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Abstract 

Two main mechanisms of protein turnover exist in eukaryotic cells: ubiquitin-proteasome system and 

autophagy-lysosomal pathway. Autophagy is an emerging important constituent of many 

physiological and pathological processes, such as response to nutrient deficiency, programmed cell 

death and innate immune response. In mammalian cells the selectivity of autophagy is ensured by the 

presence of cargo receptors, such as p62/SQSTM1 and NBR1, responsible for sequestration of the 

ubiquitinated proteins. In plants there have been no selective cargo receptors identified yet. The 

present report indicates that a structural and functional homologue of p62/SQSTM1 does exist in 

plants. The tobacco protein, named Joka2, was identified in yeast two hybrid search as a binding 

partner of a small coiled-coil protein, a member of UP9/LSU family of unknown function, encoded by 

the UP9C gene strongly and specifically induced during sulfur deficiency. The typical domains of p62 

are conserved in Joka2. Ability to homopolymerize and to interact with a member of the ATG8 family 

argue for the Joka2 role in plant selective autophagy. Moreover, presence of Joka2-YFP in both, 

cytosolic speckles and the nucleus is in agreement with the recent evidence for nuclear-cytosolic 

shuttling of p62 in mammalian cells. The Joka2 expression was up-regulated in roots but not in shoots 

of tobacco plants grown for two days in nutrient deficient conditions. The above results and the 

observation that the tobacco seedlings overproducing Joka2-YFP were more tolerant to nutrient 

deficiency than the seedlings of the parental line suggest that the selective autophagy is an important 

part of plant response to such environmental stress. 
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Introduction 

Autophagy, or “self-eating” is an ubiquitous catabolic process in eukaryotic cells. Although it 

was first described about 40 years ago, our molecular understanding of this process started only about 

a decade ago 1, 2. The best characterized type of autophagy, macroautophagy, occurs in a wide range of 

eukaryotes including mammals, plants and fungi, and leads to the degradation of portions of the 

cytoplasm, which may include cell organelles. During this process a double membrane structure, 

called autophagosome, sequesters the cargo (e.g. cell material such as organelles, soluble cytosolic 

proteins and protein aggregates) for degradation. Subsequently, the outer membrane of the 

autophagosome fuses with the vacuole membrane resulting successively in uptake of the cargo 

enclosed by the inner autophagosomal membrane (the autophagic body) in the vacuole, the 

degradation of the cargo and the release of the products for reuse. The membrane origins of 

autophagosomes are unclear and may involve multiple sources, including the endoplasmic reticulum, 

Golgi apparatus, mitochondria and plasma membrane 3-6. At least 34 various proteins, which 

transiently associate and act in a hierarchical order during autophagosome assembly, have been 

identified so far. Genes encoding most of these proteins (autophagy related genes, ATG) have been 

found in screenings of yeast mutants defective in autophagy 7. The process and core molecular 

machinery components are evolutionarily conserved 8, however the higher eukaryote autophagy 

pathway might require more elaborate molecular machinery, including factors that are absent in yeast. 

The human autophagy system has a tremendous influence on protein homeostasis and involves 

multiple protein-protein interactions 9. It is needed for appropriate response to nutrient stress, innate 

and adaptive immunity and autophagic cell death. Malfunction of autophagy has been linked to a wide 

range of human pathologies, including cancer, different neurodegenerative diseases, immunological 

disorders and pathogen infection 10-12. Autophagy is also important during development of mammals, 

flies and warms 13.  

The autophagy specific ubiquitin-like (UBL) proteins of the ATG8 family (known also in 

mammals as LC3 or GABARAP) are central regulators of autophagosome assembly, maturation and 

lysosomal fusion. In addition, interaction of the conserved surface of ATG8 with a conserved 

hydrophobic W/YXXL/I motif (referred as LIR region) in cargo receptors is necessary for the 

selective cargo recruitment to the autophagosomes 14, 15. In mammals, at least two proteins, 

p62/SQSTM1/Sequestosome-1 and NBR1, can function as cargo receptors (or cargo binding proteins) 

in autophagic clearance of protein aggregates 16-19. The published data are mostly available for p62, 

which itself is degraded by autophagy 20, 21. The p62 is found in cellular inclusion bodies together with 

polyubiquitinated proteins, in protein aggregates that accumulate in various chronic, toxic, and 

degenerative diseases 21-24. The p62 protein mainly facilitates the autophagic clearance of the 
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aggregates of the ubiquitinated proteins, however, it is also capable of binding nonubiquitinated 

proteins such as, TRAF6 25, 26, ALFY 27 or Keap1 21.  

Recent identification of novel selective cargo receptors named SEPA-1 28 and EPG-2 29 in 

Caenorhabditis elegans, which are located to the autophagosomes but apparently lack evolutionary 

conserved structural homologues in mammals, shed more light on the autophagy process in 

metazoans. One can imagine that other groups of multicellular organisms might contain multiple 

adaptor proteins mediating a rapid selective autophagic degradation of the unwanted, presumably 

aggregated, but not ubiquitinated proteins. 

Autophagy is a well-known process in yeasts and animals but it has only been recently 

established in plants. Studies of autophagy in plants are greatly facilitated by the functional and 

structural conservation of ATG proteins 30,31, 32. Similarly to the yeast and metazoan systems the plant 

ATG8 proteins are critical components of the autophagy pathway, therefore in many studies the 

ATG8-GFP fusions have been used as markers of autophagosomes in plants 33-38. The lack of obvious 

phenotypes of atg mutants grown under nutrient-sufficient conditions suggested that the autophagy 

was not essential for plants. However, more detailed studies revealed that the atg mutants senescent 

earlier and were hypersensitive to nitrogen starvation and carbon limitation 35, 36, 39-41. Moreover, it was 

demonstrated that the autophagy could be induced by treatment of plants with hydrogen peroxide or 

methyl viologen 42. Recently, it was established that under nutrient-deficiency RUBISCO and whole 

chloroplasts were delivered to the vacuole by autophagy and degraded 43, 44. In general, autophagy in 

plants seems to be involved in nutrients recycling. It provides substrates during nutrients deprivation 

and acts as a cell survival mechanism through recycling cell waste. On the other hand, a number of 

other evidence indicate that a constitutive basal autophagy occurs also under normal growth conditions 
45, 46. Moreover, it was recently found that autophagy operates a negative feedback loop modulating 

NPR1-dependent salicylic acid signaling and that this negative feedback is necessary to limit 

excessive senescence and the programmed cell death in response to pathogen infection 47. 

It was commonly believed that in plants no selective autophagy receptors exist and only the 

core molecular autophagy machinery operates 32, 48. However, we demonstrate that the Joka2 protein 

from Nicotiana tabacum actually is a structural and functional homologue of p62/SQSTM1. The 

Joka2 gene was induced in tobacco roots but not in the shoots during nitrogen (N) or sulfur (S) 

deficiency. The overproduction of Joka2 improved plant performance in both, normal growth 

conditions and during nutrients shortage. We propose that Joka2, by analogy to p62 - the selective 

cargo receptor from the mammalian system, participates in the process of selective autophagy in 

plants. Our data indicate a link between S-deficiency response and the process of autophagy, and 

associate for the first time the selective autophagy cargo receptor with plant response to nutrients 

deprivation.  
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Results 

Identification of tobacco Joka2 as a partner of UP9C 

The UP9C protein belongs to the family of UP9/LSU-like proteins present in many plant 

species 49-51. Analysis of transgenic tobacco plants with silenced expression of UP9-like genes (due to 

expression of UP9C in the antisense orientation) strongly argues for the significant role of UP9/LSU 

in regulation of plant response to S-deficit 50. This function is possibly mediated by protein-protein 

interactions. We previously identified 17 clones encoding putative partners of UP9C originated from 

the cDNA library prepared from Nicotiana tabacum plants grown for 2 days in S-deficient conditions 

(GenBank Accession No: GU066878–GU066894). Surprisingly, the similar yeast two-hybrid (Y2H) 

experiment with the cDNA library prepared from N. plumbaginifolia seedlings grown in normal 

(nutrient sufficient) conditions resulted in identification of only three clones denoted pJoka2, pJoka8 

and pJoka20 (Fig. 1A) encoding different proteins than those identified from N. tabacum library. 

Database searches and location of characteristic domains within the predicted open reading frames of 

Joka2, Joka8 and Joka20 allowed either for identification of a corresponding protein previously known 

in tobacco (the case of Joka20) or for identification of homologues in other plant species (the case of 

Joka2 and Joka8). The Joka20 protein was identified as L7/L12, a nuclear encoded component of 

chloroplast ribosomes 52. The Joka8 protein appeared to contain a basic helix-loop-helix (bHLH) motif 

and was classified as a member of a huge family of bHLH transcription factors 53. Initially, no function 

to Joka2 could be assigned but it appeared to contain two well-characterized domains: Phox/Bem 1p 

(PB1; PFAM:00564) and ZZ-type zinc finger (ZZ; PFAM:00569). The Joka2 open reading frame was 

incomplete since no translation initiation and no translation stop codons were present in the cloned 

cDNA fragment. 

Interactions between UP9C and the identified partners were confirmed by the “pull-down” 

assay. In order to check which of the two well-characterized protein domains, PB1 and ZZ, present in 

Joka2 is involved in the interactions, the DNA fragments containing each of the domains were cloned 

separately into expression vectors. From the results shown in Fig. 1B and Table 1 it can be concluded 

that the ZZ domain is most probably responsible for interaction with UP9C. Additionally, we 

demonstrated that the LSU1 protein encoded by At3g49580 gene of Arabidopsis thaliana is able to 

interact with Joka2 (Table 1). This finding indicates that despite the relatively limited sequence 

similarity and the relatively weak interaction between UP9C and LSU1 (Table 1), the protein features 

responsible for interactions with Joka2 are conserved in the UP9/LSU family. 

It was reasonable to anticipate that the Joka2 protein is longer than the one deduced from the 

cloned sequence, therefore we focused on cloning of the full length cDNA from N. tabacum. Using the 

RT-PCR, 5’-RACE and 3’-RACE methods the cDNA encoding the full-length protein have been 

cloned. In addition to PB1 and ZZ domains, the deduced protein contained also a duplication of the 
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ubiquitin associated domain (UBA/TS-N; pfam00627). All subsequent experiments were carried out 

only using plasmids containing the N. tabacum cDNA. 

 

Joka2 is a homologue of p62/SQSTM1 and forms homomers 

Proteins with a similar to Joka2 layout of domains exist in other eukaryotic organisms, both 

animals and plants (Fig. 2A). The best characterized protein with a comparable arrangement of 

domains is the human protein p62/SQSTM1 called also Sequestosome-1, A170 or ZIP, which is a 

multifunctional protein implicated in several signal transduction pathways and is required for 

autophagic clearance of protein aggregates. It acts as a selective autophagy receptor by interacting 

with both, ubiquitin coniugated to the target proteins and the ATG8 proteins present on the 

autophagosome 14, 19, 54. As shown in Fig. 2B, p62 comprises a N-terminal region that includes PB1 

domain (residues 20-102) and zinc finger (ZZ, residues 122-167), a central region containing LIR 

(LC3-interacting; residues 337-343) and KIR (Keap 1-interacting; residues 346-359), and C-terminal 

region encompassing a ubiquitin-associated domain (UBA, residues 391-436) 21. A nuclear export 

signal (NES) and two basic monopartite nuclear localization signals (NLS1 and NLS2) are located 

between residues 303-320, 186-189 and 264- 277, respectively 55. The three domains (PB1, ZZ, UBA) 

characterized in p62 can be also found in its plant homologues. However, the plant proteins are 

generally of longer size, have several candidates for LIR motifs, NLS regions and larger (duplicated) 

UBA domain (Fig. 2B; Suppl. Table 1).  

The formation of Joka2-Joka2 dimers has been demonstrated in two independent Y2H 

experiments for either NpJoka2 or NtJoka2 (Fig. 3B). The region necessary for such interaction 

appeared to contain PB1 domain and was mapped to the first 228 residues of NpJoka2 (see: pJK6, 

Suppl. Table 2) and the first 422 residues (see: pDEST22/PB1 and pDEST32/PB1, Suppl. Table 2) of 

NtJoka2. These results are consistent with the data for p62 showing that PB1 domain is crucial for the 

formation of multimers. 

 

Joka2 interacts with ATG8 

Despite identification of many authophagy-associated (ATG) genes in plants no reports on the 

presence or a potential function of any of the p62/Joka2 homologues could be found in the literature. 

Therefore, it was important to confirm that Joka2 indeed posses the most crucial and well-established 

features of p62, binding to ATG8/UBL proteins. In higher eukaryotes, both mammals and plants, there 

is a large family of ATG8/UBL-like proteins. For example, in human genome there are six genes 

encoding ATG8 family members 9, while in A. thaliana nine genes encoding ATG8 family (AtATG8a 

- AtATG8i) are present and expressed 38, 56. Function of AtATG8f under both favorable growth 

conditions and under starvation stresses was previously investigated 33, 34 thus this isoform was a 

candidate of our choice for testing if the members of this family would interact with Joka2. Two 
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(TC107227 and TC99613) out of 15 known tobacco EST sequences encoding full length proteins 

corresponding to ATG8 (Suppl. Table 1) might encode a counterpart of AtATG8f. Both of them 

encoded almost identical proteins with only two amino acids extension at the C-terminus in the case of 

TC107227. This cDNA, referred below as NtATG8f, has been cloned and used in Y2H experiment to 

investigate its potential interaction with Joka2. In fact, the results shown in Fig. 3 clearly indicated 

that such interaction takes place in vivo when the full length NtATG8f and NtJoka2 proteins were 

used. It was also possible to limit the region of NtJoka2 necessary for the interaction with NtATG8f to 

the residues 1-751 (out of 843 in total). However, in our hands interaction of the trimmed down 

NtJoka2 with NtATG8f could only be observed if the former was present in the BD-plasmid but not in 

the AD-plasmid (Fig. 3A). The LIR motif of mammalian p62, responsible for binding to ATG8/UBL 

proteins, is located between ZZ and UBA domains. In plant Joka2/p62 proteins several potential LIR 

motifs might be predicted (Fig. 2B). Our results do not yet allow to distinguish, which of these LIR 

motifs indeed function as binding sites for ATG8/UBL proteins. 

 

Joka2 localizes in cytosolic speckles and in the nucleus 

Tobacco J4 and J5 lines containing Joka2-YFP and Joka2-CFP expression cassettes, 

respectively, were obtained by Agrobacterium-mediated transformation of LA Burley 21 with the 

binary pJ4 and pJ5 plasmids (Suppl. Table 2). Expression of the transgenes in the selected lines was 

confirmed (not shown) and the J4-1, J4-2, J4-10, J5-1, J5-2, J5-3 and J5-6 lines were selected for 

further experiments, including monitoring of Joka2 localization in planta. For these purposes the seeds 

were germinated and seedlings were maintained in S-sufficient (nS) or S-deficient (S-) liquid media, 

and in H2O. Observations were performed on the 10th, 17th and 33rd day-post-sowing (dps). 

Localization of Joka2-YFP in J4-1 seedlings is shown as a typical example (Fig. 4), since no 

difference between Joka2-YFP and Joka2-CFP were observed. Distribution of Joka2-YFP in the roots 

was different in different media (Fig. 4A). In the root elongation zone of the nutrients deprived 

seedlings (maintained in H2O) Joka2-YFP was present in multiple punctated structures, contrary to a 

single larger spot of the fusion protein observed in seedlings grown in nS medium. Interestingly, in the 

roots of older seedlings (33 dps), regardless from the medium, the Joka2-YFP signal co-localized with 

DAPI-stained nuclei. In contrast to the roots, distribution of Joka2-YFP in leaflets, hypocotyls and the 

root tips was not affected by nutrients availability (Fig. 4B). In these plant parts, Joka2-YFP formed a 

few cytosolic spots, frequently located near the nucleus. Interestingly, a clear boarder between the 

shoot and root parts was evident when monitoring distribution of the fusion protein. 

The striking punctated location of Joka2-YFP in the roots of seedlings grown in H2O was 

further investigated using Acridine Orange (AO) staining (Fig. 4C). The AO dye has been previously 

used to stain the autophagosomes in mammals 57, giving a red signal for all acidic compartments but it 

gives also a green signal with DNA. During this experiment, in addition to J4-1, two tobacco lines 
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served as controls: (i) LA Burley 21, which was a parental line for all transgenic lines used in this 

study and (ii) the transgenic AB5 line producing EGFP. As expected, staining of LA Burley 21 and 

AB5 seedlings with AO displayed green fluorescence with cytoplasmic and nuclear components but, in 

contrast to J4-1, the seedlings of LA Burley 21 and AB5 did not display considerable red fluorescence, 

suggesting formation of acidic autophagolysosomal structures mostly in the seedlings overexpresing 

Joka2-YFP. The signal of Joka2-YFP co-localized with the red signal of AO. Such co-localization was 

apparent only in the J4-1 line, what indicates that the large speckles of Joka2-YFP localize indeed 

within acidic compartments, what in turn, is a characteristic feature of autophagosomes/lysosomes. 

Summarizing the localization studies, Joka2-YFP was observed predominantly in the cytoplasmic 

acidic speckles but also, in later stages of seedlings development, in the nucleus. Application of 

protease inhibitor, E64d, resulted in increased number of Joka2-YFP foci (Fig. 4D) due to inhibition 

of the autophagic degradation of the protein. 

 

Sulfur and nitrogen deficiency affects expression of Joka2 and ATG8 

Expression of NtJoka2 and NtATG8f was monitored in different parts (young leaves, mature 

leaves, stalks and roots) of two-month-old LA Burley 21 plants grown for 2 days without sulfur (S-) or 

without nitrogen (N-) or in the control (nutrient-sufficient; nS) conditions. The semiquantitative RT-

PCR (sqRT-PCR) indicated that ATG8f and Joka2 expression was up-regulated in roots but not in any 

shoot parts after two days of growth in either S- or N- conditions (Fig. 5). The expression of UP9C 

was used as a control and, as previously reported 50, this gene was induced in all parts of the plants in 

S- but not in N- conditions. Interestingly, what was not reported before, a slight reduction of UP9C 

expression was observed in N- in mature leaves as compared to nS. It is a striking observation, 

however the significance of such regulation is unclear to date. 

 

Overexpression of Joka2-YFP or Joka2-CFP in tobacco improves seedlings development 

Transgenic lines of tobacco abundantly and constitutively overproduced the fusion proteins 

and this might result in the excess of the Joka2 product in comparison to the parental line. To check 

how this overproduction effects the plant performance we monitored seedlings growth using several 

transgenic lines. It appeared that seedlings from most of the checked J4 (2 out of 3 tested) and J5 (2 

out of 4 tested) lines grew better than the control seedlings in the regular medium. The seedlings of the 

parental line, LA Burley 21 and the seedlings of the previously mentioned AB5 line (overexpressing 

EGFP) were used as controls (results not shown). To investigate further this phenomenon two 

transgenic lines, J4-1 and J5-3, were germinated in parallel with the above mentioned controls in 

water. The phenotype and chlorophyll contents were monitored at 14 dps. The results indicated that 

J4-1 and J5-3 lines were much less sensitive to nutrients deprivation and had higher chlorophyll 

contents than the control seedlings (Fig. 6). To exclude the possibility that the performance of the 
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seedlings is linked to the seeds mass, the weight of 200 seeds from each line was checked in 

triplicates. The following average values were calculated: 14.87 ± 0.23 mg for LA Burley 21, 14.13 ± 

0.66 mg for AB5, 14.17 ± 1.83 mg for J4-1 and 12.53 ± 0.83 mg for J5-3. This result indicated that J4-

1 and J5-3 lines did not produced larger or heavier seeds that the control lines. Therefore, difference in 

seedlings performance must depend on other factors, for example on efficiency of usage of the 

limiting nutrients. 

 

Discussion 

Autophagy is a highly selective process implicating cargo receptors in removing protein 

aggregates and damaged or excess organelles. A number of ubiquitin–binding proteins containing also 

a short LIR motif exist in mammals. Among them the best characterized is p62/SQSTM1. It links 

autophagy and proteasome systems by competing for common substrates (ubiquitinated proteins) with 

other ubiquitin binding proteins 48, 55. The structural motifs of p62 are shared by its plant homologues 

what suggests that their function is also conserved. In this study we focused on the plant protein Joka2 

and demonstrated that it is an orthologue of the mammalian autophagy cargo receptor, p62/SQSTM1. 

Based on domains conservation and on such experimental evidence as, formation of Joka2-Joka2 

homodimers, interaction with NtATG8f, subcellular localization pattern and increased number of 

Joka2-YFP speckles in response to E64d treatment we propose that Joka2 functions as a selective 

autophagy cargo receptor in plant cells. Thus, the selective authophagy functions in plants in a similar 

way as in mammalian cells and involves both, the core molecular machinery as well as the selective 

cargo receptor(s). 

Only one isoform of Joka2/p62-like protein was identified in N. tabacum. In addition, we were 

able to identify only one copy of Joka2/p62-like gene in A. thaliana, At4g24690. Additional Blast 

search pointed out the product of the same A. thaliana gene as a homologue of the mammalian NBR1 

(not shown). This result suggests that Joka2 might be the only autophagy cargo receptor for protein 

aggregates in plants, in contrast to the situation in mammals, where at least two of them (p62 and 

NBR1) are present 17. Intriguingly, none of the several available T-DNA insertional mutants 

(SALK_053992, SALK_135513, SALK_144852, GK536D03.01) within At4g24690 gene appeared to 

be homozygous. Despite our intensive efforts we failed in obtaining homozygous T-DNA insertional 

mutants in the next generations and observed strongly reduced seed germination efficiency in these 

lines (Zientara-Rytter, Sirko – unpublished). Although it is tempting to speculate that At4g24690 

might encode an essential protein, needed at the stage of seed germination, the experimental evidence 

supporting this notion is still limited.  

In our experiments (Fig. 4) Joka2-YFP was present in both, the cytosolic acidic speckles (co-

stained with AO) and in the nucleus (co-stained with DAPI). Mammalian p62 can also shuttle 
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continuously between cytoplasm and the nucleus and it has nuclear localization (NLS) and nuclear 

export signals (NES). Shuttling of p62 between both compartments is modulated by phosphorylation 

and aggregation of p62 27, 55. Unlike the cytosol, where two complementary proteolytic systems, 

lysosomes and proteasomes, are responsible for protein degradation, the nucleus is believed to have 

only the proteasomal system. Therefore, it was suggested that in the nucleus p62 could facilitate the 

recruitment of protein aggregates to the proteasome 55. Other researchers suggested that p62 can serve 

as an adaptor for proteasomal degradation of certain ubiquitinated proteins and that it has an ubiquitin-

independent role in degradation of some autophagy substrates 58, 59. On the other hand, it has been 

postulated that p62 can be implicated in two different, but not mutually exclusive, mechanisms of the 

cross-talk between the ubiquitin-proteasome and autophagy-lysosome systems. At time when 

autophagy operates at normal rate, p62 serves to deliver the ubiquitinated proteins for autophagosomal 

destruction. However, in the situation when autophagy is impaired, p62 prevents the proteasomal 

degradation of some proteins by competing with other ubiquitin binding proteins, which facilitate 

proteasomal degradation 60, 61. In any case, the ability reside in both the autophagosomes and the 

nucleus suggests that p62 serves a complex role. Recently, a reporter system to monitor autophagy in 

mammalian cells based on p62 has been proposed 62. According to the authors the GFP-p62 performed 

the best among the three tested reporter fusions (GFP-LC3, GFP-NBR1 and GFP-p62) and was the 

most useful in screening for compounds or conditions that affected the rate of autophagy. The 

transgenic tobacco plants described in this work, which overproduce Joka2-YFP and Joka2-CFP 

fusion proteins might be also a useful tool for studying the process of autophagy in plants.  

Some our results, including organ-specific regulation of NtJoka2 and NtATG8f transcription 

by N- and S-deficiency, interaction between NtJoka2 and UP9C, and increased tolerance of J4 and J5 

plants to nutrients deficiency strongly suggest that Joka2 is involved in plant response to nutrients 

deficit. As shown in Fig.5 transcription of Joka2 and ATG8f is apparently induced in tobacco plants 

grown in either N- or S-deficiency. Interestingly, in the conditions of our experiments (two days of 

nutrients deficit) expression of both genes was up-regulated only in the roots but not in any shoot 

parts. This observation might be important in identification of the regulatory elements of the long-

distance signaling of nutrients availability and of the overall plant nutritional status. The autophagy 

process in plants occurs under several conditions, such as a general response to different abiotic 

stresses, a general mechanism for regulation of programmed cell death in response to pathogens and 

during developmentally regulated programmed cell death. This is essentially in concordance with 

much better characterized regulation of this process in mammals, where autophagy is controlled by 

pathways that interpret the status of cellular energy (AMP-dependent protein kinase, AMPK), 

nutrients (target of rapamycin, TOR) and growth factors such as insulin 9. Although more studies are 

needed to understand the regulation of this process some previously considered candidates for 

regulators of ATG genes in plants include hormones such as cytokinin 34 and ABA 63.  
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The better performance of the transgenic tobacco lines containing increased amounts of Joka2-

YFP and Joka2-CFP in comparison to the control plants might be an indication of better recycling of 

the waste due to the enhanced autophagy in these lines. The similar growth effects were observed in A. 

thaliana overproducing ATG8f-GFP-HAtag fusion 34. 

The Joka2 protein was identified as a partner of UP9C protein. The function of UP9C is 

unknown but it has been recently recognized as required for adequate plant response to sulfur deficit 
50. Some UP9/LSU-like proteins, especially those encoded by genes strongly induced during sulfur 

deprivation, might link sulfur deficiency response with selective protein degradation through 

autophagy or in proteasomes. As demonstrated in our laboratory, UP9C is able to interact with a 

variety of protein partners, including proteins involved in synthesis and signaling of important 

phytohormons, such as jasmonic acid and ethylene. Concerning the possible mechanisms, one option 

would be that UP9/LSU can modulate such properties of Joka2, as subcellular localization, cargo 

recruitment and/or ability to form multimers or aggregates. The other option is that UP9C could act as 

an adaptor between the cargo and the cargo receptor (Joka2). This could be a novel regulatory 

mechanism responsible for the fast functional inactivation or protection of the target proteins. In 

consequence, the process would ensure the swift plant adjustment to sulfur availability. The above 

hypotheses are currently under studies in our laboratory. 

 

Materials and Methods 

Yeast two-hybrid experiment 

The N. plumbaginifolia cDNA library in pGAD10 was a kind gift of Dr. Witold Filipowicz, Friedrich 

Miescher Institute for Biomedical Research, Basel, Switzerland. Manipulation of yeast cells and 

library screening were carried out according to standard protocols (Clontech Yeast Protocol 

Handbook, PT3024-1). The Saccharomyces cerevisiae strain PJ69-4 64 was used for transformation 

and approximately 6.5 x 106 transformants were plated on selective medium lacking leucine, 

tryptophan and histidine(SD-LTH). True positive prey clones, after retransformation, were confirmed 

for their ability to activate the three reporter genes, HIS3, ADE2 and lacZ, when cotransforming yeasts 

with pJK1 as a bait. For simultaneous transformation with the defined “bait” and “prey” plasmids, 

since just several transformants were sufficient for further applications, the “Quick and Easy TRAFO 

Protocol” available at [http://www.umanitoba.ca/faculties/ medicine/biochem/gietz/] and the S. 

cerevisiae AH109 strain with four reporter genes (HIS3, ADE2, MEL1 and lacZ) were used.  

 

Immunoblots and “pull-down” assay 
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Prior to the “pull-down” assay the presence of recombinant proteins fused to GST in the respective 

bacterial extracts was verified by immunoblots using rabbit polyclonal anti-GST IgG (Santa Cruz 

Biotechnology Inc., SC-33613) as primary antibody and anti-rabbit IgG conjugated to alkaline 

phosphatase (Sigma-Aldrich, A3687) as secondary antibody. The “pull-down” assay consisted of the 

following steps: (i) the protein extract from bacteria producing recombinant His-tagged UP9C was 

mixed with the extracts from bacteria producing GST-ZZ (the part of Joka2 with ZZ domain), 

GST-Joka8, GST-Joka20 or GST; (ii) extracts were incubated on ice for 6h with gentle rocking; (iii) 

proteins were purified in the native condition on Glutathione Sepharose column (GE Healthcare Bio-

Sciences AB, 17.0756-01); (iv) Western blots were performed with rabbit polyclonal anti-His IgG  as 

primary antibody and anti-rabbit IgG conjugated to alkaline phosphatase as secondary antibody. 

Plant growth conditions and chlorophyll measurment 

Seeds of wild plants and transgenic N. tabacum (cv. LA Burley 21) were surface-sterilized in 

microcentrifuge tubes using a vapor-phase seed sterilization method. Shortly, tubes with seeds were 

placed into a desiccator jar along with two beakers, each containing 50 ml of bleach and 1.5 ml of 

concentrated HCl. Sterilization by chlorine fumes was continued for 3h. Then, centrifuge tubes 

containing seeds were placed in a sterile laminar flow hood and left open for 1h. Depending of the 

experiment, N. tabacum seeds were spread into water or on plates with modified 0.5 x Hoagland 

medium either full or lacking nitrogen (N-) or sulfur (S-). In N- medium the equimolar amounts of 

KOH, KH2PO4 and CaCl2 were used instead of KNO3, NH4H2PO4 and Ca(NO3)2, while in S- medium 

the equimolar amounts of MgCl2 replaced MgSO4. The medium was either liquid (in Erlenmayer 

flasks or hydroponic containers) or solidified with agar (0.8% w/v). The seedlings were incubated in a 

growth chamber under a long-day regime of 16 h light/8 h dark cycle at 24°C.  

For testing the effect of nutrient deficiency on seedlings performance, the sterilized seeds were 

germinated and seedlings were maintained for 14 days in H2O. Entire seedlings were collected and the 

chlorophyll content was measured as previously described 65. 

 

Plant transformation and transient expression 

Agrobacterium tumefaciens strain LBA4404 was transformed with each of the binary plasmids listed 

in Suppl. Table 2. The plasmids pJ4, pJ5 were used for stable transformation of N. tabacum as 

previously described 66. Kanamycin- or hygromycin-resistant plants were selected and self-pollinated 

to obtain T2 generation.  

 

DNA methods and plasmids construction 

Plasmids used in this work are described in Suppl. Table 2. Details on their construction are available 

upon request. Gateway BP recombination by using attB-tailed gene-specific primers or cDNA cloning 



13 

 

into pENTRTM/D-TOPO vector and Gateway LR recombination reactions were done as described in 

the Gateway® Technology – A universal technology to clone DNA sequence for functional analysis 

and expression in multiple systems (Invitrogen, 12535-019 and 12535-027). Oligonucleotides for 

PCR, RT-PCR, RACE, and DNA sequencing are listed in Suppl. Table 3. All plasmids were checked 

by restriction digestion and/or by DNA sequencing. Conventional techniques were used for DNA 

manipulation and Escherichia coli transformation 67. The cDNA synthesis and semiquantitative RT-

PCR (sqRT-PCR) were conducted as previously described 68. RNA isolation and mRNA purification 

for the 5’- and the 3’-RACE were performed using the SMARTTM RACE cDNA Amplification Kit 

(BD Biosciences-Clontech, 634914) according to the procedure recommended by the manufacturer. 

 

Microscopy methods 

Tobacco seedlings grown for 10, 17 or 33 days in water or defined liquid medium were washed and 

incubated in fluorescent dyes (DAPI or/and Acridine Orange [AO]) for 15 minutes in the darkness at 

room temperature. After the treatment, seedlings were washed in water (3 times, 5 min each) and 

observed using a confocal microscope. The cytoplasm and DNA of the AO-stained cells fluoresced 

bright green, whereas the acidic autophagic compartments and RNA fluoresced bright red. 14-day-old 

seedlings were incubated in 1μg/ml E-64d protease inhibitor for 1 day. DAPI (Sigma-Aldrich, D9564) 

was prepared as a 1mg/ml stock solution in DMSO. AO (Invitrogen, A3568) was dissolved in H2O to 

10 mg/ml. E-64d (Alexis, BML-PI107-0001) was dissolved in ethanol as a 10mg/ml stock. The 

images were obtained at the Laboratory of Confocal and Fluorescence Microscopy at IBB PAS with a 

Nicon confocal microscope, Eclipse TE2000-E and processed using EZ-C1 3.60 FreeViewer software. 

 

Computer analysis and accession numbers 

Similarity searches were performed with BLASTP at NCBI [http://www.ncbi.nlm.nih.gov/BLAST/] or 

with BLASTN using TGI Database of plant EST at DFCI [http://compbio.dfci.harvard.edu/tgi 

/plant.html]. Translation of nucleotide sequences was generated at EMBL-EBI 

[http://www.ebi.ac.uk/services/index.html]. Translation of nucleotide sequences was generated at 

EMBL-EBI [http://www.ebi.ac.uk/services/index.html]. Multiple sequence alignment was generated 

by MAFFT ver.5.667 using the E-INS-i strategy [http://timpani.genome.ad.jp/~mafft/server/] 69. 

Phylogeny was inferred by programs from the Phylip v3.36 package 70. Sequences were aligned in 

Phylip-format using T-coffee [http://www.ch.embnet.org/cgi-bin/tcoffee_parser]. The following 

programs were accessed through the ExPASy Proteomic Server [http://www.expasy.ch/]: GOR4 71 

used for secondary structure prediction, PSORT 72 used for predicting the localization, SMART 

[http://smart.embl-heidelberg.de] 73, MOTIFSCAN 74 and EML Server [http://elm.eu.org/] for 

identification of the protein domains and patterns.  

The accession numbers of the sequences used in this study are listed in Suppl. Table 1.  
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Figure Legends 

Figure 1. Interactions of UP9C investigated by Y2H (A) and the “pull-down” (B) assays. (A) The 

pJK1 and pJK2 plasmids contain UP9C in the BD- and AD-vectors, respectively. The yeast 

strains co-transformed with indicated BD- and AD-plasmids were grown on selective media 

without leucine and tryptophan (SD-LT), leucine, tryptophan and adenine (SD-LTA), leucine, 

tryptophane and histidine (SD-LTH) or were screened for β-galactosidase expression (+X-

gal). (B) The Western blot shown on the left-hand side verifies expression of the GST-fusion 

proteins in the extracts from bacteria producing GST-PB1 (2a), GST-ZZ (2b), GST-Joka8 (8) 

and GST-Joka20 (20); the GST-PB1 protein was not detected. The Western blot shown on the 

right-hand side shows results of the “pull-down” assay performed as described in Materials 

and Methods. The results confirm interaction of UP9C with Joka8, Joka20 and the ZZ domain 

of Joka2; the extract containing His-tagged UP9C protein (C+) was loaded as a positive 

control and the arrows indicate the positions of the proteins corresponding to the expected 

sizes of the recombinant proteins: GST-PB1 (53.3 kDa; undetected), GST-ZZ (54.5 kDa), 

GST-Joka8 (66.5 kDa), GST-Joka20 (42 kDa) and His-UP9C (17.2 kDa). 

 

Figure 2. The family of p62/SQSTM1/Joka2 proteins. (A) The phylogenic tree was constructed using 

full length protein sequences by the parsimony methods and 100 bootstrap replicates using 

SEQBOOT, PROTPARS and CONSENS of the Phylip v.3.69 program package. The 

bootstrap values are given at the respective branches. The accession numbers of the proteins 

included in the analysis can be found in Suppl. Table 1. (B) Characteristic domains present in 

the p62/SQSTM1/Joka2 proteins from Nicotiana tabacum, Arabidopsis thaliana and Homo 

sapiens. Proteins and domains are drown in scale. See text for details. 

 

Figure 3. Interactions of Joka2 (A) and scheme of the Joka2 inserts present in the Y2H plasmids (B). 

AD means fusions of the activating domain of GAL4 with the indicated protein or domain. BD 

means fusions of the DNA binding domain of GAL4 with the indicated protein or domain. 

Pluses and minuses indicate the growth and lack of growth, respectively, on the plate shown 

on the left-hand side. The growth is an indicator of protein-protein interaction. Proteins and 

domains shown in panel B are drown in scale. 

 

Figure 4. Localization of Joka2-YFP in tobacco seedlings. (A) Joka2-YFP signal in roots of seedlings 

grown for the indicated numbers of days post sawing (dps) in the indicated conditions: water, 

S- conditions and full medium (nS). The right-hand pictures are overlays of DNA staining 

with DAPI and the signal for Joka2-YFP. The seedlings grown in H2O did not survived till 33 

day. (B) Joka2-YFP signal in leaves, hypocotyls and root tips (as indicated by the brackets) in 
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10-day-old seedlings (10 dps) grown in H2O. Notice, a clear-cut border between the roots 

(Joka2-YFP abundant) and the stems (Joka2-YFP hardly detected). (C) Co-localization of 

Joka2-YFP and acidic (AO-stained) compartments. Seedlings of the parental LA Burley 21 

(LAB21), transgenic J4-1 (producing Joka2-YFP) and transgenic AB5 (producing EGFP) 

were grown for 17 days in H2O. The left-hand panel shows accumulation of Joka2-YFP signal 

and the green signal of AO (if applied). The middle panel shows the red signal of AO (if 

present). AO gives the green signal in non acidic environment of the cytoplasm and the 

nucleus and the red signal in acidic compartments and when bound to RNA. The right-hand 

panel shows the corresponding tissues without fluorescence. The dashed arrows point the 

nuclei positions. The acidic speckles (autophagosomes/autolysosomes), pointed by the solid 

arrows, are present only in J4-1 line and do not overlap with nuclei. (D) Joka2-YFP signal in 

the root cells in 14-day-old seedlings. Both upper panels show the Joka2-YFP signal, while 

both lower panels show the corresponding tissues in the transparent view. Both right-hand 

panels show the control conditions, while both left-hand panels show the tissues after the 

treatment with protease inhibitor E-64d. The emission wavelengths of the filters are indicated; 

Trans denotes transparent view. 

 

Figure 5. Expression of Joka2, ATG8f, UP9C and UP9A in various parts of LA Burley 21 plants. The 

8-week-old plants grown in nutrient-sufficient (nS) medium were transferred for two days into 

S- or N-deficient medium and, as a control, to nS again. Gene expression was monitored by 

sqRT-PCR. Expression of actin (Tac9) served as a control. 

 

Figure 6. Phenotype (A) and chlorophyll contents (B) of tobacco seedlings germinated and maintained 

for two weeks in nutrient-deficient conditions. The lines overproducing Joka2-YFP (J5-3), 

Joka2-CFP (J4-1), EGFP (AB5) and the parental line LA Burley 21(LAB21) were used. 

 



Table 1. Summary of additional interactions examined in the yeast two-hybrid (Y2H) experiments. 

The interactions were determined by the growth of yeast transformants on the respective selective 

medium due to expression of the reporter genes HIS3 and ADE2. Descriptions in the brackets 

indicate the protein encoded by the cDNA present in the respective Y2H plasmids; PB1 denotes 

the PB1 domain of Joka2, ZZ denotes the ZZ domain of Joka2. The Joka2, Joka8 and Joka 20 are 

from N. plumbaginifolia, UP9C from N. tabacum, and LSU1 is from Arabidopsis thaliana. 

Explanation of the symbols: +++ good growth, ++ weak growth, + very weak growth, - no 

growth. The plasmids are described in Suppl Table 2. 
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