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Abstract
In recent years, extremophilic microorganisms have been employed as producers of the microbial bioplastics polyhydroxyal-
kanoates (PHA), which are of great biotechnological value. Nevertheless, cold-loving or psychrophilic (cryophilic) bacteria 
have been neglected in this regard. Here, we present an investigation of the Arctic glacier-derived PHA producer Acidovorax 
sp. A1169. Biolog GEN III Microplates were used as a screening tool to identify the most suitable carbon substrate concern-
ing PHA synthesis. The strain produced homopolymer poly(3-hydroxybutyrate) (PHB) most efficiently (2 g/L) at a tempera-
ture of 15 °C when supplied with fructose or mannitol as carbon sources with a substantial decrease of PHB biosynthesis at 
17.5 °C. The PHB yield did not increase considerably or even decreased when carbon source concentration exceeded 10 g/L 
hinting that the strain is oligotrophic in nature. The strain was also capable of introducing 3-hydroxyvalerate (3HV) into the 
polymer structure, which is known to improve PHA thermoplastic properties. This is the first investigation providing insight 
into a PHA biosynthesis process by means of a true psychrophile, offering guidelines on polar-region bacteria cultivation, 
production of PHA and also on the methodology for genetic engineering of psychrophiles.
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Introduction

Bacterial intracellular storage materials provide its produc-
ers with an immense advantage in their native habitats by 
enabling proliferation at nutrient-deficit circumstances and 
thus allowing the out competition of species lacking this 
ability (Moradali and Rehm 2020). One such compound 
are polyhydroxyalkanoates (PHA), microbial polyesters 
of hydroxyacids that are stored intracellularly as insolu-
ble granules when carbon source is present in excess to be 
subsequently depolymerized and catabolized under carbon 
source limitation conditions. Enzymes responsible for the 

polymerization process are the PHA synthases encoded 
by the phaC gene. So far, four classes of this enzyme were 
discovered and described. PHAs can be divided into short-
chain length (scl-PHA, C3-C5 per monomer) PHAs and 
medium-chain length (mcl-PHA, C6-C14) PHA (Koller 
2018). Generally, scl-PHA are produced with the partici-
pation of enzymes encoded by phaA and phaB genes and 
by the action of class I, III and IV PHA synthases, mcl-
PHA are synthesized by class II synthases with precursors 
being delivered by lipid de-novo synthesis or catabolism of 
long-chain fatty acids (Reddy et al. 2003). The chemical and 
physical properties of the resulting polymers were what drew 
the attention of the industry as they resemble those of plas-
tics made from petroleum or its derivatives. Biodegradability 
and biocompatibility were the defining factors that led to the 
large-scale production of the PHA polymer (Tan et al. 2021). 
The most basic and common member of the PHA family is a 
homopolymer poly(3-hydroxybutyrate) (PHB) produced by 
Bacteria and Archaea alike (Müller-Santos et al. 2021). Its 
thermoplastic properties are greatly improved when various 
copolymers are produced, for instance by the introduction of 
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hydroxyacid with > 4 carbon atoms (such as 3-hydroxyvaler-
ate) (Tan et al. 2021).

Being totally biologically produced, PHA synthesis costs 
far exceed that of oil-based plastics, so its application is 
now largely restricted to high-value applications e.g. in the 
medical field (implants, drug carriers). Therefore, lowering 
the cost of PHA production is key to increasing PHA com-
petitiveness in the global market (Możejko-Ciesielska and 
Kiewisz 2016). Several factors of the production process can 
be optimized in order to make PHA more affordable. Choos-
ing the right PHA producer strain is of pivotal importance. 
Many strategies involving selection in permissive condi-
tions were applied, leading to the isolation of bacterial and 
archaeal species with a promising PHA-producing poten-
tial. Secondly, the identification of the appropriate carbon 
source is usually one of the first steps in PHA biosynthesis 
optimization. Other conditions such as medium composition 
and pH, and incubation temperature, are also subjects of 
optimization (Tripathi et al. 2013). A plethora of environ-
mental strains was tested in such a manner, with two being 
frequently used in science and industry: Cupriavidus neca-
tor (scl-PHA producer) and Pseudomonas putida (mcl-PHA 
producer) (Zhang et al. 2022; Weimer et al. 2020). Genetic 
manipulation can be employed to further increase PHA 
yields in model producer strains, mainly by enhancing car-
bon flow into the PHA biosynthesis pathways or preventing 
intracellular PHA degradation by inactivating PHA depoly-
merases encoded by the phaZ gene (Wang et al. 2023).

In recent years, several “outside the box” microbes have 
been tested for their ability and efficiency to produce PHAs 
(Koller 2017). Thermophiles, such as Schlegelella thermod-
epolymerans or Aneurinibacillus sp. as well as halophiles 
(Halomonas spp.) were employed to convert waste products 
into PHAs of varying kinds, with the advantage of unusual 
cultivation conditions providing the needed robustness of 
the process against contamination by common mesophilic 
microflora which substantially reduces the cost associated 
with sterility demands and opens avenues for establish-
ment of effective continuous or semicontinuous cultiva-
tion scenarios (Kourilova et al. 2020; Rehakova et al. 2023; 
Wang et al. 2022). Therefore, the employment of extremo-
philes may grant the industry new, surprising benefits as 
was recently formulated in the concept of Next-Generation 
Industrial Biotechnology by professor Chen (Chen and Jiang 
2018).

Nevertheless, psychrophiles have been pretty much 
neglected in this respect. They grow best below the tem-
peratures usually applied in industrial microbial biotech-
nology (T < 20 °C) (Madigan et al. 2019). Psychrophiles 
display several advantages when cultured at low tempera-
tures, inter alia: decreased energy input, especially practical 
in colder climates or around the winter season (Margesin 
et al. 2008). Low temperature also has a stabilizing effect 

on the substrate and the products of bacterial metabolism, 
especially important if one of those is thermolabile, like 
many sugars (Wolfenden and Yuan 2008). Furthermore, 
the solubility of atmospheric oxygen is greatly improved 
in lower temperatures, which substantially prevents prob-
lems with the aeration of the process and reduces associated 
costs (Georlette et al. 2004). Psychrophiles are widespread, 
occupying niches and habitats across the globe, mostly polar 
and alpine environments as well as the vast expanses of the 
deep ocean, providing a great opportunity for bioprospect-
ing for PHA producers (Margesin et al. 2008; Rogala et al. 
2020). Numerous study indicates that PHA production abil-
ity is common among microbes adapted to cold environ-
ments (Goh and Tan 2012; Ciesielski et al. 2014; Kumar 
et al. 2018; Rogala et al. 2020), there are also indications 
that PHA prevents bacterial cells from the harmful effect 
of low temperature (Nowroth et al. 2016) and even repeated 
freezing and thawing (Obruca et al. 2016). Therefore, there 
were some attempts to employ polar-region bacteria as PHA 
producers, yet the optimal cultivation temperatures were 
outside the range of what can be considered psychrophilic, 
so true low-temperature PHA-production analysis was not 
published to date to the best of our knowledge (Kumar et al. 
2020; Pacheco et al. 2019; Choi et al. 2021).

The aim of the presented research was therefore to 
explore the capacity of a psychrophilic PHA producer to 
biosynthesize the polymer at low temperatures and to assess 
the dynamics of PHA production during submerged cultiva-
tion. After an elaborate screening of 200 polar-region bacte-
rial isolates described in Rogala et al. (2020), a chosen few 
were provisionally analysed by gas chromatography for their 
PHA content and quality. Acidovorax sp. A1169 emerged 
as one of the more promising strains. It was isolated from 
the waters of a subglacial outflow stream emerging from 
beneth Hans Glacier, a tidewater glacier located at the shore 
of Hornsund fjord at Spitsbergen Island in the Arctic. We 
hypothesized that Acidovorax sp. A1169 could be an effi-
cient PHA producer and given the right conditions it can 
accumulate PHAs at least to 50% of cell dry weight.

Materials and methods

Bacterial strains, plasmids and culture conditions

The bacterial strains and plasmids used in this study are 
listed in Table 1. The Arctic isolate Acidovorax sp. A1169 
was obtained from the Central Collection of Strains of the 
Institute of Biochemistry and Biophysics, Polish Academy 
of Sciences. It was previously recognized as a potent, low-
temperature PHA producer (Rogala et al. 2020). Escheri-
chia coli strain DH10B was used for plasmid transforma-
tion and propagation, while E. coli strain S17-1 was used 
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for mobilization of the suicide plasmid pAKE604 into Aci-
dovorax sp. A1169. Wild-type of Acidovorax sp. A1169 
strain and its gene knockout mutant (Δi-phaZ) were cul-
tured in R3A medium (1 g/L tryptone, 1 g/L peptone, 1 g/L 
beef extract, 1 g/L yeast extract, 1 g/L  K2HPO4, 0.5 g/L 
 NaH2PO4, 0.5 g/L Na-pyruvate, 0.1 g/L  MgSO4‧7H2O) at 
15 °C (if not otherwise indicated). All E. coli strains were 
cultured in LB broth on a shaker at 200 rpm and 37 °C or 
on LB agar at 37 °C. Where required, kanamycin was added 
to a final concentration of 25 or 50 µg/L to ensure plasmid 
maintenance and selection.

DNA isolation and sequencing

Genomic DNA was isolated by the CTAB method (Wilson 
2001). Plasmid isolation was performed with the Plasmid 
Midi AX or the Plasmid Mini kits (A&A Biotechnology) 
while DNA purification was conducted with the Clean-up 
Concentrator kit (A&A Biotechnology) according to manu-
facturer instructions. The genome of Acidovorax sp. A1169 
was sequenced using an Illumina MiSeq apparatus (Illumina 
Inc., USA). The Illumina paired-end sequencing library con-
struction was performed with 1 μg of post-nebulized DNA 
extract and the KAPA Library Preparation Kit reagents 
(KAPA Biosystems, USA), according to the manufacturer’s 
instructions. The library was pooled and sequenced on a 
MiSeq platform using the 600-cycle MiSeq reagent Kit v.3 
(Illumina, USA). Sequence quality metrics were assessed 
using FASTQC (Andrews 2010).

Genome assembly, annotation, primer design, PCR 
amplification and cloning

Raw sequencing reads were trimmed for quality and residual 
library adaptors were removed using fastp software (Chen 
et al. 2018, https:// acade mic. oup. com/ bioin forma tics/ artic le/ 
34/ 17/ i884/ 50932 34). Cleaned Illumina reads were assem-
bled into contigs using SPAdes software (https:// github. 
com/ ablab/ spades). Draft genome was annotated using the 
BV-BRC platform (https:// www. bv- brc. org/). The Snap-
Gene program SnapGene software (www. snapg ene. com) 
was used to design primers for the amplification of i-phaZ 
flanking regions (Table 2). PCR amplifications were per-
formed using PCR Mix Plus, PCR Mix Plus HGC and PCR 
Mix RAPID ready-to-use mixes for PCR (A&A Biotechnol-
ogy). Appropriate flanking region pairs were cloned into 
pAKE604  (Kmr) vectors using the Anza Restriction Enzyme 
Cloning System (ThermoFisher) according to the manufac-
turer’s instructions and then transformed into E. coli DH10B 
chemically competent cells made using the Inoue method 
(Inoue et al. 1990). Transformants were checked by colony 
PCR using specific primers (Table 2).

Bacterial conjugation

Recombinant plasmids were introduced into E. coli strain 
S17-1. Biparental mating with psychrophilic PHB produc-
ers was done as follows: saturated cultures of Acidovorax 
sp. A1169 and E. coli S17-1 were washed with PBS and 
combined in a 3:1 ratio. The resulting suspension was drop 

Table 1  Bacterial strains and plasmids used in this study

Strain/plasmid Genotype/phenotype Source/references

Acidovorax sp. A1169
 Wild-type PHB producer Arctic glacier/Rogala et al. (2020)
 Δi-phaZ i-phaZ gene knockout mutant derived from A1169 This study
E. coli
 DH10B F– mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 recA1 endA1 

araD139 Δ(ara-leu)7697 galU galK λ– rpsL(StrR) nupG
Thermo-Fisher Scientific

 S17-1 recA pro hsdR RP4-2-Tc::Mu-Km::Tn7,λ-pir; mobilizer strain Lab stock
 Plasmid pAKE604 oriMB1  oriTRK2  Apr  Kmr lacZ sacB El-Sayed et al. (2001)

Table 2  DNA primers used in this study

Primer Primer sequence (5′–3′) Note

1169Z1F
1169Z1R

TCAG GGA TCC ATA ACG GAG TTT CGA CCC CAT GCT  (BamHI)
TCAG GAA TTC GTA TCG TCC GAA AAG CGC TTGAA (EcoRI)

For amplifying the 333-bp upstream
The homologous sequence of i-phaZ

1169Z2F
1169Z2R

TCAG GAA TTC CGG CAT CTT CAG CGG CCG GCG CTG  (EcoRI)
TCAG AAG CTT GTG CGG CGG GTG CGT GGT GCCGG (HindIII)

For amplifying the 414-bp downstream
The homologous sequence of i-phaZ

1169Z1F
1169rZ

TCAG GGA TCC ATA ACG GAG TTT CGA CCC CAT GCT  TTC ACC ACC GGT 
TTG CTG GCGA 

For the confirmation of the Δi-phaZ 
knock-out mutant

https://academic.oup.com/bioinformatics/article/34/17/i884/5093234
https://academic.oup.com/bioinformatics/article/34/17/i884/5093234
https://github.com/ablab/spades
https://github.com/ablab/spades
https://www.bv-brc.org/
http://www.snapgene.com
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plated onto Conjugation Agar containing: 1 g/L tryptone, 
1 g/L peptone, 1 g/L beef extract, 1 g/L yeast extract, 1 g/L 
 K2HPO4, 0.5 g/L  NaH2PO4, 0.5 g/L Na-pyruvate, 0.1 g/L 
 MgSO4‧7H2O, 3  g/L HEPES, 3  g/L  NORIT® activated 
charcoal, 15 g/L agar, pH was adjusted to 7.2 with 0.1 M 
KOH, 0.1 M HCl and a Hanna pH-meter. Plates were incu-
bated at 15 °C for 48 h, after which the growth was scraped, 
serially diluted and plated onto R3A plates with Kanamy-
cin (25 mg/L) and incubated at 10 °C until single colonies 
developed. Low temperature was used as a selecting factor 
for psychrophilic transconjugants as using the traditional 
method of generating Acidovorax sp. A1169 Rifampin resist-
ant mutants, was unsuccessful (Smorawińska et al. 2012). 
Colonies of Km-resistant psychrophiles were picked, inocu-
lated into R3A broth supplemented with 2.5% sucrose and 
incubated at 10 °C with shaking until bacterial growth was 
apparent. The resulting suspension was diluted and plated 
onto R3A plates with 2.5% sucrose and incubated at 15 °C 
until colony development. Obtained isolates were screened 
for the target sequence by PCR, using appropriate primers 
(Table 2).

Microarray metabolic fingerprinting

Carbon source utilization abilities of Acidovorax sp. A1169 
were assessed using GEN III Microplates (Biolog Inc., 
Hayward, CA, USA) as described in Gawor et al. (2016). 
After incubation in R3A broth on a rotary shaker (WL-972, 
JWElectronics) for 3 days in 15 °C the cells were harvested 
by centrifugation (9000 rpm for 3 min), washed twice, sus-
pended in sterile 0.9% saline and added to a vial of Micro-
Plate IF C inoculation fluid until transmittance reached 
90%. Biolog GEN III microplates (Biolog Inc., Hayward, 
CA, USA) were inoculated according to the manufacturer’s 
instructions. The plates were incubated in darkness at 15 °C, 
the color development was read at 590 nm (A590) in a Vari-
oskan plate reader (Thermo Fisher Scientific, Waltham, MA, 
USA), and cellular respiration was measured kinetically by 
determining the colorimetric reduction of tetrazolium dye. 
Data were collected twice a week over a 15-day period.

PHA production

To assess which carbon source facilitates the most effi-
cient granule synthesis in Acidovorax sp. A1169 several 
compounds, indicated by the Biolog system, were used as 
substrates for PHA production. PHA synthesis induction 
was done according to Kourilova et al. (2021a) with modi-
fications. An active inoculum of wild-type strain was pre-
pared (R3A broth, 15 °C, 72 h) and added (10% v/v) to the 
PHA production medium. The PHA production medium 
consisted of the following: 9  g/L  Na2HPO4·12H2O, 

1.5  g/L  KH2PO4, 1  g/L  NH4Cl, 0.5  g/L yeast extract, 
0.2 g/L  MgSO4·7H2O, 0.02 g/L  CaCl2·2H2O and 1 ml/L 
SL-11 trace element solution (5.2  g/L  Na2-EDTA, 
1.5 g/L  FeCl2·4H2O, 190.0 g/L  CoCl2·6H2O, 100.0 mg/L 
 MnCl2·4H2O, 70.0 mg/L  ZnCl2, 36.0 mg/L  Na2MoO4·H2O, 
24.0  mg/L  NiCl2·6H2O, 6.0  mg/L  H3BO3, 2.0  mg/L 
 CuCl2·2H2O). After autoclaving a filter-sterilized solution 
of one of the following substrates was added to each flask 
of medium to a final conc. of 10 g/L: mannitol, fructose, 
glycerol, glucose, lactate, sorbitol and mannose. After 96 h 
of incubation at 15 °C and 150 rpm (INNOVA44 Incuba-
tor Shaker, New Brunswick Scientific), the biomass was 
harvested by centrifugation for further analysis. PHA pro-
duction efficiency was further investigated at different tem-
peratures (10.0, 12.5, 15.0 and 17.5 °C) with fructose and 
mannitol as carbon sources (10 g/L) after 96 h at 15 °C and 
150 rpm. To assess the optimum duration of the incubation 
period biomass and PHB content were measured daily for 
6 days at 15 °C and 150 rpm. The nitrogen source effect on 
the PHB accumulation was measured after substituting the 
 NH4Cl in the production medium with urea (0.56 g/L) or 
peptone (1.73 g/L). The nitrogen source concentration was 
calculated to equate to that of 1 g/L of  NH4Cl assuming 
the peptone nitrogen content was 15%. The carbon source 
concentration effect was investigated by adding mannitol 
or fructose to the PHA production medium at a conc. of 10 
and 20 g/L. The strain’s ability of 3HV incorporation into 
the polymer structure when supplemented by proper struc-
tural precursors was tested by adding propanol, pentanol, 
propionate, valerate or levulinate to the PHA production 
medium at a conc. of 2 g/L after 24 h of cultivation with 
mannitol.

To assess the i-phaZ deletion mutants ability to access 
intracellular PHA as carbon and energy source, it was 
subjected to PHA-accumulation conditions as described 
earlier. Therefore, prepared PHB-filled cells were washed 
with the PHA production medium without the primary 
carbon source and then introduced into the same medium 
at 10% v/v. Wild-type A1169 was used as a control strain. 
Cell growth was monitored during the 96 h incubation 
period by colony forming unit count on R3A agar at 15 °C.

Biomass analysis

Ten mL of bacterial suspension was collected after the 
incubation period on PHA production medium, centri-
fuged at 6000×g for 5 min, washed with distilled water 
and dried at 80 °C until constant mass was achieved. PHA 
composition and content of the dried biomass were deter-
mined by gas chromatography with a flame ionization 
detector (GC-FID) as described previously (Obruca et al. 
2013).
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Data analysis

Illumina reads were deposited in the NCBI Sequence Read 
Archive (SRA) as BioProject PRJNA991094. All results 
were compiled using Excel 2016 (MS Office) for Windows. 
Data visualization and statistical analysis have been per-
formed using the R software (R v.4.2.3) and the following 
packages: ggplot2, ggpubr, (R Core Team 2002). Phyloge-
netic trees were made using the Mega-174 X software.

Results and discussion

Substrate preference of the strain Acidovorax sp. 
A1169

The genus Acidovorax (family Comamonadaceae, class 
Betaproteobacteria) currently comprises 20 validly pub-
lished species (Du et al. 2023). 16S rRNA gene sequence 
similarity with sequences of the aforementioned species 
deposited in the NCBI blastn database revealed that strain 
A1169 shared a 99.4% and 99.02% similarity with A. radi-
cis and A. defluvii, respectively (Fig. 1), not meeting the 
conditions for a new species (Kim et al. 2014). However, its 
placement on a separate branch of the phylogenetic tree and 
also its Arctic glacier origin suggest a new quality within the 
genus (Du et al. 2023). Acidovorax sp. A1169 genome anno-
tation revealed the presence of one gene coding for a PHA 
synthase. The placement of its deduced amino acid sequence 
suggests it belongs to class I PHA synthases (Fig. 2) capa-
ble of synthesizing scl-PHAs as was further confirmed by 
GC analysis of Acidovorax sp. A1169 biomass when various 
compounds were supplied as substrates (Fig. 3c).

Generally, isolates of the genus Acidovorax were obtained 
from different sources, both environmental (soil, rhizos-
phere, water, activated sludge) and clinical, hinting that phe-
notypic and genotypic features vary considerably between 

species/strains (Willems 2014). Therefore, the employment 
of phenotypic microarrays like the Biolog GENIII micro-
plate can be justified as it provides an effective and reliable 
tool for screening the bacterium with respect to utilization of 
various carbon compounds and other cultivation conditions 
for environmental bacteria (Woźniak et al. 2019). However, 
the main purpose of this system is bacterial identification 
based on the carbon source utilization pattern and other met-
abolic features provided in the 96-well plates by the manu-
facturer (Sandle et al. 2013). On rare occasions, it has been 
used to ascertain a set of carbon compounds that support 
growth in microbiological media (DeAngelis et al. 2011). 
Seven compounds were revealed in the GENIII microplate 
assay as supporting high respiratory rates in Acidovorax sp. 
A1169 (Fig. 3a). Highest values were noted for mannitol 
(A590 = 1.19 ± 0.19) and fructose (A590 = 1.19 ± 0.29), while 
the lowest within this group for glycerol (A590 = 0.91 ± 0.22). 
Biomass concentration analysis produced similar results 
when carbon sources were supplied into the PHA produc-
tion medium at a concentration of 10 g/L (Fig. 3b). When 
A1169 was cultivated on mannitol and fructose the follow-
ing biomass concentrations was achieved (g/L): 4.05 ± 0.21 
and 4.22 ± 0.23, respectively, while on glycerol biomass 
concentration reached 2.82 ± 0.46. The highest PHB con-
centration was achieved on fructose (2.14 ± 0.22 g/L) fol-
lowed by mannitol (1.99 ± 0.11 g/L) corresponding to 50.7% 
and 49.1% of PHB in cell dry mass, respectively (Fig. 3c). 
There was a positive, significant correlation between values 
of the GENIII assay, dry biomass concentration and PHB 
content at p ≥ 0.05 (Fig. 3d–f). Correlations between respi-
ration rates and PHB concentration suggest Biolog GENIII 
microplates as a suitable guiding tool towards optimization 
of bacterial biomass and PHA accumulation.

Hence, the highest PHB yield was achieved for the A1169 
strain on fructose and mannitol. Fructose has proven to be the 
best carbon source for the flag PHB producer C. necator as 
well as the halophile Halomonas sp. YLGW01 (Nygaard et al. 

Fig. 1  Neighbor-joining 
phylogenetic tree based on 16S 
rRNA gene sequences showing 
the position of strain A1169 
and related species in the genus 
Acidovorax (family Comamona-
daceae). Numbers at nodes are 
bootstrap percentages based on 
the neighbor-joining algorithm. 
Simplicispira metamorpha DSM 
1837T was used as an outgroup. 
Sequences were retrieved from 
the NCBI database. Bar shows 
substitutions per nucleotide 
position
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2021; Park et al. 2020). Besides the examined here Acidovo-
rax sp., other members of the family Comamonadaceae were 
also able to turn fructose into PHB, however, other sources 
like glucose or xylose yielded higher concentrations of the 
biopolymer (Yamaguchi et al. 2019; Kourilova et al. 2020, 
2021a). Nevertheless, even fructose can be considered as sus-
tainable and renewable carbon substrate for PHA production 
when derived from properly chosen resources. For instance, 
Corrado et al. recently described PHA synthesis form hydro-
lysates of waste inulin rich in fructose content (Corrado et al. 
2021). Mannitol was rarely considered as a substrate for PHB 
biosynthesis, although some mannitol-rich agro-industrial 
wastes such as celery waste (Apium graveolens) and ensiled 
grass press juice were recognized as potent substrates for PHA 
production employing Cobetia amphilecti and Burkholderia 
sacchari as producers (Cerrone et al. 2015; Gnaim et al. 2022).

Effect of temperature and cultivation time 
on growth and PHA synthesis in Acidovorax sp. 
A1169

Incubation temperature had a considerable effect on the 
biomass and also on the PHB concentration in Acidovorax 
sp. A1169 culture (Fig. 4a, b). The highest PHA titers 
were achieved at 15 °C on fructose [4.17 ± 0.02 g/L CDW 
(cellular dry weight) and 1.99 ± 0.03 g/L PHB] and man-
nitol (3.93 ± 0.02 g/L CDW and 1.77 ± 0.05 g/L PHB) as 
substrate. At 17.5 °C biomass and PHB concentrations 
were the lowest, on fructose: 1.19 ± 0.06 g/L CDW and 
0.39 ± 0.02 g/L PHB), while for mannitol: 1.24 ± 0.03 g/L 
CDW and 0.49 ± 0.002  g/L PHB. Such a low optimal 
temperature of PHB biosynthesis has not been observed 
before, even when polar-region or high-altitude strains 

Fig. 2  Neighbor-joining phylogenetic tree based on phaC (polyhy-
droxyalkanoic acid synthase) amino acid sequences showing the posi-
tion of strains A1169 phaC sequence among other phaC sequences 
belonging to four synthase classes. Sequences were retrieved from 

the NCBI database. Bar shows substitutions per amino acid position. 
Numbers at nodes are bootstrap percentages based on the neighbor-
joining algorithm
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were tested (Kumar et al. 2020; Pacheco et al. 2019; Choi 
et al. 2021). Arctic and Antarctic Pseudomonas strains 
for example displayed the highest PHB production rates 
at 30 °C, a temperature that is outside the range of what 
is considered psychrophilic (Pacheco et al. 2019; Choi 
et al. 2021; Madigan et al. 2019). In the case of Acidovo-
rax sp. A1169, the increase in incubation temperature by 

2.5 °C caused not only a 77% drop in PHB yield, but also 
an approx. 66% decreases in the PHB-free biomass con-
centration, hinting that not only the enzymatic machinery 
behind PHB biosynthesis was affected but also essential 
cellular metabolism. The time frame of PHA synthesis is 
one of many factors that affect the efficiency of biopoly-
mer production (Koller et al. 2010, 2017). The impact of 

Fig. 3  Carbon source utilization by Acidovorax sp. A1169 based on a 
the GENIII Microplate respiratory assay; b cellular dry mass (CDW) 
concentration; c PHB concentration. Correlation between variables: d 

GENIII microplate and cell biomass; e cellular dry mass (CDW) and 
PHB; f PHB and GENIII microplate
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incubation time on biomass production of strain A1169 
varied between carbon sources (Fig. 4c, d). The highest 
values of biomass and PHB concentrations were achieved 
for both, fructose and mannitol after 96 h, yet for fructose 
these values dropped afterward, while for mannitol they 
remained relatively stable. C. necator achieved maximal 
PHB titers in flasks within 72 h at 30 °C while a vari-
ety of thermophiles display a similar PHB biosynthesis 
period at 50–55 °C (Obruca et al. 2013; Aramvash et al. 
2015; Nygaard et al. 2021; Kourilova et al. 2020, 2021a; 
b). Considering that the specific growth rate of meso- and 
thermophiles is approx. 2.5 × higher than psychrophiles, 
the additional 24 h required by strain A1169 to achieve 
maximal PHB concentration can be considered efficient 
(Mohr and Krawiec 1980) and the bacterium Acidivorax 
so. A1169 can be considered as promising psychrophilic 
bacterium for PHA production aligning to the concept 
of Next-Generation Industrial Biotechnology (Chen and 
Jiang 2018).

Identification of suitable nitrogen source 
and carbon source concentration

Replacing the ammonium chloride with peptone or urea 
greatly lowered the biomass and subsequently the PHB 
concentration in Acidovorax sp. A1169 culture (Fig. 5a, b). 
Peptone stimulated higher PHB synthesis with lower cell dry 
weight (fructose: 0.82 ± 0.01 g CDW/L and 0.23 ± 0.003 g 
PHB/L; mannitol: 0.85 ± 0.13 g CDW/L and 0.24 ± 0.002 g 
PHB/L), whereas with urea the opposite was the case (fruc-
tose: 1.16 ± 0.01 g CDW/L and 0.1 ± 0.0002 g PHB/L; man-
nitol: 1.1 ± 0.14 g CDW/L and 0.01 ± 0.001 g PHB/L). As 
with the carbon source, nitrogen source effect seems to be 
bacteria species specific, with peptone and/or urea being 
preferable over ammonia salts by Vibrio proteolyticus, Pseu-
domonas aeruginosa and Erythrobacter aquimaris, while 
Rhizobium etli and Pseudomonas stutzeri preferred ammonia 
salts over peptone or even yeast extract (Hong et al. 2019; 
Tripathi et al. 2012; Mostafa et al. 2020; Belal 2013).

Fig. 4  Effects of incubation temperature on biomass concentration using a fructose as carbon source; b mannitol as carbon source. Biomass con-
centration changes during cultivation when fructose (c) or mannitol (d) was the carbon source. Orange—cellular dry mass (CDW); blue—PHB
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The concentration of the carbon source—fructose or 
mannitol had an interesting effect on biomass concentra-
tions (Fig. 5c, d). In the case of fructose, biomass and PHB 
yield decreased with higher substrate concentration, whereas 
with mannitol it raised. However, the highest amounts of 
PHB per gram of supplied substrate were achieved for the 
conc. of 10 g/L: fructose—0.19 g PHB per g substrate, man-
nitol—0.16 g PHB per g substrate, while at 20 g/L: fruc-
tose—0.08 g PHB per g substrate, mannitol—0.1 g PHB 
per g substrate. This phenomenon of PHB biosynthesis 
suppression at relatively high substrate concentration has 
been observed before, albeit the optimal carbon source con-
centration being 20 g/L or higher, with C. necator man-
aging 40 g/L without adverse effects (Wendy et al. 2022; 
Hong et al. 2019; Sriyapai et al. 2022; Nygaard et al. 2021). 

Growth and PHB production decrease in higher substrate 
concentration can be explained by osmotic and/or nutrient 
shock (Azevedo et al. 2012). The glacial origin of the strain 
may suggest both as glacier-hosted habitats are often poor 
in nutrients and solutes (Grzesiak et al. 2015).

Characterization of i‑phaZ deletion mutant

Two PHB-depolymerase genes were recognized in the 
genome of Acidovorax sp. A1169. Analysis based on a phy-
logenetic neighbor-joining tree amended with amino acid 
sequences of confirmed intracellular and extracellular scl-
PHA depolymerases revealed that one of the recognized 
genes coding for an intracellular depolymerase (Fig. 6a) 
(Knoll et al. 2009). As the inactivation of this enzyme 

Fig. 5  Effects of different nitrogen sources on biomass concentration using a fructose as carbon source; b mannitol as carbon source. Effects of 
carbon source concentration on the concentration of produced biomass (c, d). Orange—cellular dry mass (CDW); blue—PHB
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is one of the ways to enhance PHA yields (Wang et al. 
2023), an Acidovorax sp. A1169 deletion mutant in the 
i-phaZ gene was constructed. The PHB-filled mutant failed 
to increase in numbers while being incubated in a mineral 
medium lacking a carbon source contrary to the PHB-filled 
wild-type strain confirming its inability to use intracellular 
PHB as energy and carbon supply (Fig. 6b). Biomass and 

PHB accumulation was considerably lower in the i-phaZ 
gene deletion mutant than in the wild A1169 strain when 
cultured in the same PHB-accumulation promoting con-
ditions. While 1.71 ± 0.21 g PHB/L was achieved for the 
wild-type strain only 1.22 ± 0.03 g PHB/L was accumu-
lated by the mutant strain (Fig. 7), with both displaying 
43% PHB contribution to the CDW. There were several 
instances of a successful enhancement of the PHA yield 
by employing PHA-depolymerase negative mutants when 
compared to the wild-type strains although some reported 
a decreased growth strength of the former. The reduced 
anabolic performance of the Acidovorax sp. A1169Δi-
phaZ mutant might indicate a strong degree of interac-
tion between PHB metabolism and its other metabolic 
pathways. Various phenotypic effects were observed after 
i-phaZ deactivation in other bacterial species, most nota-
bly, the sensitivity to different stressors being enhanced 
(Kadouri et al. 2003; Handrick et al. 2000). Intracellular 
PHA depolymerases are known to interact with other PHA 
granule-associated proteins, like phasins which dictate the 
size and numbers of PHA granules but can also regulate 
the amount of PHA synthase enzyme in the cell (Mezzina 
and Pettinari 2016). Furthermore, the interplay between 
PHA synthesizing and degrading enzymes has a profound 
influence on the energy potential of the bacterial cell by 
shifting the available acetyl-CoA/free CoA and NAD(P)
H/NAD(P) ratios (Kessler and Witholt 2001). Therefore, it 
seems that complete PHA metabolism is crucial for Acido-
vorax sp. A1169 with respect to its PHA synthesis capac-
ity and deletion of the gene encoding for i-phaZ harms the 
overall robustness of the bacterium.

Fig. 6  a Neighbor-joining phylogenetic tree based on PHASCL 
depolymerases amino acid sequences showing the positions of two 
PHASCL depolymerases found within the genome of strain A1169. 
Sequences were retrieved from the NCBI database and their identity 
as internal or external depolymerases was confirmed with The PHA 
Depolymerase Engineering Database (Knoll et  al. 2009). Bar shows 

substitutions per amino acid position. Numbers at nodes are boot-
strap percentages based on the neighbor-joining algorithm. b Cell 
abundance dynamics of Acidovorax sp. A1169 wild type strain and 
its i-phaZ gene knockout mutant in carbon source-lacking mineral 
medium. The cells were introduced into the medium after a 96 h incu-
bation in PHB-accumulation inducing conditions

Fig. 7  Comparison of biomass concentration between Acidovorax sp. 
A1169 and its i-phaZ gene knock-out mutant cultivated in the same 
conditions. Orange—cellular dry mass (CDW); blue—PHB



Extremophiles (2023) 27:25 

1 3

Page 11 of 14 25

Synthesis of PHA copolymers by Acidovorax sp. 
A1169

The addition of different 3HV precursors had a varying 
effect on the whole biomass concentration and PHB yield 
(Fig. 8). The highest copolymer titer was achieved on pen-
tanol with approx. 4 mol% of 3HV at 1.40 g PHA/L, albeit 
the presence of the alcohol decreased the growth of the 
bacterial biomass when compared to the values obtained 
for propanol. Propionate, valerate and levulinate severely 
hampered the growth of A1169 strain, which was observed 
before in other bacterial species (Kourilova et al. 2021a, 
b). However, despite the relatively low biomass, PHA had 
a substantial 3HV molar contribution of 79.2% and 36.7% 
on valerate and levulinate as precursors, respectively. 
Based on the findings of Kourilova and colleagues, such 
results indicate, that the growth of the bacterium in the 
presence of the 3HV precursor can be further optimized 
to achieve greater yields of the co-polymer by carefully 
adjusting the precursor amount and the timing of its intro-
duction into the medium (Kourilova et al. 2020).

Conclusions

Our findings demonstrate the remarkable potential of Aci-
dovorax sp. A1169, which can be considered as a potent 
PHA producer under low temperatures and somewhat 
oligotrophic conditions, aligning perfectly with the Next-
Generation Industrial Biotechnology concept. To the best 
of our knowledge, this study represents the first compre-
hensive description that offers insights into a novel truly 
low-temperature PHA biosynthesis process. It not only 
provides guidelines for exploring polar-region bacteria as 
a valuable resource for PHA production but also highlights 
the methodology for the genetic engineering of psychro-
philes. Although this research screened the most essential 
cultivation conditions for PHA production employing Aci-
dovorax sp. A1169, further investigations are necessary to 
accurately assess its industrial-scale synthesis potential. 
The utilization of the bacterium for PHA production holds 
promise not only in terms of energy efficiency but also 
in the valorization of low-concentration effluents associ-
ated with carbohydrate processing (e.g., high fructose corn 

Fig. 8  Effects of different 3HV precursor addition on the quality and quantity of PHA produced by Acidovorax sp. A1169
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syrup production, inulin processing), which would other-
wise be discarded.
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