” and “Yeast Models and Molecular Mechanisms of Neurodegenerative
Diseases 2021”.

2. Saccharomyces cerevisiae as a Disease Model and Simple Platform for High
Throughput Screens

S. cerevisiae yeast, despite a simple, unicellular structure, is widely used for studying
human diseases. Yeast models of neurodegenerative diseases [12,16,17], mitochondrial
dysfunctions [18–20], metabolic disorders [21], ageing [16,22,23], prion diseases [24,25]
or even cancer [26] were established. Modelling diseases in yeast is possible due to the
evolutionary conservation of cellular physiology among eukaryotes [23,27] as well as the
presence of homologous genes in human and yeast genomes—more than 6600 human genes
have a corresponding yeast homologue [28], and some of them complement mutations
in matching yeast genes. This allows yeast to be used for studying the effects of disease-
causing mutations. One can either replace the yeast gene with a human allele carrying a
pathogenic mutation—an example could be yeast models of copper metabolism diseases
linked with mutations in the ATP7A and ATP7B genes resulting in Menkes and Wilson’s
diseases, respectively [29–31]—or a mutation corresponding to a pathogenic human muta-
tion could be introduced into a yeast gene in order to mimic an analogous change in protein
functioning. For example, mutations in either mitochondrial or nuclear genes encoding
mitochondrial enzymes are often modelled in yeast [14,18,20]. For a comprehensive view
of the advantages of using yeast as a tool to assess the pathogenicity of mutations, read the
review by Cervelli and Galli [32].

Modelling human diseases in yeast is possible even in cases when there are no or-
thologs in both species. Heterologous expression of a human gene can still influence
the functioning of yeast cells. Examples are yeast models of neurodegenerative diseases
with protein aggregation. Expression of genes encoding aggregating protein results in
toxicity. In this manner, yeast models of Alzheimer’s disease (AD), Parkinson’s disease
(PD) and Huntington disease (HD) have been developed, in which respective aggregating
proteins, amyloid β, α-synuclein and huntingtin, are produced [16,33]. In cases when there
are no obvious growth phenotypes, one can study the effects of heterologous expression
of functional and pathogenic human alleles on yeast cellular physiology. The example
here could be a yeast model of Charcot–Marie–Tooth disorder associated with the GDAP1
gene [12]. While yeasts do not enable the investigation of a disease’s impact at the systemic
level, they allow for studying the molecular pathology of a disease in a simple, fast and
cost-effective way.

Once a yeast disease model is established, one can apply various research approaches
that aim to discover new aspects of a disease pathogenesis and contribute to its treatment.
One of the experimental approaches used in yeast models is screening for suppressors. A
suppressor is a genetic or chemical factor that overcomes defects caused by a mutation.
Among genetic suppressors, two classes can be distinguished: second-site and multicopy
suppressors [34]. Multicopy suppressors are genes that, when overexpressed, overcome
defects caused by mutations. This type of suppression can be achieved by: (I) improv-
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ing complex stability due to the higher accessibility of one of the complex components;
(II) increasing the pool of a defective complex with reduced activity; (III) increasing the
activity of a defective pathway that has reduced activity; (IV) mitigating the toxicity of an
upregulated pathway by increasing the pool of inhibitors or titrating activators of this path-
way [34]. Importantly, high-throughput genetic suppressor screens are virtually impossible
to be carried out in higher eukaryotic organisms due to the fact of their complex nature.
Identifying a suppressor and understanding its mechanism of action could reveal new
functional connections between a mutated gene and a suppressor. This may contribute to a
better understanding of the molecular pathology of disease, uncover disease modulating
genes and suggest novel therapeutic approaches [15,34].

Suppression could be achieved by treating a yeast model with biologically active
chemical compounds. This kind of suppression is referred to here as chemical suppression,
and it is analogous to drug intervention in humans. Drugs that suppress the effects of the
modelled mutation could be identified by screening chemical libraries (Figure 1). However,
a requirement of this approach is a convenient, reversible phenotype that enables easy
identification of the active compounds among thousands of tested drugs. Yeast can also be
used for studying a drug’s mechanism of action, similarly to genetic suppressors [15]. By
searching for the yeast mutant in which an active drug becomes inactive, genes that are
essential for the drug’s activity can be identified. Another strategy of searching for drug
targets is to screen yeast knockout collection against the drug of interest. The idea behind
this approach is that a yeast strain with deletion of a gene encoding a drug target is more
sensitive to this drug in comparison to other yeast mutant strains [15].

Using yeast genetic and chemical screens has been fruitful in elucidating the patho-
genesis of many diseases, and the findings in yeast models have been confirmed in higher
eukaryotic disease models [33,35–39]. Most importantly, identified drugs were also active
in human cell models [33,40].
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Figure 1. Scheme of a chemical suppressors screen using yeast. The presence of a growth zone around
the paper filter indicates that an active compound has been spotted onto the filter. Figure adapted
from Soczewka et al. (2020) [41].

3. VPS13 Gene and Vps13 Protein in Saccharomyces cerevisiae Yeast

VPS13 are evolutionarily conserved genes encoding VPS13 proteins; thus, it is possible
to study them in various model organisms [13]. The majority of research was conducted
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using S. cerevisiae yeast, where one VSP13 gene, encoding the Vps13 protein, was present.
With a length of 3144 amino acid residues and a molecular mass of 358 kDa, Vps13 is one of
the largest proteins found in yeast. It shows a complex domain structure, which is shared
with human homologous proteins (Figure 2), and it contains several domains that are able
to bind lipids and/or proteins. The domain structure and functions of VPS13 proteins were
recently excellently reviewed [42].
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Figure 2. The schematic representation of the domain structure of VPS13 proteins. The domains
of S. cerevisiae Vps13 and human VPS13A-D proteins; Chorein domain. VAB, Vps13 adaptor bind-
ing/WD40 domain; APT, APT1 domain; ATG_C, autophagy-related protein 2 C-terminal domain;
PH, Pleckstrin homology-like domain; UBA, ubiquitin-associated domain; FFAT or pFFAT, two
phenylalanine in acidic tract motif or phospho-FFAT motif. Presented with the use of DOG [43].

Originally, vps13∆ was identified as one of the mutants in the screen for yeast strains
defective in vacuolar protein sorting of the carboxypeptidase Y [44,45]. In further studies,
more protein trafficking phenotypes have been reported for the vps13∆ mutant, including
missorting of several Golgi apparatus proteases [46,47], vacuolar cargo receptor Vps10 [46],
sorting adaptor Sna3 [48], vesicle membrane receptor Snc1 and flippase Neo1 [49]. Sorting
defects in the vps13∆ mutant suggest the involvement of Vps13 in intracellular transport.
Indeed, in vitro studies showed that Vps13, together in complex with calcium-binding
centrin Cdc31, is required for Trans-Golgi Network (TGN) homotypic fusion and TGN
to multivesicular body transport [50]. Next to the role in protein trafficking, Vps13 is
involved in mitochondria functioning, since the vps13∆ mutant shows elevated transfer
of mitochondrial DNA to the nucleus and enhanced mitophagy [51]. The vps13∆ mutant
also exhibits defects in the actin cytoskeleton organisation and endocytosis [48], a process
which highly depends on forces generated by the actin cytoskeleton [52]. Moreover, Vps13
interacts with actin [48] and is present in actin patches [53]. This suggests a role for
Vps13 in actin cytoskeleton regulation. Another process in which Vps13 is involved is
sporulation [46,54,55].

Recent studies strongly suggest that VPS13 proteins act as lipid transfer proteins at
membrane contact sites (MCS)—zones of close proximity between the membrane of one
organelle and the membrane of another organelle or the plasma membrane. MCS enable
the direct exchange of small metabolites (lipids, ions and amino acids), signal transduction
and enzymatic regulation in trans [56]. The N-terminal part of Vps13 from S. cerevisiae
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yeast was shown to bind phospholipids and transfer them between phospholipid bilayers
in vitro [57]. Moreover, structural studies of the Vps13 N-terminal fragment obtained from
Chaetomium thermophilum fungus revealed that it forms a long groove with hydrophobic
and hydrophilic amino acid residues facing the interior and exterior sites, respectively. This
groove architecture is suitable for solubilizing lipids, suggesting that Vps13 serves as a
bridge between the membranes of different organelles and mediates bulk lipid flow [58,59].
It is unknown yet, how (and if) the specificity, rate and direction of the lipid transport are
regulated in the bridge model [60]. The recent mechanistic model of Vps13 functioning was
developed and reviewed by Leonzino et al. [61].

Vps13 in yeast cells was found at the MCS between the vacuole and mitochondria;
vacuole and nucleus; and endosome and mitochondria (Figure 3) [51,62,63]. As Vps13 is
present in multiple sites, the regulation of Vps13 localisation is required. One way in which
the localisation of Vps13 is achieved is the interaction of the VPS13 adaptor binding (VAB)
domain with respective adaptors. The VAB domain contains a set of six repeated sequences
which bind proteins with PxP motifs [64]. The PxP motif is present in Vps13-binding
proteins including a sorting nexin Ypt35, mitochondrial outer membrane protein Mcp1 and
meiosis specific adaptor Spo71. All of these proteins have been found to influence Vps13
localisation: Ypt35 targets Vps13 to endosomal and vacuolar membranes [64]; Mcp1 to
mitochondria [65]; Spo71 to prospore membrane [66]. These adaptors compete to bind and
recruit Vps13 to a desirable location, depending on the environmental conditions or state of
the cell [64]. These aspects were comprehensively reviewed by Dziurdzik et al. (2021) [42].
Recently, C-terminal PH-like domain was shown to be a determinant of Vps13 localisation
to TGN due to its ability to interact with Arf1 GTPase [67]. Vps13 localisation could also be
influenced by lipid binding. Various domains of Vps13 were shown to bind to different
signalling lipids, such as phosphorylated phosphatidylinositols and phosphatidic acid, and
the specificity of binding differs for different Vps13 domains [48,50,67,68]. Interestingly
APT1 domain binding to phosphatidylinositols was found to be regulated by calcium ions
(Ca2+) [68]. The involvement of phosphatidylinositol-4-phosphate (PI4P) in regulation of
Vps13 was also recently shown [55].
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Research regarding Vps13 protein using the yeast model contributed to a better un-
derstanding of Vps13 functioning and gave background to recent groundbreaking studies
regarding VPS13 proteins’ role in lipid transfer. It is one of the many examples of how yeast
as a model of a eukaryotic cell improved the state of knowledge in the field of cell biology.

4. VPS13 Genes and VPS13 Proteins in Human and Related Diseases

The human VPS13 gene family consists of four members: VPS13A, VPS13B, VPS13C
and VPS13D [69]. The length of the VPS13 genes ranges from 208 to 864 kb, and exons
number from 66 to 86 [69]. Expression is ubiquitous in various tissues, with some differences
within splicing variants [69–71]. Mutations in the VPS13 genes are associated with several
rare neurological diseases. VPS13A-D proteins localize to various MCS, where it is possible
that they all transfer lipids between membranes.

Mutations in VPS13A result in chorea-acanthocytosis (ChAc), an ultrarare neurodegen-
erative disease [70–72] affecting less than 1–5 individuals per 1 million [73]. In most cases,
pathogenic mutations result in a premature stop codon, reading frame shift or disturbed
splicing, causing the absence of protein; however, missense mutations have also been
described [13,74–77]. ChAc is a progressive disease, and the first symptoms occur in early
adulthood. Patients exhibit various dysfunctions of the nervous system such as movement
disorders (i.e., chorea, dyskinesias and dystonia), epileptic seizures, peripheral neuropa-
thy, dementia, psychosis and swallowing difficulties [73]. These symptoms are similar
to those observed in HD or PD patients, and many patients could be misdiagnosed [78].
Recently, a case of a patient diagnosed with PD bearing the VPS13A-delin mutation was
reported [79]. In addition to neurological signs, a characteristic feature of ChAc is the pres-
ence of acanthocytes in patients’ blood. Acanthocytes are erythrocytes with altered, spiked
morphology, and may account for up to 50% of red blood cells in patients [73,80]. VPS13A
protein localises to ER–mitochondria, ER–lipid droplets and endosome–mitochondria MCS
(Figure 3), where in addition to a role in lipid transfer, it is involved in the maintenance
of these MCS [57,81,82]. Disturbed formation of MCS could be the cause of some of the
observed mitochondrial-related defects in VPS13A knockout cell lines, such as abnormal
mitochondrial morphology, increased mitochondrial fission and reduced elimination of
damaged mitochondria by mitophagy [81]. Other autophagy-related defects were observed
in VPS13A-depleted cells, but they are rather more general, not specific to a particular type
of autophagy [82,83]. This could be the result of decreased lysosomal degradation in the
absence of VPS13A, probably caused by impaired processing of lysosomal hydrolases [82].
VPS13A is also involved in organisation of the actin cytoskeleton [84,85]. It interacts with
β-actin and β-adducin proteins [86], which are part of the erythrocyte membrane cytoskele-
ton and have a role in synaptic functioning [87,88]. Moreover, depolymerisation of the
actin cytoskeleton contributes to increased synaptic activity observed in neurons generated
from induced pluripotent stem cells (iPSCs) derived from ChAc patients [89]. The altered
anchoring of the membrane to the cytoskeleton could be related to higher activity of Lyn
kinase observed in ChAc red blood cells and phosphorylation-induced perturbation of
protein–protein interactions [90]. Significantly, enhanced Lyn kinase activity was also
demonstrated in ChAc neurons [89]. Recently, the scramblase XK was identified as a
binding partner of the VAB domain of the VPS13A protein [91]. Surprisingly, XK and
VPS13A were found in a complex in membrane fractions [92,93], but XK recruited VPS13A
from lipid droplets to subdomains of the ER, not to the plasma membrane [91]. This is
an interesting finding, because both Vps13 and XK have been shown to be important for
phosphatidylserine exposure at the outer leaflet of the plasma membrane after stimulation
of cells with ATP [92]. Finding the interaction between VPS13A and XK is important
because mutations in the VPS13A gene manifest clinically similarly to mutations in the
XK gene causative of McLeod syndrome [76,94]. VPS13A is recruited to ER membranes
by interaction of its FFAT motif with ER membrane proteins, VAPA and VAPB [57], and
it has the potential to bind Golgi apparatus membranes as its C-terminal PH-like domain
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binds yeast Arf1 GTPase [67]. Moreover VPS13A can be recruited, by its APT1 domain, to
endosomes in a Ca2+-dependent manner [68].

Mutations in VPS13B lead to Cohen syndrome—a disorder characterised by psychomo-
tor retardation, intellectual disability, microcephaly and characteristic facial features [95,96].
Cohen syndrome is the only VPS13-related disease that is manifested already at birth.
Similarly to ChAc, mutations in VPS13B predominantly result in the lack of functional
protein [97]. VPS13B is a peripheral membrane protein of the Golgi apparatus (Figure 3)
and is required for its integrity [98]. Localisation of VPS13B to Golgi is mediated by interac-
tion with RAB6 [99], a GTPase regulating intra-Golgi transport and exocytosis [100–102].
VPS13B deficiency impairs protein glycosylation, a process occurring in Golgi appara-
tus [103]. This defect is thought to be a key factor contributing to disease pathogenesis [103].
Finally, VPS13B depletion, contrary to VPS13A, increases autophagic flux [104].

Mutations in VPS13C are associated with early-onset PD [105–107] and type 2 dia-
betes [108–111]. VPS13C protein is present at MCS. It was found in the ER–lysosome and
ER–lipid droplets MCS (Figure 3), so the latter localisation is shared with VPS13A [57].
Another study showed that VPS13C localises at the outer mitochondrial membrane [112].
Loss of VPS13C function results in abnormal mitochondrial morphology, lower mitochon-
drial membrane potential and increased respiration rates [112]. Finally, VPS13C binds
galectin-12, an adipocyte protein involved in adipocytic differentiation and lipolysis regula-
tion [113–115]. Both proteins are upregulated during adipocyte differentiation and VPS13C
is required for galectin-12 stability [113].

Mutations in VPS13D result in complex neurological disease, named VPS13D move-
ment disorder. Patients exhibit movement defects (chorea, ataxia, dystonia), in some cases
combined with intellectual disability [116–118]. Loss of VPS13D function causes reduced
mitochondrial fission, resulting in defective mitophagy and impaired mitochondrial mor-
phology [119]. Moreover, mitochondrial morphology, accompanied with lowered ATP
production, was observed in patient-derived fibroblasts [117]. Recent studies showed that
VPS13D localises to MCS. VPS13D, like VPS13A, was found at ER–mitochondria, but also
at ER–peroxisomes MCS (Figure 3) [120]. The latter is most likely crucial for observed
VPS13D function in peroxisomes biogenesis [121]. Another study revealed that VPS13D
mediates contact sites between mitochondria and lipid droplets (Figure 3), and, together
with the endosomal sorting complex required for transport (ESCRT), facilitates fatty acids
transfer from lipid droplets to mitochondria in in vitro experiments [122].

The VPS13A gene, which is most similar to yeast VPS13 [69], does not complement
vps13∆; therefore, the vps13-I2749R mutation mimicking vps13A-I2771R point mutation
found in the ChAc patient was functionally analysed. This mutation causes amino acid
residue substitution in the APT1 domain and abolishes Ca2+-dependent binding of this
domain to selected phosphorylated phosphatidylinositols in vitro and changes Vps13
localisation in vivo [48]. Several other pathogenic VPS13A-D mutations were tested in
the same way in yeast: vps13A-L67P, vps13A-L1095P, vps13A-Y2721C; vps13B-N2993S,
vps13C-W395C, vps13C-F444P, vps13C-L2789T, vps13D-L2900S, vps13D-N3521S, vps13D-
D4107I, vps13D-A4210V and vps13D-R4228Q, [10,11]. The VPS13 protein level and different
phenotypes including CPY secretion and effect on sporulation were used as a measure of
pathogenicity. Moreover, it was shown that some mutations causing substitutions in VAB
domains result in disruption of adaptor binding in yeast Vps13, which gives insight to
diseases pathogenesis [10,64].

5. Calcium Signalling as a Potential Target for Drug Intervention in VPS13-Dependent
Neurodegenerative Diseases

The knowledge about VPS13 proteins is still not sufficient to develop a specific therapy
for patients. To date, gene therapy is also not available. Only symptomatic treatment
is used, and new methods to alleviate the symptoms are needed. The most efforts for
treatment development are reported for ChAc. The deep brain stimulation is used to
relieve movement problems [118], botulinum toxin to treat dystonia and selected drugs
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for seizure control [77]. Based on the finding that Lyn kinase is hyperactivated in red
blood cells of ChAc patients and neurons [89,90], the inhibitors of this kinase were also
tested. As Lyn kinase inhibition represents a potential treatment in ChAc to restore some
neuronal function [89], the trial to experimentally treat 3 patients was conducted. Although
a partial restoration of the actin cytoskeleton was observed in red blood cells, the lack of im-
provement of neurological symptoms was noted after six-month drug administration [123].
Further, studies on mice models revealed that the drug tested, dasatinib, is not able to cross
the blood–brain barrier, but another potential kinase inhibitor, nilotinib, can do that and
improve not only haematological but also neurological defects in mice [124,125]. Since the
variety of potential treatments is very limited, there is a great need for new drug candidates
which could be effective in ChAc patients.

To find therapeutic alternatives based on the understanding of cell biology, using
model organisms is necessary. Several yeast models of VPS13-dependent diseases were
constructed, which show various phenotypes [10,11,13,48,51] as described above. However,
these phenotypes were not suitable for high-throughput screens. Finding novel growth
phenotype of vps13, hypersensitivity to commonly used detergent sodium dodecyl sulfate
(SDS), enable suppressor screens [126]. This gave better insight into the pathways which are
disturbed in these cells which allowed for finding ways to overcome the observed defects.

Specifically, SDS hypersensitivity growth phenotype was used in a screen for multi-
copy suppressors of vps13-I2749R mutation, and several plasmids responsible for improved
growth were isolated and analysed. One of them contained a fragment of the MYO3 gene
(MYO3-N) encoding N-terminal part (amino acid residues (aa) 1–775) of Myo3 protein
(Myo3-N) [126]. Myo3 is a type I myosin protein involved in actin cytoskeleton organi-
sation and endocytosis [127,128]. MYO3-N overexpression was also improving growth
of the vps13∆ mutant in the presence of SDS. Importantly, the suppression by MYO3-N
was not limited to SDS-hypersensitivity. MYO3-N corrected two other vps13∆ defects:
depolarisation of the actin cytoskeleton and hypersensitivity to canavanine, the phenotypes
implying defective endocytosis. Indeed, endocytic reporters (Las17, Myo3, Myo5 and Abp1
tagged with fluorescent proteins) that localise to sites of endocytosis, were shown to be
present longer on the plasma membrane in the vps13∆ cells than in the wild-type, indicating
delayed endocytosis. MYO3-N overexpression shortened patch lifetimes for Las17, Myo3
and Myo5. To conclude MYO3-N overexpression could partially improve endocytosis in
vps13∆ alleviating canavanine hypersensitivity [126].

In further analysis, the mechanism of MYO3-N action was elucidated. The suppressing
MYO3-N fragment encodes myosin motor domain and a linker with two calmodulin bind-
ing motifs (IQ1 and IQ2). It is possible that suppression could be achieved by binding with
calmodulin (Cmd1)—a conserved, calcium-binding protein mediating calcium signalling
in cell [129]. To test this possibility, mutations disrupting both IQ motifs were introduced
into MYO3-N and resulted myo3-iq1/2 was not able to suppress vps13∆ and the interaction
between Myo3-iq1/2 and Cmd1 was abolished. These results indicated that binding of
calmodulin to Myo3-N is necessary for MYO3-N-based suppression of vps13∆ [126]. The
hypothesis that titrating of calmodulin by Myo3-N may result in lowering the activity of
one of its downstream targets, calcineurin, was formulated. In yeast, calcineurin consists of
one regulatory (Cnb1) and one of the two catalytic (Cna1 and Cmp2) subunits [130–132]
(see Figure 4). In response to changes in calcium concentration, calcineurin regulates gene
expression via its target, the Crz1 transcription factor [133,134]. In fact calcineurin activity
is higher in the vps13∆ cells than in the wild-type, and MYO3-N overexpression reduces it
(Figure 4) [126]. Remarkably, the Cnb1 subunit, which is essential for calcineurin activity, is
required for MYO3-N-based suppression of vps13∆. This indicates that the suppression
mechanism of MYO3-N relies on downregulating calcineurin activity. However, calcineurin
must not be shut off completely (Figure 4). This result resembles a study which showed
that in a yeast model of PD, moderate calcineurin inhibition reduces α-synuclein toxicity,
and deletion or overexpression of genes encoding calcineurin subunits exacerbate it [135].
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of SDS stress. Partial inhibition of calcineurin (Cnb1 + Cna1/Cmp2) activity suppresses the SDS-
hypersensitivity of vps13∆ cells. Multicopy suppressors MYO3-N and RCN2 act by titrating calmod-
ulin or blocking the activity of Cmp2 catalytic subunit, respectively. Chemical suppressors EGTA
and FK-506 act by chelating the calcium ions required for calmodulin and calcineurin activities or
inhibiting total calcineurin activity, respectively. As full inhibition of calcineurin activity is toxic in the
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2021 [126,136].

The identification of the RCN2 gene as another suppressor of vps13∆ [136] is in line with the
results described above. RCN2 encodes Rcn2 protein, a negative calcineurin regulator [137,138].
Interestingly, Rcn2 binds preferentially to the Cmp2 calcineurin catalytic subunit in comparison
to the Cna1 catalytic subunit. Analysis indicated that the N-terminal fragment of Rcn2 is
necessary to reduce calcineurin activity, maintain the Rcn2 interaction with Cmp2 and to
improve growth of vps13∆ (Figure 4). Moreover, the deletion of CMP2 actually suppresses
vps13∆, contrary to CNA1 and previously shown CNB1 deletions, which negatively influence
vps13∆ growth in the presence of SDS. The CNA1 and CNB1 are also required for vps13∆
suppression by RCN2 [136] as for MYO3-N, indicating that vps13∆ suppression is achieved by
reducing calcineurin activity related to Cmp2 catalytic subunit (Figure 4), while the activity
mediated by Cna1 is crucial for SDS stress survival. Similarly, in mammals catalytic calcineurin
subunits are differently expressed and regulated [139–142]. Knowledge about the specificity
of various calcineurin forms and their role in disease molecular pathologies may contribute
to development of novel and specific calcineurin inhibitors. Such specific peptide inhibitors
of calcineurin would allow calcineurin activity involved in a disease to be downregulated
without disturbing calcineurin-related processes required for healthy organism functioning.
Various peptide inhibitors of human calcineurin were already studied [143,144]. This
approach could, at least partially, eliminate side effects of general calcineurin inhibitors,
such as FK-506 immunosuppressant and cyclosporin A.

As partial reduction of calcineurin activity was responsible for the suppression, it
is possible that vps13∆ SDS-hypersensitivity could be mitigated by pharmacological cal-
cineurin inhibition. Indeed ethylene glycol tetraacetic acid (EGTA), which limits the calcium
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availability required for calmodulin and calcineurin activity, and FK-506 (Figure 4) im-
proved the vps13∆ growth, showing that it is possible to achieve vps13∆ suppression in a
pharmacological manner [126]. Moreover, FK-506 was active only in very low concentra-
tion, and higher concentration caused toxicity. This is in line with genetic experiments and
shows that basal calcineurin activity is required for SDS protection.

The proper functioning of calcium signalling is crucial for cells. Especially in neu-
rons, the concentration and storage of Ca2+ ions in specific compartments are precisely
controlled. Dysregulation of Ca2+ signalling is observed in ageing neurons and neurons
affected by neurodegenerative diseases such as AD, PD and HD. Based on these findings,
a hypothesis was formed that the dysregulation of Ca2+ signalling is the primary basis
for the pathogenesis of neurodegenerative diseases. Indeed the changes in activity of
calcineurin were observed in several neurological diseases [146? ], and its increased activity
was reported in yeast models of PD [147]. Moreover, the store-operated calcium entry
(SOCE), a mechanism of acquiring extracellular calcium triggered by Ca2+ depletion in
the ER [148], was found defective in all major neurodegenerative diseases including AD,
PD and HD [149]. The nature of impairment is characteristic for each of these diseases.
While HD and PD are characterised by an excessive depletion of Ca2+ from ER stores in
neurons, in AD neurons the ER is overloaded with Ca2+, as described in several recent
reviews [149–154]. In addition, in ChAc patient-derived fibroblasts, levels of SOCE com-
ponents, ORAI1 and STIM1 were reduced, and SOCE activity was downregulated [155].
Similar defects were observed in neurons generated from ChAc patient-derived iPSC,
and these alteration in SOCE functioning, at least partially, contributed to neurodegen-
eration [156]. Despite enormous efforts, AD, PD and HD are still incurable, and only
symptomatic relief drugs are available; research on effective treatment is still ongoing. One
line of search for new therapeutic treatment is based on the Ca2+ signalling hypothesis
of neurodegeneration. The effect of modulating the release of Ca2+ ions from ER storage
sites and transport to cells was studied [157]. The relevance of Ca2+ signalling for neu-
rodegenerative diseases further supports research focused on investigating it as a potential
therapeutic target in ChAc patients.

6. Copper and Iron Homeostasis as a Potential Target for Treatment of
VPS13-Dependent Neurodegenerative Diseases

Iron and copper are linked with neurodegenerative diseases with protein aggregation.
AD, PD and HP are characterised by increased iron and/or copper levels in specific brain
regions that are accompanied by cellular damage and oxidative stress [158–161]. Iron and
copper interact with the amyloid precursor protein (APP) and its peptide derivative, amy-
loid beta (Aβ), both of which are involved in AD, and with α-synuclein which is involved in
PD, while copper binds to huntingtin involved in HD [162,163]. It has been suggested that
this interaction mediates protein aggregation and contributes to disease development [158].
Moreover, copper and iron stimulate the formation of advanced glycation end-products
(AGEs), which are toxic and induce aggregation of proteins including those associated with
the pathogenesis of AD [164]. However, a meta-analysis indicates a copper deficiency in the
brain of AD cases [165], and most meta-analyses results suggest that overall and unbound
copper are present in higher concentrations in serum samples of AD patients [166–168],
suggesting copper dyshomeostasis. Based on these findings various metal chelators are
under study for AD and PD in mouse models and in clinical trials [158–160].

There are not many reports on iron or copper dyshomeostasis in VPS13-dependent dis-
eases or metal ion contribution in their pathogenesis so far [169]. Finding FET4, encoding
iron transporter, and CTR3, encoding copper transporter, as suppressors of vps13∆ [41,170]
provides a hint that metal disturbances could contribute to the pathogenesis of VPS13-
dependent diseases and opens the possibility of discovering new drugs and drug targets
aimed at the normalisation of these disturbances. For this purpose, a chemical suppressor
screen (as depicted in Figure 3) of compounds from the Prestwick Chemical Library, a
collection of 1280 drugs (most of which have been approved for use in humans), was
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performed and resulted in the identification of luteolin and tolcapone as vps13∆ chemical
suppressors [41]. Luteolin is a natural compound belonging to the class of polyphenols
called flavonoids which are plant secondary metabolites. They are associated with antioxi-
dant, antiviral, antibacterial, anticancer and neuroprotective activities, and their therapeutic
potential has been extensively studied [171–174]. The core of flavonoids is formed by two
benzene rings connected with a heterocyclic pyranic ring. Their physico-chemical proper-
ties are determined by functional groups and their location in the flavonoid core [172,175].
Tolcapone, which is a drug used in the treatment of PD [176], has some structural similari-
ties with luteolin, such as the location of benzene rings and hydroxyl groups on adjacent
carbons. Moreover, both these drugs showed comparable activities when used in the
same concentrations. These features indicate that luteolin and tolcapone could have the
same mechanism of action. Tolcapone, however, exhibits serious adverse effects [177],
while flavonoids are generally safe. The Prestwick Chemical Library contained one more
flavonoid, ipriflavone, but it did not overcome the vps13∆ growth defect. To find out
more about flavonoids as suppressors, a follow-up screen of the in-house library of ap-
proximately 50 natural compounds was performed [41]. An additional five drugs were
identified as vps13∆ suppressors in this screen. Four of them—quercetin, pentaacetyl-
quercetin, myricetin and fisetin—are flavonoids. The fifth compound, corilagin, belongs
to tannins. In the collection of tested compounds, another flavonoid, kaempferol, was
present but it did not improve vps13∆ growth. The only structural difference that distin-
guishes kaempferol from active flavonoids was that in the kaempferol structure, none of
the hydroxyl groups are bound to adjacent carbon atoms. This criterion required for vps13∆
suppression by flavonoids was further confirmed in the structure–activity–relationship
(SAR) analysis. The other structural criteria established during SAR analysis implicated
that the heterocyclic pyranic ring must contain a double bond between C2 and C3 atoms
and a carbonyl group, yet the ring itself does not necessarily have to be closed. A similar
case is tolcapone, where the criteria regarding hydroxyl and carbonyl groups are met and
benzyl rings are not connected by heterocyclic pyranic ring but by a carbonyl group.

The structural criteria required for vps13∆ suppression overlaps with those previously de-
scribed for flavonoids responsible for the antioxidant and metal chelation properties [178–180].
As vps13∆ was shown to be hypersensitive to cadmium [181,182], a heavy metal that causes
oxidative stress, and all of the flavonoids that suppressed vps13∆ SDS hypersensitivity were
also active when tested for vps13∆ cadmium hypersensitivity, a possible mechanism of
their action could rely on their antioxidant properties. Contrary to this prediction, some of
the tested flavonoids, such as kaempferol, did not improve vps13∆ growth, despite having
higher antioxidant potential than the suppressing flavonoids [180]. This contradiction
suggests that the alleviation of oxidative stress is a rather unlikely mechanism for flavonoid
suppression of vps13∆. Thus, it was hypothesised that metal chelation properties could
possibly be important for vps13∆ suppression. This was supported by the fact, that one of
the identified genes in the multicopy suppressor screen was FET4 [41], which encodes a
plasma membrane low-affinity iron transporter [183] (Figure 5). In addition, iron salts alone
improved vps13∆ growth. These results highlight the importance of iron in the protection
against SDS stress. The potential interaction between luteolin and FET4 overexpression
was tested and luteolin improved vps13∆ growth regardless of FET4 overexpression, and
no additive effects were observed [41]. This indicates that luteolin may involve iron in
its mechanism and could act on the same process as FET4 (Figure 5). The possibility was
tested that vps13∆ could be defective in iron acquisition. However, measuring activities of
pathways involved in response to low iron levels, as well as the growth test in the presence
of ferrozine, an iron chelator limiting its bioavailability, indicate that iron acquisition in
vps13∆ cells was not altered. Therefore, it remains to be tested directly whether luteolin acts
by compensating iron deficiency in vps13∆ cells or by influencing other cellular process.
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Figure 5. Suppression mechanisms of vps13∆ SDS hypersensitivity that involve copper or iron home-
ostasis. Suppression could be achieved by (I) overexpression of genes encoding copper transporters
Ctr1, Ctr3 and Ccc2; (II) overexpression of the FET4 gene encoding the Fet4 iron transporter; (III)
treatment with copper ionophores (ELE—elesclomol; NaPT—sodium pyrithione; DSF—disulfiram);
(IV) treatment with luteolin (LUT). Internalised copper is targeted to the Golgi apparatus where it
is incorporated into the Fet3 oxidase, a part of the complex enabling high-affinity iron uptake. This
complex is targeted to the plasma membrane via vesicular trafficking and increases the intracellular
iron pool used for SDS protection. Extracellular copper can also be directly incorporated into Fet3
oxidase localised in the plasma membrane. It is possible that luteolin could act as iron ionophore.
A potential target of copper, iron and luteolin action could be the biosynthesis of complex sphin-
golipids, which are important membrane components during SDS stress. Figure from Soczewka et al.
(2021) [170] was supplemented and modified.

In line with these predictions, possible links between luteolin, iron and sphingolipids
(Figure 5) were tested [41]. Sphingolipids are structural components of membranes with
the highest enrichment in the plasma membrane, and they are involved in signalling
and regulatory processes in cells [184,185]. They are especially abundant in cells of the
nervous system, and alterations in their metabolism are implicated in neurodegenerative
diseases such as multiple sclerosis and Sandhoff disease [186]. Previous studies showed
that the IPT1 gene, which encodes the inositol-phosphotransferase crucial for sphingolipid
biosynthesis, is important for the SDS stress response in yeast [187]. Moreover, iron serves
as a cofactor in enzymes of sphingolipid biosynthesis pathway [188], and luteolin was
shown to increase ceramide level, one of the key sphingolipid, in cancer cell line [189]. This
raised the hypothesis that both iron and luteolin could act on the sphingolipid biosynthesis
pathway to suppress vps13∆. In agreement with this, the csg2∆ strain, devoid of another
enzyme from the sphingolipid biosynthesis pathway, was also hypersensitive to SDS.
Moreover, deletions of both ipt1∆ and csg2∆ negatively interacted with vps13∆, and luteolin
and iron were able to suppress both of the double deletion strains [41]. The contribution
of the sphingolipid biosynthesis pathway in vps13∆ phenotypes and the pathogenesis of
VPS13-dependent diseases requires further study.

The primary finding that points to copper homeostasis as a potential suppression target
was the identification of the CTR3 gene in the screen for multicopy suppressors of vps13-
I2749R and vps13∆ [170]. CTR3 encodes the plasma membrane copper transporter [190].
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Copper relevance for suppression was further confirmed by showing that overexpression
of the CTR1 gene, encoding the main plasma membrane copper transporter [191,192], as
well as treatment with copper salts improved the vps13∆ growth (Figure 4). Moreover, one
of the identified compounds as the chemical suppressor was disulfiram [170]—a copper
ionophore used for alcoholism treatment, which is gaining interest as a potential anticancer
drug [193]. Two additional copper ionophores tested also suppressed vps13∆ growth defect.
One was elesclomol, a candidate anticancer drug [194,195], and the other was sodium
pyrithione (Figure 5), which has an anion that is used as an antimicrobial agent [196].
The fact that identified multicopy and chemical suppressors are directly related to copper
strongly suggests that increasing the cellular copper concentration could be one of the
mechanisms of vps13∆ suppression. Copper-based suppression was not limited only to the
SDS hypersensitivity phenotype. CTR1 overexpression, as well as treatment with all three
copper ionophores, mitigated vps13∆ growth defect in the presence of cadmium. When
testing the suppressors for the canavanine hypersensitivity of vps13∆, CTR1 overexpression
only slightly improved vps13∆ growth, whereas elesclomol was the only active drug. This
finding was quite intriguing, because despite the fact that all of the suppressors were
copper-related, their mechanisms of action in the cell could be different.

When elucidating potential mechanisms of copper action, the potential copper de-
ficiency and its compensation by improved copper uptake was tested [170]. However,
copper measurements and growth tests in the presence of copper chelator did not indicate
any copper deficiency in vps13∆. Moreover, in copper-abundant conditions, the copper
level in vps13∆ cells was even slightly elevated compared to the wild type. Thus, SDS
hypersensitivity of vps13∆ is not caused by copper deficiency, and suppression of this
vps13∆ does not rely on compensating low copper level; thus, another mechanism of action
must exist.

The mechanism standing behind copper-based suppression was related to iron uptake,
and its importance for SDS protection was described above [41]. Copper is required
for functioning of the high-affinity iron uptake system. Upon internalisation, copper is
transported to the Golgi apparatus by Ccc2 ATPase [197,198], where it is incorporated into
Fet3 oxidase, which, together with Ftr1 permease, forms a complex responsible for the
high-affinity iron uptake [199,200]. After binding copper, this complex is transported to
the plasma membrane, where it enables iron uptake. Increasing intracellular copper pool
by CTR1 overexpression would improve functioning of this system, resulting in increased
iron content in the cell. Using a genetic approach, it was shown that this suppression
mechanism is possible. CTR1 did not suppress vps13∆ when CCC2 or FET3 were absent,
which indicates that components important for the high-affinity iron uptake system are
required for CTR1-based suppression [170]. To further highlight the relevance of the
high-affinity iron uptake system, it was presented that CCC2 acts as a vps13∆ multicopy
suppressor; therefore, suppression could be achieved by increasing copper transport to
the Golgi apparatus. Importantly, CCC2 overexpression was not effective in the absence
of FET3, which further shows that the high-affinity iron uptake system is essential for
copper-based suppression.

The findings from genetic experiments pointing at iron uptake as targets of copper-
related suppression were further supported by measurements of iron levels in yeast cells.
The results show that the iron level in vps13∆ was lower than in the wild type, and it
increased upon CTR1 and, to some extent, CCC2 overexpression [170]. The iron level in
vps13∆, however, was only moderately decreased in comparison to iron levels observed
in the fet3∆ mutant. It was shown that the fet3∆ strain was less sensitive to SDS than
vps13∆ [41]; therefore, lower iron levels could contribute to vps13∆ SDS hypersensitivity
only to a low extent. Supplementing media with copper salts greatly increased intracellular
iron levels in both wild-type and vps13∆ strains, which is another indication that increasing
the intracellular copper pool increases iron uptake via the Fet3–Ftr1 complex [170]. Inter-
estingly, upon copper supplementation, the difference in iron levels between the wild-type
and vps13∆ strain was higher in comparison to the measurements for yeast cultivated
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without copper supplementation. This indicates that in the vps13∆ mutant, copper may not
be utilised by the high-affinity iron uptake system as effectively as in the wild type.

It was also tested whether copper ionophores and copper, itself, act via the high-affinity
iron uptake system. Neither the tested ionophore nor copper sulphate were active in fet3∆
vps13∆, showing that their mechanism of action relies on iron uptake by the Fet3–Ftr1
complex. Interestingly, however, copper sulphate and elesclomol but neither disulfiram
nor sodium pyrithione were able to improve the growth of the ccc2∆ vps13∆ double
deletion mutant when higher concentrations were applied. Copper sulphate could rescue
ccc2∆ vps13∆ by the direct incorporation of copper to Fet3 on the plasma membrane [170]
(Figure 4). In this mechanism, there is no need for Ccc2, which delivers copper to the
Golgi apparatus where copper binding to Fet3 occurs. In agreement with this, other works
showed that the effects of CCC2 deletion but not FET3 deletion could be overcome by copper
supplementation [197–199,201]. In the case of elesclomol, it was proposed that the lack of
CCC2 is overcome by its ability to effectively transport copper to the Golgi apparatus [170].
This is supported by previous studies in which elesclomol was able to correct defects
observed in the yeast ccc2∆ mutant, and it was also effective in a Menkes disease model
in which the ATP7A gene, a homologue of yeast CCC2, is mutated [202,203]. It is worth
noting that elesclomol was the only ionophore that reduced vps13∆ hypersensitivity to
canavanine, suggesting that its action is broader than the other tested copper ionophores.

The possibility that the mitochondrial electron transport chain (ETC) could be a target
for copper-based suppression in vps13∆ was also tested, because all of the tested copper
ionophores were linked with mitochondrial functioning, and their effectiveness in yeast
models of mitochondrial diseases was proved [202,204–206]. However, the functional ETC
was not necessary for elesclomol action in vps13∆ cells [170]. Next to the role in iron uptake,
copper could potentially act by improving sphingolipid biosynthesis (Figure 4). Copper
is involved in sphingolipid biosynthesis, because the yeast ccc2∆ mutant is defective in
hydroxylation of complex sphingolipids [207]; however, the nature of this involvement is
not known [208]. Therefore, this is another indication that the sphingolipid biosynthesis
pathway is an interesting subject for investigation in higher eukaryotic cell models. Fur-
ther studies will show whether copper homeostasis, copper-dependent iron uptake and
sphingolipid biosynthesis are relevant for ChAc pathogenesis.

7. Conclusions and Future Perspectives

Several studies show that yeast could be successfully used in the modelling of human
neurological diseases to better understand their pathology, find therapeutic targets and
repurpose drugs. The SDS hypersensitivity phenotype of the yeast vps13∆ mutant was
particularly useful for identifying several multicopy and chemical suppressors. Importantly,
some of the suppressors, both multicopy and chemical, were found to act on the same
pathways relevant for vps13∆ suppression. Analysis of these pathways revealed new defects
present in Vps13-deficient cells, showing that they could be potential therapeutic targets.

The new findings show the importance of calcineurin for the functioning of vps13∆
cells. It was shown that the calcineurin activity increased in vps13∆ cells and the down-
regulating activity of Cmp2 catalytic subunit suppressed vps13∆ SDS hypersensitivity.
Activity reduction could be achieved by overexpression of MYO3-N and RCN2, deletion
of CMP2, or treatment with EGTA and FK-506. MYO3-N overexpression also corrected
endocytosis and the defect in the actin cytoskeleton’s organisation in vps13∆ cells. These
findings are especially interesting, because the actin cytoskeleton organisation is regulated
by calcineurin [209]. Moreover, calcineurin inhibition ameliorated actin cytoskeleton de-
polymerisation induced by status epilepticus in mice [210]. Epileptic seizures are one of
the symptoms of ChAc. In ChAc patient-derived cells, alterations in calcium homeosta-
sis were described; however, their effect on calcineurin was not investigated. Analysing
the calcineurin activity and its impact on the actin cytoskeleton in higher eukaryotic cell
models may reveal if there are any calcineurin disturbances that could be related to ChAc
pathogenesis, and if they are limited to specific calcineurin catalytic subunits. Perhaps,
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protein inhibitors of these specific catalytic subunits could be used for pharmacological
intervention in the ChAc patients.

The other findings show the relevance of iron, copper homeostasis, copper ionophores
and flavonoids for vps13∆ suppression. Overexpression of the FET4 gene or treatment
with iron salts improved vps13∆ growth. Increased iron import could also be achieved in a
copper-dependent manner. Moreover, flavonoids may act using the same process as iron.
However, the exact mechanism in which iron improves yeast growth in the presence of SDS
is still not elucidated. One possibility is that both iron and flavonoids, and perhaps copper
itself, improve sphingolipid biosynthesis in vps13∆. Sphingolipids are important for SDS
protection in yeast and for nervous system functioning in humans. Therefore, knowing that
VPS13 proteins influence lipid transfer in cells, disturbed sphingolipid homeostasis may be
an important factor in the pathogenesis of the VPS13-related diseases. Future studies are
required to determine whether sphingolipid homeostasis is disturbed in human cells from
patients and could be a target for therapeutic intervention.

Newly identified potential repurposable drugs which are effective in alleviating defects
of yeast mutant cells, such as calcineurin inhibitors, flavonoids and copper ionophores, re-
quire intensive studies using available human cell and mouse models. HeLa siVPS13A [83],
fibroblasts or red blood cells from patients and patient-derived neuronal cell models [211]
together with a mouse model of ChAc [124] will help to answer the question of whether
any of these drugs can be of use for intervention in ChAc and other VPS13-related diseases.
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