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inflammation and obesity
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Obesity and chronic low-grade inflammation, often occurring together,

significantly contribute to severe metabolic and inflammatory conditions like

type 2 diabetes (T2D), cardiovascular disease (CVD), and cancer. A key player is

elevated levels of gut dysbiosis-associated lipopolysaccharide (LPS), which

disrupts metabolic and immune signaling leading to metabolic endotoxemia,

while short-chain fatty acids (SCFAs) beneficially regulate these processes during

homeostasis. SCFAs not only safeguard the gut barrier but also exert metabolic

and immunomodulatory effects via G protein-coupled receptor binding and

epigenetic regulation. SCFAs are emerging as potential agents to counteract

dysbiosis-induced epigenetic changes, specifically targeting metabolic and

inflammatory genes through DNA methylation, histone acetylation, microRNAs

(miRNAs), and long non-coding RNAs (lncRNAs). To assess whether SCFAs can

effectively interrupt the detrimental cascade of obesity and inflammation, this

review aims to provide a comprehensive overview of the current evidence for

their clinical application. The review emphasizes factors influencing SCFA

production, the intricate connections between metabolism, the immune

system, and the gut microbiome, and the epigenetic mechanisms regulated by

SCFAs that impact metabolism and the immune system.
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1 Introduction

Obesity and inflammation are the two main causes of chronic diseases, which are

considered to be the biggest global health issue nowadays (1). The long-term effects of a

constant inflammatory state comprise a multitude of chronic inflammatory disorders that

significantly increase mortality. These can develop into common conditions like heart

disease and cancer, which are all tightly linked to inflammation and obesity (2, 3). Other

common chronic disorders are irritable bowel syndrome (IBS), which is characterized by

gut dysbiosis and increased activation of immune cells (4) and inflammatory bowel disease
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(IBD), a group of diseases distinguished by chronic inflammation that

includes Crohn’s disease and ulcerative colitis (5). Importantly,

dysregulations in the intestinal microbiome and immune system

also affect other organs, such as the brain, promoting the

development of neurodegenerative disorders (6). Moreover, there is

currently no cure for chronic diseases, although medical advances in

disease management significantly decreased mortality in the past

decade (7). Still, 3 out of 5 people die due to chronic inflammatory

diseases worldwide (8). Not only does this constitute a huge health

care and economic burden now, but prospects are not very optimistic

with the rising trend of prevalence in chronic diseases (9). Hereby,

one of the main difficulties of chronic inflammation is the silent

progression in which it imperceptibly alters the metabolism and

tissue homeostasis of the host, favoring the development of disease

(10). One of the consequences can be obesity.

Obesity is considered to be the biggest global epidemic affecting

individuals of every age (11). It is also strongly indicated to increase

the risk of developing chronic diseases, such as depression, type 2

diabetes (T2D), cardiovascular disease (CVD), and cancer (12). All

these are conditions that affect a tremendous amount of the world

population and somewhat characterize modern society. The

psychosocial costs caused by obesity and difficulties linked to

associated comorbidities pose a significant economic burden.

Prospects appear to be even worse as childhood obesity results in

the same disorders with even earlier onset (13). Weight gain is not

only a potential consequence of inflammation but commonly

induces obesity-associated inflammation (14).

The most important factors of the vicious cycle between

obesity and inflammation are alterations in the adipose tissue,

interorgan cross-talk, and most importantly, obesity-induced

lipopolysaccharide (LPS) leakage (15). The adipose tissue of obese

people is characterized by an increased number or size of adipocytes

(16). It is also associated with high infiltration rates of macrophages

that are predominantly of the pro-inflammatory M1 phenotype

(17). The resulting depletion of interleukin (IL)-10- and TGF-b-
producing M2 macrophages does not only have consequences for

immunoregulation but also for maintaining insulin sensitivity (18).

Moreover, the secretion of proinflammatory cytokines and

adipokines affect overall metabolic health, the endocrine and

immune system via interorgan crosstalk (19). Thus, pro-

inflammatory signals derived from adipose tissue can disrupt

metabolic and immunologic homeostasis in other tissues as well,

resulting in a systemic chronic inflammatory condition. Ultimately,

continuous inflammation, metabolic dysfunction, and tissue

damage strongly favor the development of serious diseases.

Although there are many ways in which adiposity and

inflammation can be caused and promote the state of one

another, gut-derived LPS is accounted to be one of the main

causes, if not the main cause, of obesity-linked low-grade

inflammation (20). In the case of gut homeostasis, a well-

functioning epithelial barrier prevents bacterial components from

leaving the gut and entering the bloodstream. Common

observations made in obese individuals are alterations in the gut

microbiome, increased gut barrier permeability, and higher LPS

levels (15). Augmented LPS plasma levels have been linked to
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obesity-associated low-grade inflammation, as LPS can escape

through a weakened gut barrier, travel through the bloodstream

to other organs and trigger their local immune cells (21, 22). The

pro-inflammatory stimuli in form of LPS prompts residing

macrophages to polarize into M1 macrophages and further

recruits circulating monocytes, which accelerates the disruptions

in tissue homeostasis (15). Thus, serious impairments of the

immune system and metabolism are believed to originate from

the probably most important influencer of the immune system and

systemic metabolism of the human organism – the gut microbiome.

The gut microbiota consists of a large number of microorganisms,

which include bacteria, viruses, fungi, and archaea. The number of

bacterial genes in the human body exceeds the host genome a

hundred-fold, the gut microbiome being the largest and most

diverse microbiome of the human body (23). It is dominated by the

phyla Firmicutes (now referred to as Bacillota as determined by List of

Prokaryotic names with Standing in Nomenclature (LPSN)),

Bacteroidetes, Proteobacteria and Actinobacteria (now referred to as

Bacteroidota, Pseudomonadota and Actinomycetota, respectively,

according to LPSN), with Firmicutes and Bacteroides being the

most abundant ones (24). Although it has been long known that

bacteria play a crucial role in digestion and vitamin production, their

essential role in regulating host metabolism and the immune system

has become increasingly evident over the last few decades. For this

reason, restoring gut homeostasis shows great potential in combating

chronic inflammation and obesity. Gut commensals have a great

share in maintaining gut homeostasis, as they impede pathogen

growth via inducing colonization resistance and produce

metabolites with antimicrobial activity (25). On top of that,

bacterial metabolites also regulate host metabolism, such as

tryptophan, which binds to the aryl hydrocarbon receptor (AHR),

responsible for the transcription of phase I and II metabolizing

enzymes (26). To date, certain bacterial residents were found to be

crucial in promoting proper gut barrier function and an

immunosuppressive environment. SCFA-producing bacteria play an

important role in this context.

The three main SCFAs in the intestine are acetate, butyrate and

propionate. SCFAs are mainly produced via fiber fermentation,

although metabolic pathways of organic and amino acids can also

result in SCFA production (27, 28). Although bacterial metabolism

is highly strain-specific, generally, strains belonging to the phylum

Bacteroidetesmainly produce acetate and propionate while butyrate

is mainly produced by members of the Firmicutes phyla (27).

Butyrate plays a particularly critical role in maintaining a healthy

gut barrier as it is the primary energy source of intestinal epithelial

cells. It also increases mucin production, and while it stimulates the

proliferation of healthy colonocytes, its effect on cancerous

colonocytes is the opposite (29). Thus SCFAs appear to have a

sensitive role in regulating gut health. Apart from playing an

important role as part of the physical barrier in innate immunity,

SCFAs have a great impact on adaptive immunity, as well. For

instance, SCFAs induce the differentiation and proliferation of

regulatory T cells (Tregs), which are crucial for immunologic

homeostasis (30, 31). SCFAs also affect B lymphocyte energy

metabolism, shifting antibody production to immunoglobulin (Ig)
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A and modulating its activity towards commensal bacteria (32, 33).

IgA is a key player in humoral mucosal immunity as it poses part of

the first line of defense by binding bacterial toxins and fighting

pathogens. Importantly, SFCAs also affect innate immune

mechanisms, as butyrate and propionate were shown to inhibit

mast cell activation (34). Thus, the pleiotropic role of SCFAs

modulates both immune defenses and immunological non-

reactiveness towards autoantigens, which makes them an essential

factor in proper immunoregulation.

Furthermore, SCFAs also regulate host metabolism, as SCFAs

can be recognized by several G protein-coupled receptors (GPRs),

which are responsible for immune and metabolic regulation (35).

This is crucial for limiting food intake and influencing glucose and

lipid metabolism, as gut-derived SCFAs act on GPRs resulting in

hormone production reaching the brain via the gut-brain axis (36).

This way, SCFAs are able to impact appetite and insulin sensitivity.

However, gut dysbiosis is not only associated with impairments in

these regulations but also with LPS-induced metabolic endotoxemia

further exacerbating energy intake and blood glucose levels (37).

These mechanisms are also partly induced by epigenetic

modifications (38).

Epigenetics modifications affect the transcription of genes

without altering the genetic code, which are mainly conveyed by,

but not limited to, DNA methylation, posttranslational histone

modifications and different types of non-coding RNAs, such as

microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) (39).

These epigenetic mechanisms globally regulate the expression of

genes involved in metabolic and cellular inflammatory responses

and are key in maintaining tissue homeostasis. Not only do

epigenetics regulate these processes but epigenetic regulators are

also strongly affected by metabolites, which is known as ‘metabolo-

epigenetics’. SCFAs, particularly butyrate, has been shown to

regulate immune cell differentiation and immunological pathways

as well as a multitude of metabolic genes associated with obesity

(40). This is highly relevant from a clinical point of view since

metabolic and immunologic disruptions upon gut dysbiosis might

be reversible. SCFA-induced epigenetic modifications might

therefore be not merely a reasonable approach for preventing

obesity and inflammation-associated pathophysiology but it could

potentially reverse harmful developments initially caused by gut

dysbiosis. Several murine and human studies show significant

correlations between SCFAs and health status, but to translate

these striking implications into clinical application, it is important

to understand how obesity and inflammation can be practically and

controllably modulated via epigenetic manipulation by SCFAs.

Since SCFAs are implicated in several health-promoting

processes, it would be more than reasonable to exploit their

clinical potential by fully embracing their pleiotropic effects on

overall health. This will also allow targeting of systemic issues of

obesity and inflammation, which is urged by the global

health situation.

The aim of this paper, therefore, is to explore the clinical

potential of SCFAs, based on the most recent findings and

current investigations in this field. To get a realistic picture of

possible SCFA manipulation, the first part of this review focuses on

the current knowledge about gut-altering factors affecting SCFA
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production. In the following, the complexity of the bidirectional

interactions between metabolism and inflammation and the role of

SCFAs in this will be thoroughly discussed. Hereby, both

epigenetic-driven and independent activity of SCFAs is reviewed.
2 SCFA production in the gut

The prevalence of gut dysbiosis-associated diseases

tremendously increased in the last decades, which can be

attributed to the Western diet, sedentary lifestyle, and increased

use of antibiotics (41). The importance of early microbial exposure

and the danger of increasing sterility in developing an intact

immune system has been already stressed in 1989 in Strachan’s

hygiene hypothesis (42). Although this notion remains valid, the

knowledge about particular influences on the gut microbiota and

their impact on overall health becomes continuously deeper and

better established. Since SCFA production depends both on the

number of bacteria producing SCFAs and the availability of

necessary nutritional substrates, it is important to understand the

effect of different types of diets and how other factors can cause a

shift in the gut microbiota composition. Although age, genetics,

environmental and maternal factors are also involved in shaping the

gut microbiome (43), this section will merely focus on the most

important controllable factors altering SCFA production (Figure 1).

This way, the clinical value of SCFA treatment can be

realistically assessed.
2.1 Diet

Recent findings emphasize and specify the role of diet, which

has a strong influence on the integrity of the intestinal barrier and

gut microbiome composition, ultimately affecting SCFA levels. One

of the characteristics of the Western Diet is high amounts of dietary

fat. A high-fat diet (HFD) is associated with increased imbalances in

the gut that also increase the risk for chronic inflammatory diseases

(44). In this context, a diet rich in saturated fatty acids (SFAs) is

associated with negative health manifestations whereas high

amounts of unsaturated fatty acids, especially n-3 polyunsaturated

fatty acids (PUFAs), exhibit beneficial health effects (44, 45). SFA

interaction with GPRs and Toll-like receptors (TLRs) leads to the

activation of pro-inflammatory mediators such as IL-1b and

nuclear factor-kappa B (NFk-B), a process prevented upon PUFA

binding (45–47). In fact omega-3 fatty acids were shown to affect

lipid metabolism and mediate anti-inflammatory effects via DNA

methylation and miRNAs (48, 49), while the conventional Western

diet negatively affects gene expression of inflammatory markers and

metabolic genes due to epigenetic imprinting that can already take

place in utero (50, 51).

Apart from the direct interaction with regulatory receptors,

excess SFA intake has negative effects on the gut microbiome,

reducing its diversity and richness and promoting the growth of

facultative aerobic species which metabolize simple fats and sugars

and at the same time decreases the proportion of beneficial

anaerobes, including SCFA-producing Akkermansia muciniphila
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(52). Accordingly, the gut barrier-promoting and pH lowering

effects of SCFAs decay as well. Worth noting, SFAs from different

sources mediate different effects on gut microbiome diversity (52).

Moreover, A. muciniphila and SCFAs were repeatedly shown to

protect from HFD-induced obesity and metabolic anomalies,

showing the important role of particular microbes in gut

homeostasis (53–55), which is promoted by PUFAs (56, 57).

Additionally, fibers have been also shown to reverse HFD-

induced microbiota changes in diversity (58).

Dietary fibers were shown to counteract the negative effects of a

Western Diet directly and by affecting the gut microbiome

composition and thus metabolome and mediated epigenetic

activity (59). For instance soluble fibers such as psyllium, were

shown to hinder glucose and cholesterol absorption and bile

salt reabsorption whilst improving the absorption of macro-

and micronutrients (60). Fructooligosaccharides (FOS) and

galactooligosaccharides (GOS) were shown to remedy gut

dysbiosis and the associated gut barrier impairment and systemic

inflammation in mice (61). Importantly, the mediated effect also

depends on the amount and type of fiber administered and the

presence of particular bacteria species. Regarding the amount of

fiber, a diet rich in fiber exhibited an immediate effect on the gut

microbiome diversity and metabolite production in humans (62),

whereas low doses did not affect particular abundances in gut

microbes (63, 64). When it comes to the different types of fibers,

they can be categorized by fermentability, solubility and viscosity.

Due to the fermentability of b-glucans, pectins and inulin, these

fibers mainly promote systemic health via gut microbiota

modulation (65) whereas non-fermentable fibers like psyllium,
Frontiers in Immunology 04
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digestion, glucose homeostasis and cholesterol levels (60).

Due to the differently mediated benefits of various kinds of

fibers, a plant-based diet comprising different types of dietary

fibers is recommended. While complex carbohydrates exhibit

various health-promoting effects, the opposite is true for

simple carbohydrates.

A diet high in simple sugars, like glucose and fructose, is

particularly problematic, as it decreases microbial diversity (66). It

also increases the amount of aerobic Proteobacteria whilst

decreasing Bacteroidetes, amongst which many SCFA-producers

can be found (66). In the same study, high glucose and fructose diet

ultimately led to gut barrier impairment resulting in metabolic

endotoxemia, even without significant weight gain in mice. The

consumption of artificial sweeteners was also shown to induce gut

dysbiosis with metabolic consequences for the host (67). On the

other hand, a diet low in polysaccharides has been shown to

negatively affect bacterial abundance and richness (68). SCFA-

producing bacteria are particularly affected due to the deprivation

of their nutritional source. Moreover, the loss of one bacterial strain

may affect the growth of others due to cross-feeding dependence, as

is the case with Ruminococcus gnavus and Bifidobacteria, making

SCFA-production by other strains possible via prior starch

degradation or lactate production (69, 70). Furthermore,

enhanced butyrate production upon starch intake was observed in

individuals whose microbiota was enriched in R. gnavus and

Clostridium chartatabidum (71), in turn eating behavior was

shown to be influenced by the presence of SCFA-producing

bacteria, as well (72). This suggests, that effective promotion of
FIGURE 1

SCFA-influencing factors. Different aspects of the Western diet contribute to dysregulations in the gut environment, leading to the decrease of
short-chain fatty acids (SCFAs). A positive impact on SCFA production has a diet rich in n-3 polyunsaturated fatty acids (PUFAs), fibers vitamins and
microelements, by increasing the amount of SCFA-producing bacteria, overall bacterial richness, cross-feeding of species, lactate production and
decrease the presence of unbeneficial aerobic bacteria, pH and expression of virulence factors. The opposite effect can be observed for the Western
diet rich in saturated fatty acids (SFAs), simple sugars and processed food. The presence of key gut commensals and different kinds of probiotics
enhance SCFA production directly or indirectly by lactate production with their effectiveness depending on the age of administration and
encapsulation. Broad spectrum antibiotics, non-steroidal anti-inflammatory drugs (NSAIDs) and proton pump inhibitors (PPIs) favor gut dysbiosis
associated with lower SCFAs levels. The opposite effect is the case for metformin. Physical activity modulates host health by crosstalk between
skeletal muscle and the gut via myokines and lactate as well as direct physical stimulation. These effects depend on the health and metabolic state
of the host, as well as genetics.
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SCFA production via dietary intervention strongly depends on gut

diversity and the presence of key bacteria species. In fact, prebiotic

human intervention studies show strong variability amongst

individuals, which only emphasized the issue of the complexity of

individual genetic and gut microbiome predispositions (73). This

highlights the great need for precise interventions, in which discrete

dietary fiber structures and arabinoxylan show great potential and

consistency among subjects (74, 75).

Apart from a poor-balanced diet, the Western diet is also

characterized by various food additives and a high degree

of processing. Recent evidence shows significant changes in gut

microbiota upon processed food administration, with consequences

in bacterial metabolism and weight gain (76). Artificial sweeteners

and emulsifiers play an important role in altering host metabolism

via the gut microbiota (67, 77). Not only does this affect

metabolism, but it also promotes and exacerbates intestinal

inflammation and leads to increased expression of virulence

factors (78–80). These effects are believed to arise from gut

dysbiosis, which favors the growth of pro-inflammatory species as

opposed to immunomodulatory commensals. Processed food is not

only enriched in chemical additives but certain food processing

deprives the product of vitamins and microelements (81), which

also affects SCFA production (82, 83).

Thus, the Western diet seems to decrease SCFA production on

various levels, by deprivation of nutritional substrates and co-

factors, which also play a role in epigenetic regulation (84), as

well as by inducing gut dysbiosis and therefore promoting

the growth of other species further exacerbating intestinal

imbalance in the gut microbiome composition, metabolism and

mucosal immune system. As an antidote, continuous intake

of unprocessed food, rich in fibers, PUFAs, vitamins and

microelements seems the most feasible to promote SCFA

production via the diet.
2.2 Probiotics

As previously established, the presence and abundance of

particular bacteria are crucial in enhancing SCFA production, due

to their own ability to produce these compounds but also the effects

they exhibit on other gut members. According to the Food

and Agriculture Organization of the United Nations (FAO) and

the World Health Organization (WHO), probiotics are ‘live

microorganisms which when administered in adequate amounts

confer a health benefit on the host’ (85). A probiotic may thereby

consist of a single bacterial strain or contain multiple.

Regarding the former, several strains including Lacticaseibacillus

rhamnosus GG (LGG), Lactobacillus acidophilus CRL 1014,

Lactobacillus gasseri PA 16/8, Ligilactobacillus salivarius JCM 1230,

Ligilactobacillus agilis JCM 1048, Bifidobacterium longum SP 07/3

and Bifidobacterium bifidumMF 20/5 were shown to produce SCFAs

and lactic acid (86). In the study on the effect of oral consumption of

Lactiplantibacillus plantarum P-8 (Lp-8) on human intestinal

microbiota, and SCFAs of different aged adults (87), the increase in

Bifidobacterium and other beneficial bacteria was found, whereas

opportunistic pathogens decreased. Furthermore, a statistically
Frontiers in Immunology 05
significant increase in acetate and propionate levels in all age

groups was observed. Thus single-strain-based probiotics seem to

be able to competently promote gut homeostasis. Also commensal

bacteria such as Faecalibacterium prausnitzii were shown to

effectively promote gut diversity and SCFA production and by this

mechanism, shows great potential in improving inflammatory and

metabolic diseases (88–92). As previously mentioned, A. muciniphila

administration can improve metabolic anomalies caused by gut

dysbiosis (53, 54, 93). Thus single-strain-based probiotics seem to

be able to competently promote gut homeostasis. Regarding multi-

strain probiotics, SCFA production can be targeted onmultiple levels.

Co-cultures of lactic acid bacteria (LAB) were shown to produce

SCFAs and stimulate mucus secretion of colonic epithelial cells (94).

Moreover, a probiotic supplement (Symprove™), consisting of the

four strains L. acidophilus NCIMB 30175, L. plantarum NCIMB

30173, L. rhamnosus NCIMB 30174 and Enterococcus faecium

NCIMB 30176) was shown to competently increase SCFA

production in vitro, as well (95). Not only were those strains shown

to effectively colonize the colon but also to increase lactate

concentrations. Lactate was further used by lactate-metabolizing

bacteria resulting in enhanced SCFA production, particularly

butyrate. In another study, a cocktail of several lactobacilli strains

improved SCFA production, which dampened pathogen-induced

pro-inflammatory signaling cascades (96). Moreover, another

recent study revealed that more effective fiber fermentation occurs

with co-cultures of strains from more than one genera, as in this case

concerned Lacticaseibacillus and Bifidobacterium strains (97). This

shows that the interaction between bacterial species can have a

synergistic effect, emphasizing the important role of cross-feeding

in the gut.

Nevertheless, less consistency is observed in human

intervention studies. While some studies show significant

differences in SCFA levels upon probiotic administration (98–

100), others do not show any impact (101, 102). The results may

differ between individuals due to genetic heterogeneity, differing

health conditions, and microbiome composition, as well as due to

different probiotic strains applied. The importance to obtain

probiotics that are able to survive and colonize the gut can be

seen by ex vivo human fecal microbiome culture systems, which are

directly exposed to live probiotics and straightforwardly show the

desired effects in SCFA production observed in mice (100). On the

one hand, a more predictable tool to increase the translatability of

mouse studies could be the investigating wild mice which have a

more resembling microbial profile to humans (103). On the other

hand, the fact that in vivo human studies do not demonstrate such

strong translatability of mice studies, suggests that the amounts and

viability of bacteria may be affected by several factors of the gastro-

intestinal (GI) tract. Effective encapsulation and the ability of the

probiotic to adhere to the gut epithelium play also an important role

in this context (104–106). Recently, a lot of attention is directed

towards bacterial exopolysaccharides (EPSs), which can be used as

an effective carrier protecting from GI stressors, increasing muco-

adhesion but also a synergistic compound to promote gut

homeostasis (107–109). On another note, the robustness of the

adult gut microbiome also needs to be acknowledged for effective

clinical studies, as short-term interventions might be too weak to
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exhibit greater and long-lasting changes. The opposite can be

observed in young infants, in which probiotic administration

demonstrated improved clinical outcomes upon changes in the

gut microbiome composition and metabolism (110–112). This can

be explained by the critical time window of gut microbiome

establishment, which makes it a sensitive target to manipulation

(113, 114).

Thus, early prevention of gut dysbiosis, continuous long-term

administration in adults and careful strain selection and

encapsulation might be the most feasible approach to promote

gut homeostasis and SCFA production via probiotics.
2.3 Antibiotics and non-antibiotic drugs

Apart from an altered diet, increasing sterility and intake of

antibiotics and other pharmaceuticals are additional characteristics

of modern Western Society. Narrow-spectrum antibiotics do not

impact the gut microbiome composition as greatly as broad-

spectrum antibiotics, which can have great consequences for

intestinal microbiocenosis (115). These effects vary from the

antibiotic administered, as well as from individual to individual.

Nevertheless, broad-spectrum antibiotics such as ciprofloxacin and

clindamycin revealed immediate decreases in SCFA-producing

bacteria, where the restoration time to the initial gut microbiome

in humans took up one month up to a year (116), while neomycin

and ampicillin-induced gut dysbiosis in mice also affected

epigenetic regulation of genes in the gut and liver (117).

SCFAs have an important share in mediating colonization

resistance against pathogens and controlling the growth of

opportunistic bacteria (118, 119). Their levels were shown to

directly correlate with lower levels of the pathosymbiont

Escherichia coli in vitro (120). Interestingly, in antibiotic-treated

mice, increased levels of Candida albicans directly correlated to

lower SCFA levels (121). In another study, similar observations

were made and in addition, showed that the decreases in SCFAs also

remained after the withdrawal of antibiotics (122). Moreover, long-

term antibiotic-mediated SCFAs reduction stands in direct

connection with disturbances in intestinal barrier integrity (123).

Accordingly, an antibiotic-altered gut is more susceptible to

recurring pathogenic infections in humans bearing metabolic

consequences that promote obesity (124–126). Thus, antibiotic-

induced lack of SCFA-mediated immunomodulatory and pro-

homeostatic properties facilitates the colonization of pathogens

and overgrowth of pathobionts, which increasingly occupy the

niche otherwise dominated by beneficial commensals. The

consequences are loss of SCFA-producing bacteria upon death by

antibiotic exposure and are further aggravated by disadvantages in

the competition of niche colonization by the pathogen-promotive

environmental changes in the gut.

Other conventional non-antibiotic drugs such as proton pump

inhibitors (PPIs) show similar effects as broad-spectrum antibiotics

in altering the gut microbiome composition and immune system

(127–129). On the other hand, metformin appears to mediate its
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beneficial metabolic effects against T2D by modulating the gut

microbiome composition in a way that promotes SCFA-producing

bacteria (130, 131). Apart from pharmaceuticals prescribed for

particular health conditions, non-prescriptive non-steroidal anti-

inflammatory drugs (NSAIDs) are not only widely used but also

routinely. Routine consumption of aspirin, celecoxib and ibuprofen

leaves a drug-specific signature in the gut microbiome, more so with

stronger NSAIDs like ketoprofen, naproxen and ketorolac (132). In

a recent study, short-term usage of celecoxib did not induce any

significant changes in the gut microbiome whereas alterations in the

metabolism of commensals decreased the production of

butyrate (133).

Therefore it seems that both, the increased intake of antibiotics,

PPIs and NSAIDs, with few exceptions, have their own contribution

in inducing gut dysbiosis and consequential decrease in SCFAs.
2.4 Physical activity

As previously stated, a mainly sedentary lifestyle is a

characteristic feature of Western Society. However, the various

health benefits associated with physical activity become

increasingly evident, as daily exercise decreases the risk of

developing chronic metabolic and inflammatory disorders, as well

as mental health issues (134, 135). Interestingly, its beneficial effects

seem to be to some degree mediated by changes in the gut

microbiome and can be also attributed to different epigenetic

changes depending on the type and duration of the exercise (136).

Various studies present the benefits of exercise on metabolic

health via an increase of SCFA-producing bacteria (137–140). A

study comparing the effect of exercise in lean and obese individuals,

however, did not show a significant shift in microbial metabolism

for the latter (139). It is important to note though, that butyrate-

and propionate-regulating genes decreased six weeks after ending

the training period for obese individuals. In the same study, within

obese individuals, butyrate and the activity of the butyrate-

regulating gene BCoAT were associated with less body fat but

more lean body mass and higher cardiorespiratory fitness. Thus,

exercise-induced changes in the gut microbiota and SCFA-

regulating gene expression appear to affect both groups, though

differently. Obese individuals might therefore profit from SCFA-

associated improvement in cardiorespiratory fitness, which may

help in the adaptation process. Nevertheless, in some cases, such as

insomnia, excess SCFAs are associated with negative health effects,

whereas exercise was shown to beneficially regulate SCFA levels and

sleep quality (141). Some studies also show that obesity can be

associated with higher amounts of SCFAs as opposed to lean

individuals and (142, 143). The same has been shown in mice,

which upon receiving microbiota from exercise-trained donors

gained more body mass (144). This might suggest that exercise

promotes gut homeostasis accordingly to the needs of the

individual, including proper balances in SCFA levels, regardless of

whether a dysbiotic shift to scarce or excessive SCFA production

has previously taken place. This also shows that health status,
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particularly obesity-related metabolic status, and genetics

complicate gut microbiota manipulation via exercise, as it is not

equally effective amongst individuals.

Moreover, short-term exercise was not proven to induce

sustainable changes, which highlights the need for regular exercise

to yield sustainable long-term effects regarding SCFA regulation

(139).The individual response to exercise has been repeatedly

reported to have a strong genetic base (145, 146). On top of that,

different age groups and health conditions of study participants

make it difficult to establish a clear relationship between SCFAs and

exercise, not to mention the negligence of other confounding factors

such as diet, which was shown to synergistically promote SFCA

production (147). However, exercise also seems to have a diet-

independent mechanism promoting SCFA production (148).

The standardization of SCFA measurements is another issue, as

studies do not only differ in study designs (type of physical activity,

duration, intensity, time without exercise), SCFA-measuring

methods (type of SCFAs measured, gas chromatography,

microbial profiling) but also in the sample type (plasma, feces)

and sample processing (wet vs dry feces). Other aspects, such as

SCFA absorption and interconversion by gut commensals, make it

tricky to draw straightforward conclusions from fecal SCFA levels.

Future research should therefore consider shedding more light on

the underlying mechanism of increased/decreased SCFAs, with

regard to the previously mentioned aspects. Thus, identifying

SCFA-producing genes and ratios between acetate, propionate

and butyrate may give additional insights into SCFA production/

absorption (149, 150).

To better understand the varying observations in human

studies, it is crucial to look at possible underlying mechanisms of

exercise-induced changes in gut microbiota. One of the possible

mechanisms is that movement physically stimulates gut

microbiome function e.g. by reducing stool transit time (151).

Furthermore, the underlying metabolic changes increase lactate

production, which can be further metabolized to SCFAs by LAB

(152). Another possible explanation could be the form of interorgan

crosstalk between the gut and skeletal muscle. One of the mediators

involved in this phenomenon are myokines, which are primarily

cytokines that are released from skeletal muscle during exercise and

exhibit anti-inflammatory properties that seem to have an impact

on microbiota function in the intestine as well as systemically (153,

154). In turn, several microbial metabolites have been implicated in

skeletal muscle metabolism. SCFAs are able to determine the

efficacy of physical exercise by increasing lipolysis, promoting

glucose uptake and insulin sensitivity in the skeletal muscle (153).

SCFAs are not only an energetic substrate for colonic cells, but they

also play an important role in muscle metabolism (155). Increased

SCFA production seems to be a major player in mediating exercise-

associated health benefits, as the donation of gut microbiomes from

exercised mice was able to improve health outcomes in mice with

chemically-induced colitis, mediated by the anti-inflammatory

properties of SCFAs (144).

Thus, exercise-induced metabolic changes are able to influence

the gut microbiome via bowel movement stimulation, myokine and

lactate production. However, these effects depend on individual

genetics, health status and metabolic profile. Longer-term
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intervention could possibly lead to more significant results in

obese individuals, as increased expression of SCFA-regulating

genes is associated with beneficial effects on cardiac and fat tissue

metabolism. Thus, future studies should consider the long-term

effects of exercise, possible confounding factors and multi-level

SCFA analysis that pays special attention to SCFA absorption. More

studies are also needed to define a healthy SCFA concentration

range, which may differ between different age groups and health and

obesity statuses. This also calls for standardizing SCFA-

measuring methods.
3 SCFAs in obesity and inflammation

The unleashing role of SCFAs in overall systemic health also

sheds special light to modulating issues directly linked to obesity

and inflammation. As there are many mechanisms that particularly

affect metabolic and inflammatory processes, it is important to

understand the tight relationship between both states and what role

gut-derived SCFAs play in it (Figure 2). For this purpose, evidence

of the impact of SCFAs on obesity, inflammation, and related

chronic conditions will be assessed in the following.
3.1 SCFAs in obesity

Currently, there is no cure for obesity, and only invasive

interventions such as bariatric surgery have yielded significant

success (156). This treatment is strongly indicated in cases of

morbid obesity and metabolic diseases, however, as it is costly

and invasive it is not a suitable option for all age groups and people

bearing other health issues (157). Therefore, there is a great need for

a safer and effective alternative, which brings attention to the

clinical potential of SCFAs and their implications for obesity and

the associated health conditions.

SCFAs play an important role in obesity and metabolic disease

due to their pleiotropic and systemic health-promoting effects.

Although some studies claim that SCFAs are increased in obese

individuals and are hypothesized to be responsible for increased

adiposity through excess energy (158, 159), other studies demonstrate

the opposite (160–162). Moreover, recent research links probiotic-

induced increased SCFA levels directly to weight loss (163–167),

which also seem to exhibit their anti-obesity effect from early on via

breastmilk (168, 169). Probiotics enhancing SCFA production

decrease the expression of acetyl-CoA carboxylase (ACC), fatty

acid synthetase (FAS), stearoyl CoA desaturase 1 (SCD1), and

sterol regulatory element binding protein-1c (SREBP1c), all of

which are involved in lipogenesis. Acetate, for instance, was shown

to induce upregulation of acyl-CoA oxidase 1 (ACOX1), carnitine

palmitoyltransferase 1 (CPT1a), and peroxisome proliferator

activated receptor a (PPARa) which increased lipid oxidation and

reduced adiposity and cholesterol levels (170, 171). Moreover, direct

administration of SCFAs was shown to lower triglyceride levels in rats

by decreasing ACC expression (172). Importantly, acetate and

butyrate directly affect liver metabolism by posing metabolic

substrates for the tricarboxylic acid cycle (TCA) (150). Other
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SCFA-mediated metabolic regulations of liver and adipose tissue

concern the expression of mitochondrial uncoupling protein 2

(UCP2) via peroxisome proliferator-activated receptor gamma

(PPARg) (173). This increases the adenosine monophosphate

(AMP)/adenosine triphosphate (ATP) ratio and aerobic

metabolism in the liver and adipose tissue through AMP-activated

protein kinase (AMPK)-signaling. Thus, Besten et al. conclude that

SCFAs could serve as efficient PPARgmodulators that could improve

metabolic syndrome.

SCFAs are also implicated in various metabolic processes

responsible for proper energy expenditure and appetite

regulation. They can function as ligands for GPR41 and GPR43

(FFAR3), which are receptors involved in metabolic pathways (171,

174). GPR41 activation causes the release of peptide YY (PYY), a

gut hormone that regulates food intake and is involved in energy

management. Moreover, leptin is also secreted upon SCFA

stimulation of GPR41, which is a key regulator in appetite

signaling (175). SCFA-binding to GPR4 triggers the release of

glucagon-like peptide (GLP)-1 and GLP-2. GLP-2 promotes the

integrity of the intestinal barrier by supporting epithelial cell

renewal and tight junction proteins (176). GLP-1 has been shown

to improve insulin sensitivity and inhibit glucagon secretion, which

is why it is considered crucial in maintaining blood glucose

homeostasis (177, 178). Furthermore, it plays an important role

in controlling food intake, lipolysis and inflammation (179–181). It,

therefore, poses a reasonable target for metabolic diseases and it is

no surprise that altered SCFA levels are commonly observed in

metabolically ill patients (182, 183).
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3.2 SCFAs in chronic inflammation

Low-grade inflammation is a common feature in chronic

conditions such as IBS, IBD, T2D, non-alcoholic fatty liver

disease (NAFLD), CVD, and cancer. It is thought to originate

from the systemic immune response triggered by LPS as a

consequence of a leaky gut (20, 184). Since the immune system

interacts with the gut microbiome, any dysregulations may lead to

an endless loop of gut dysbiosis and systemic low-grade

inflammation (185). A leaky gut can be caused by obesity or

other factors causing gut dysbiosis, but it can also in turn induce

obesity due to the associated systemic metabolic and inflammatory

changes. Therefore it is hard to assess the primary cause of the

vicious cycle between obesity and inflammation. Moreover, these

are not entirely separate arrangements since metabolism determines

the immunologic function, as well.

Chronic low-grade inflammation is marked by inflammatory

cytokines such as tumor necrosis factor (TNF) a, IL-1, and IL-6 (37,
186). This immune response is activated upon endotoxin binding to

lipopolysaccharide-binding protein (LPB). This complex can be

bound to the CD14 receptor which activates the myeloid

differentiation factor 88 (MyD88) and interleukin-1 receptor-

associated kinase (IRAK)-1 signaling cascade upon activation of

toll-like receptor (TLR) 4 (187). The fact that obesity is

characterized by ongoing low-grade inflammation can be partly

explained by the co-regulation of both states via GPRs. Not only are

they involved in metabolic homeostasis but they also determine

immune response. Since free fatty acids bind to these receptors, the
FIGURE 2

SCFAs in inflammation and obesity. Short-chain fatty acids (SCFAs) prevent inflammation by providing gut epithelial cells with energy enhancing cell
renewal and gut barrier integrity, which decreases lipopolysaccharide (LPS) locally and systemically. SCFAs simultaneously regulate obesity and
inflammation by acting on G-coupled protein receptors (GPRs), the tricarboxylic acid cycle (TCA) and immune cells of the adipose tissue. Posing a
substrate for the TCA cycle and stimulating GPRs to produce interleukin (IL)-10, SCFAs promote the polarization of macrophages into IL-10
producing M2 macrophages, blocking nuclear factor kappa B (NF-kB)-induced expression of proinflammatory genes. Mitochondrial uncoupling
protein 2 (UCP2) and AMP-activated protein kinase (AMPK) involved in liver and fat tissue metabolism are also regulated by SCFAs via the TCA. SCFAs
decrease the expression of acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), sterol regulatory element binding protein-1c (SREBDP1c) while
upregulating acyl-CoA oxidase 1 (ACOX1), carnitine palmitoyltransferase 1 (CPT1a) and peroxisome proliferator activated receptor a (PPARa). GPR-
binding by SCFAs inhibits the transcription of proinflammatory genes and increases the release of appetite regulating hormones leptin and peptide
YY (PYY). GPR-binding also causes the release of glucagon like peptide (GLP), which inhibits the expression of proinflammatory genes, promote the
gut barrier and insulin sensitivity.
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absence of SCFAs necessary for the negative regulation of

proinflammatory cytokines leads to the continuous expression of

inflammatory mediators. In the presence of SCFAs on the other

hand, nuclear factor kappa B (NF-kB)-mediated activation of

TNFa, IL-6, and IL-12 is inhibited. Furthermore, SFCAs also

increase IL-10 expression, which suppresses TNFa, macrophage

inflammatory protein 2 (MIP-2), and IL-1b expression (188–190).

Moreover, macrophages are thought to have a great contribution to

low-grade inflammation in adipose tissue and systemically, and IL-

10 has been shown to protect against endotoxemia and stimulate

M2 polarization (191, 192). Moreover, TLR-mediated MyD88

activation and TNF signaling by M1 macrophages have further

health consequences by impairing insulin signaling, which shows

the tight relationship between inflammation and metabolic health

(185). Moreover, the lack of SFCA gut barrier-promoting qualities

facilitates the spread of gut-derived inflammatory molecules

that can distribute systemically via the bloodstream. This way,

LPS leakage through the epithelial barrier can also trigger

inflammation in various tissues which might continue until gut

homeostasis is reversed (193). If there is no resolution of

inflammation, inflammatory mediators might amplify the

response by recruitment of leukocytes which can bear systemic

consequences in the long run.

Thus, obesity-induced gut dysbiosis that leads to metabolic

endotoxemia lays the path for the development of inflammatory

chronic disease. This results in aberrant interactions between the

gut microbiome, host immune system and metabolism, leading to

so-called metaflammation (185). Interestingly, in mice obesity-

associated low-grade inflammation was mitigated by probiotics

and correlated with SCFA levels (163).
3.3 Inflammation and obesity

The tight link between immunologic and metabolic function

becomes evident in various organelles. For example, nutrient surplus

in the endoplasmic reticulum (ER) can disrupt its function and

trigger the unfolded protein response (UPR) that ultimately leads to

the activation of various inflammatory pathways, such as c-Jun N-

terminal kinase (JNK) and ikB kinase (IKK) (194). In consequence,

insulin sensitivity and glucose homeostasis is disrupted, which will

likely trigger again the UPR. Another organelle affected by obesity is

mitochondria. Mitochondrial dysfunction caused by obesity results in

increased reactive oxygen species that can further disrupt insulin-

signaling and promote M1 polarization of macrophages and activate

the inflammasome, which again leads to disruptions in metabolism

and promotes obesity (195–198). Disruptions in nutritional or

immune system homeostasis therefore further trigger pro-

inflammatory responses and metabolic dysfunctions, closing the

vicious cycle of promoting both states.

The crucial role of metabolism in the immune response

becomes also clear in the case of innate immune cells.

Immunological memory is not exclusively part of the adaptive

immune system since innate immune cells also exhibit a certain

degree of memory function, referred to as ‘trained immunity’. In an

aim to elicit a faster and more effective response by the repeated
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encounter of a certain antigen, innate immune cells become

intrinsically wired to increase the response to secondary stimuli,

e.g. by LPS. This effect is partly mediated by increased sensitivity of

pattern recognition receptors (PRRs) but also by a metabolic shift

from oxidative phosphorylation to aerobic glycolysis, called the

Warburg effect (199, 200). The latter is responsible for providing,

for instance, macrophages with glycolysis- and broken tricarboxylic

acid cycle (TCA)-derived substrates necessary to initiate a

proinflammatory immune response. These include glycolytic

enzymes, succinate, and citrate, but also glutamine and arginine

catabolism aid M1 function (201, 202). Interestingly, low levels of

LPS have the opposite effect, inducing tolerance (203). Therefore,

gut homeostasis or dysbiosis differently impacts innate immune cell

metabolism, which in turn directly dictates its function.

Moreover, the mammalian target of the rapamycin (mTOR)

pathway in innate immune cells is regulated by AMP kinase

(AMPK), which in case of high nutrient availability, becomes

deactivated (204). Due to mTOR diverse functions in cellular

metabolism and homeostasis, dysregulation of mTOR signaling

pathway has been implicated in various diseases (205). The loss

of AMPK suppression of proinflammatory pathways can lead to

hyperinflammation that can deteriorate underlying conditions such

as atherosclerosis (206). Furthermore, it has been shown that the

endotoxin-triggered proinflammatory phenotype of macrophages

remains a long-lasting feature and that restoration of the anti-

inflammatory M2 phenotype is straitened (199). Thus, the series of

effects can be primarily triggered by LPS, having its roots in gut

dysbiosis (Figure 3).

Interestingly, epigenetic mechanisms are responsible for innate

immune memory with metabolic molecules being cofactors for

epigenetic enzymes (207). Thus, LPS not only induces metabolic

but also epigenetic changes within immune cells that prime them

towards a pro-inflammatory phenotype. SCFAs on the other hand,

show great potential in reversing those epigenetic dysregulations.
4 SCFA-epigenetic regulation

Epigenetic modifications contain a range of different

mechanisms that alter DNA or DNA-associated proteins in a

post-translational manner. This way the genetic code remains

unaffected while protein expression can be regulated. SCFAs have

been shown to modulate various pathways involved in

inflammatory and metabolic regulations. Strikingly, epigenetic

regulations initiated by the gut microbiome are not restricted to

the gut but have been proven to impact other tissues as well (208).

Epigenetic regulation via the gut microbiome can be mediated by

providing cofactors for epigenetic enzymes in form of bacterial

metabolites or by influencing the expression and activity of

epigenetic enzymes and epigenetic pathways (209, 210). SCFAs

play hereby a crucial role, since traveling from the intestinal lumen

to other organs via the blood compartment they do not only

maintain tissue homeostasis by binding to receptors but also by

various epigenetic mechanisms (Figure 4). Under these fall

modifications of DNA and chromatin-associated proteins, and

non-coding RNAs (ncRNAs) (38).
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1380476
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
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FIGURE 3

The vicious cycle of obesity and inflammation. Obesity is associated with gut dysbiosis and gut barrier impairment, leading to increased circulating
levels of lipopolysaccharide (LPS). Chronic exposure to elevated LPS leaves a permanent phenotypic mark on macrophages, which disables
otherwise mediated tissue homeostasis by M2 macrophages. Obesity is associated with mitochondrial dysfunction leading to the production of
reactive oxygen species (ROS) promoting M1 polarization. Surplus nutrient intake also triggers mitochondria endoplasmic reticulum (ER) to activate
the unfolding protein response (UPR) leading to the activation of c-Jun N-terminal kinase (JNK) and ikB kinase (IKK) proinflammatory signaling
cascades. High nutrient availability also impedes the otherwise negative regulation of rapamycin (mTOR) by AMP-activated protein kinase (AMPK).
Obesity-associated inflammation leads to metabolic changes resulting in insulin resistance further exacerbating the risk for obesity, closing the
vicious cycle between immunologic and metabolic dysregulations.
A

B

FIGURE 4

SCFA-mediated epigenetic regulations. Green section (A) addresses epigenetic effects in inflammation and blue section (B) in metabolism. SCFAs
regulate intestinal epithelial cell (IEC)-related innate and adaptive immune functions, as well as resistin and adiponectin expression via DNA
methylation. By histone deacetylase (HDAC) inhibition, SCFAs upregulate antimicrobial peptides (AMPs), T regulatory (Treg) and T helper (Th) cells
and interferon g (IFNg) production by cytotoxic T lymphocytes (CTL). SCFAs mediate lipopolysaccharide (LPS) tolerance by M2 macrophage
polarization and downregulate nitric oxide (NO), interleukin (IL)-6, IL-12, C-X-C motif chemokine ligand (CXL10), Janus kinase 2 (JAK2), interferon
regulatory factor 9 (IRF9), Th17 and ovalbumin (OVA)-specific antibodies. They also modulate ligand-dependent responsiveness of toll-like receptor
(TLR) leading to the up- or downregulation of NF-kB, IL-8 and monocyte chemotactic protein 1 (MCP-1) and affect various metabolic pathways.
SCFA-modulated micro RNAs (miRNAs) act on class switch recombination (CSR) of B-cells, peptide transporter 1 (PepT1) and tumor necrosis factor
a (TNFa) transcription, as well as pyroptosis. miRNAs upregulate superoxide dismutase (SOD), p21, cancer cell apoptosis, Akkermansia muciniphila
abundance and impact the gut microbiome composition. SCFAs regulate long non-coding RNAs (lncRNAs) involved in rapamycin (mTOR) signaling,
promoting resident macrophages and renal function via decreasing antigen processing and TNF signaling.
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4.1 DNA methylation

Epigenetic modifications of chromatin comprise both

modification of DNA and of chromatin-associated proteins.

Regarding DNA modification, the main epigenetic mechanism is

the methylation or demethylation of genetic material. Methylated

DNA is the result of additional methyl group attachment by DNA

methyltransferases (DNMTs) to cytosine-phosphate-guanine

(CpG) islands. Hereby, increased methylation of DNA is

associated with a more compact chromatin structure and

therefore decreased transcriptional activity, which can be

beneficial in the context of obesity-associated genes and those

involved in inflammatory responses (211).

DNA methylation by the microbiota plays an important role in

intestinal homeostasis and balanced immune response. Microbiota-

dependent DNA demethylation was shown to regulate the function

of intestinal epithelial cells (IECs) and immune cells involved in

innate and adaptive immune responses (212). Importantly, these

epigenetic regulations affect the expression and responsiveness of

TLR-4 upon LPS encounter and promote the proliferation of

intestinal Tregs and natural killer lymphocytes (213–215).

Moreover, IBD-associated mucosal inflammation is associated

with aberrant DNA methylation whereas SCFAs exhibit anti-

inflammatory effects in IBD via IECs-induced changes in the

transcription of inflammatory markers (216–218). On the other

hand, gut dysbiosis, the presence of bacterial pathogens or LPS

affect epigenetic mechanisms connected to inflammation and

metabolism by acting on host DNMTs or by producing the

enzyme itself (219–222).

Mouse studies also reveal the direct role of SCFAs in the

epigenetic regulation of obesity-associated proteins (223).

Supplementation of acetate, propionate, and butyrate in mice was

able to reverse the reduced expression of adiponectin and resistin in

adipose tissue of HFD-fed mice by lowering the expression of DNA

methyltransferases and methyl-CpG-binding domain protein 2

(MBD2). Since adiponectin is also considered to have insulin

sensitivity-promoting, anti-inflammatory, and anti-atherogenic

properties, there is great interest in increasing its expression in

obesity and chronic inflammatory conditions (224). On the other

hand, resistin levels above the norm are associated with obesity and

T2D, whereas normal levels do not exhibit harmful effects (225, 226).

Human studies also confirm disrupted DNA methylation in the

adipose tissue of metabolically ill or overweight subjects and point to

the probable role of SCFA due to the association of methylation status

and abundance of SCFA-producing bacteria (227, 228). However, in

yet another mouse study, antibiotic-induced changes in the gut

microbiome lead to weight loss and increased adiponectin and

resistin in an SCFA-independent manner (229).

Moreover, DNA methylation can be also influenced by other

bacterial metabolites serving as cofactors of epigenetic enzymes,

such as B group vitamins and polyamines (230–232). Into the

bargain, the impact of SCFAs on host health appears to be distinct

between lean and obese individuals. While SCFAs seem to prevent

lean individuals from obesity and metabolic disturbances, in obese

individuals, SCFA-mediated DNA methylation makes them more

prone to develop T2D (233). Moreover, epigenetic alterations
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induced during early gut microbiome development were shown to

have a great impact on individual predispositions regarding gut

microbiome composition and metabolic and immunological profile

(234–236). Importantly, early intervention in gut microbiome-

induced epigenetic mechanisms via maternal probiotic intake

shows great potential in modulating short- and long-term

epigenetic patterns that beneficially regulate health (237, 238).
4.2 Histone modification

Amongst all epigenetic modifications, histone acetylation has

been most thoroughly studied and the role of SCFAs in this context

is also better understood. Histone acetylation is regulated by two

catalytic enzymes – histone acetyltransferase (HAT) and histone

deacetylase (HDAC). The latter is responsible for deacetylation and

poses the main target of SCFAs. As previously mentioned, SCFAs

influence the metabolism and increase the availability of metabolic

substrates needed for histone acetylation, such as acetyl-CoA (239).

Other post-translational histone modifications mediated by

different SCFAs are methylation, ethylation, crotonylation,

propionilation, butyrylation and hydroxybutyrylation, but these

mechanisms just begin to be understood (239–244).

Similarly as DNA methylation, histone methylation of

immunoregulatory and antioxidant genes is distinct in IBD

patients and modulated by the gut microbiota (245). However,

histone acetylation/deacetylation is a better studied process of

epigenetic histone modification. Bacterial metabolites were shown

to affect the acetylation status of genes from IECs and macrophages,

modulating antimicrobial immune response (246, 247). Amongst

all SCFAs, butyrate appears to be the strongest HDAC inhibitor and

by this was shown to regulate the immune system and metabolism

systemically. Mice and in vitro experiments show that the HDAC-

inhibiting activity of butyrate increases antimicrobial activity of

macrophages while suppressing nitric oxide (NO) expression and

thus greater flare up of inflammation (247). In another study,

antimicrobial peptides (AMPs) were shown to be upregulated via

butyrate-induced HDAC inhibition, enhancing targeted pathogen

elimination (248). Importantly, HDAC inhibition by butyrate was

shown to induce the anti-inflammatory and resolutive macrophage

M2 phenotype and generate tolerance towards LPS by

downregulating NO, IL-6 and IL-12 (249, 250). Similarly, other

studies show selective histone deacetylation of inflammatory genes

during LPS-induced immune response in epithelial cells,

suppressing inflammatory pathways induced by C-X-C motif

chemokine ligand 10 (CXL10), Janus kinase 2 (JAK2) and

interferon regulatory factor 9 (IRF9) (251). Another study points

to the regulatory effect of SCFAs on NF-ĸB expression, dependent

on the absence or presence of TLR ligands (252). In the latter case,

SCFAs enhanced NF-ĸB expression during TLR stimulation, but

downregulated the chemotactic cytokines IL-8 and monocyte

chemotactic protein 1 (MCP-1). Thus SCFA-mediated histone

modifications affecting the immune system enhances defenses

against pathogens whilst sparing the intestine from excessive

inflammation – relevant in counteracting chronic low-

grade inflammation.
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Histone modifications also play an important role in the

immunoregulation of adaptive immune cells. SCFAs were shown

to influence genes responsible for class switching in B cells via

HDAC inhibition, reducing affinity to the ovalbumin (OVA)

allergen (253). In addition to GPR signaling, HDAC inhibition

at the forkhead box P3 (FOXP3) locus promotes differentiation

and proliferation of Tregs, a key mediator of tolerance and

homeostasis (30, 254–256). Interestingly, SFCAs also exhibit

synergistic effects on intestinal immunity via GPR stimulation

and HDAC inhibition in T cells and ILCs, resulting in increased

expression of the gut barrier-promoting IL-22 (257). Moreover,

butyrate was shown to decrease T helper cell (Th) 17 expression

and increase Th1 via histone acetylation (258, 259). On top of that,

SCFA enhance interferon g (IFNg) expression in cytotoxic

T lymphocytes (CTLs) via HDAC inhibition, crucial for

mediating anti-tumor effects (260).

SCFAs were also shown to affect histone acetylation and

methylation beyond the intestine, as they epigenetically regulate

gene expression in the liver, kidney and fat tissue (208, 261). Mice

fed a Western diet showed decreased levels of SCFA resulting in

altered histone modifications ultimately regulating hepatic

metabolism via PPAR signaling, genes involved in insulin and

cholesterol pathways, as well as genes related to adaptive

immunity, lipid, retinol, and amino acid metabolism (208).

Interestingly, SCFA supplementation of acetate, propionate, and

butyrate was able to reverse the epigenetic phenotype to such a

degree that it resembled the one from conventionally raised mice.

Although the sensitive role of SCFAs in modulating the

immune system and metabolism becomes clear in the case of

histone modification, the effect of SCFAs is not entirely

straightforward. Different bacterial metabolites can be

antagonistic and can act differently on HDACs. Although it is

generally thought that SCFAs act beneficially as HDAC inhibitors, it

was shown that butyrate can interfere with IBD-counteracting

inosi to l-1 ,4 ,5-tr iphopshate (INSP3)-mediated his tone

deacetylation (246). Moreover, Kespohl et al. suggest that the

beneficial action of butyrate might be dependent on its

concentration and immunological predispositions (262). For safe

and effective SCFA-mediated epigenetic regulation, It might be

necessary to formulate a personalized approach towards each

individual with regard to their metabolic status, immunologic and

microbiome profile.
4.3 Non-coding RNAs

Important regulators of gene expression are ncRNAs, which are

RNA molecules that are not coding for a protein and do not

undergo translation. Besides the housekeeping ncRNAs like

transfer RNA (tRNA) or ribosomal RNA (rRNA), there is a range

of regulatory RNAs. Regarding the latter, miRNAs are the most

abundant ncRNAs and also the best studied. miRNAs have around

20 nucleotides and regulate gene expression by binding to

complementary target messenger RNA (mRNA), which
Frontiers in Immunology 12
suppresses translation either by degradation or silencing of the

bound mRNA fragment.

Studies reveal a correlational relationship between bacteria,

SCFAs and miRNAs regulating inflammatory processes in the

intestine as well as in other organs (263–267). The gut microbiota

was also shown to downregulate proinflammatory cytokines and

the transport of proinflammatory bacterial peptides by peptide

transporter 1 (PepT1) via miRNA upregulation (268–270).

Moreover, probiotic strains producing SCFAs and lactate were

shown to modulate miRNA expression resulting in anti-

inflammatory and gut barrier-promoting effects (271). What is

more, high doses of butyrate and propionate were shown to

directly modulate B cell-intrinsic mechanisms of class switch

recombination (CSR) by targeting associated genes via the

upregulation of miRNAs (253). Not only did this limit

autoantibody production in mice but the manner in which

miRNAs were upregulated was the result of HDAC inhibition of

miRNA-encoding genes and thus was found to be a form of

epigenetic crosstalk. The same has been shown for DNA

methylation which can affect miRNA expression (272).

Interestingly, certain miRNAs can affect DNA methylation by

targeting DNMTs and ten-eleven translocation enzymes (TETs)

acting as methylation erasers (273–275) and this way can also

impact the expression of other miRNAs (276).

In addition, miRNAs also regulate the gut microbiome

composition and SCFA receptors showing the bidirectional

regulation of SCFAs and miRNAs (277–279). The same goes for

diet- and host-derived miRNAs, which were shown to affect gut

microbiota (280, 281). Moreover, several epigenetic mechanisms

can work in synergism as has been shown for SCFA-mediated

regulation of the expression of cyclin-dependent kinase inhibitor

p21 in human colonic cancer, which can be enhanced by miRNA

degradation and histone acetylation (282, 283). Synergistic

regulation was also found for several miRNAs and butyrate

regarding colon cancer cell apoptosis (284). Other bacterial

metabolites, such as tryptophan, were shown to control adiposity

and insulin sensitivity through miR-181 expression (285). Butyrate,

on the other hand, was shown to dampen inflammatory

dysregulations in T2D patients by decreasing pyroptosis and

TNF-a levels whilst increasing superoxide dismutase (SOD)

activity and A. muciniphila abundance (286, 287).

lncRNAs are RNA fragments with up to 200 nucleotides and

can regulate gene expression by various posttranslational protein

modifications such as protein phosphorylation, ubiquitination and

acetylation, as well as DNA methylation (288). They can also affect

miRNA expression and vice versa (288, 289). The gut microbiome

was shown to regulate lncRNAs within and beyond the intestine

(290, 291). Hereby, bacterial components such as LPS negatively

affect the host transcriptome and proteome, promoting

inflammatory processes and cancer development (292–294). On

the other hand, SCFAs were shown to suppress mTOR signaling

and induce macrophage differentiation into resident macrophages

(295, 296). LncRNA also play an important role in obesity,

regarding energy expenditure, appetite regulation, insulin
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sensitivity and other obesity-associated inflammatory conditions

(291, 297–300). SCFAs were hereby shown to regulate lncRNAs

preventing renal dysfunction of diabetic nephropathic mice by e.g.

decreasing antigen-processing and TNF signaling (301).

Recent studies also hint at the involvement of the gut

microbiome in regulating other non-coding RNAs, such as small

nuclear RNAs (snoRNAs), piwi-interacting RNAs (piRNAs) and

circular RNAs (circRNAs) (302–304). However, the underlying

mechanisms and possible role of SCFAs in this context remain to

be discovered.
5 Conclusion

Overall, the epigenetic activity of SCFAs shows great potential

in reversing the metabolic and immunological defects caused by

metabolic endotoxemia and thus break the vicious cycle of obesity

and inflammation. It is important to keep in mind, that the

treatment in adult, obese and chronically ill individuals requires a

long intervention time and personalized approach to overcome the

prevailing individual metabolic and immunological predispositions.

In order to find an effective strategy in humans, a synbiotic

containing fibers and beneficial bacterial key species but also

enriched in other SCFA-promoting substances and cofactors such

as lactate, B group vitamins and microelements could prove

efficacious. Nevertheless, diet and lifestyle should be an additional

angle to counteract obesity-associated low-grade inflammation, as

not only does it influence SCFA production but also conveys

distinct health-promoting effects that can have a synergistic effect,

which is desirable for the complex issues of obesity and

inflammation. This might give a better chance to reestablish

healthy interorgan crosstalk of myokines, cytokines and host

miRNAs derived from adipose tissue, skeletal muscle and liver, all

of which also influences the gut microbiota and its regulative

function. More long-term and standardized research is still

needed to better understand how to effectively modulate

metabolism and the immune system via SCFA-mediated
Frontiers in Immunology 13
epigenetic modification. However, in the long run, SCFA

treatment could become an accessible standard therapy for both

prevention and treatment of obesity and inflammation.
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75. Kjølbæk L, Benıt́ez-Páez A, Gómez Del Pulgar EM, Brahe LK, Liebisch G,
Matysik S, et al. Arabinoxylan oligosaccharides and polyunsaturated fatty acid effects
on gut microbiota and metabolic markers in overweight individuals with signs of
metabolic syndrome: A randomized cross-over trial. Clin Nutr. (2020) 39:67–79.
doi: 10.1016/j.clnu.2019.01.012

76. Miclotte L, Van de Wiele T. Food processing, gut microbiota and the globesity
problem. Crit Rev Food Sci Nutr . (2020) 60:1769–82. doi : 10.1080/
10408398.2019.1596878

77. Chassaing B, Koren O, Goodrich JK, Poole AC, Srinivasan S, Ley RE, et al.
Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic
syndrome. Nature. (2015) 519:92–6. doi: 10.1038/nature14232

78. Collins J, Robinson C, Danhof H, Knetsch CW, van Leeuwen HC, Lawley TD,
et al. Dietary trehalose enhances virulence of epidemic Clostridium difficile. Nature.
(2018) 553:291–4. doi: 10.1038/nature25178

79. Furuhashi H, Higashiyama M, Okada Y, Kurihara C, Wada A, Horiuchi K, et al.
Dietary emulsifier polysorbate-80-induced small-intestinal vulnerability to
indomethacin-induced lesions via dysbiosis. J Gastroenterol Hepatol. (2020) 35:110–
7. doi: 10.1111/jgh.14808

80. Harusato A, Chassaing B, Dauriat CJG, Ushiroda C, Seo W, Itoh Y. Dietary
emulsifiers exacerbate food allergy and colonic type 2 immune response through
microbiota modulation. Nutrients. (2022) 14:4983. doi: 10.3390/nu14234983
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Kopczyńska and Kowalczyk 10.3389/fimmu.2024.1380476
105. Pupa P, Apiwatsiri P, Sirichokchatchawan W, Pirarat N, Muangsin N, Shah
AA, et al. The efficacy of three double-microencapsulation methods for preservation of
probiotic bacteria. Sci Rep. (2021) 11:13753. doi: 10.1038/s41598-021-93263-z

106. Yoha KS, Nida S, Dutta S, Moses JA, Anandharamakrishnan C. Targeted
delivery of probiotics: perspectives on research and commercialization. Probiotics
Antimicrob Proteins. (2022) 14:15–48. doi: 10.1007/s12602-021-09791-7

107. Gao J, Sadiq FA, Zheng Y, Zhao J, He G, Sang Y. Biofilm-based delivery
approaches and specific enrichment strategies of probiotics in the human gut. Gut
Microbes. (2022) 14:2126274. doi: 10.1080/19490976.2022.2126274

108. Lu Y, Han S, Zhang S, Wang K, Lv L, McClements DJ, et al. The role of
probiotic exopolysaccharides in adhesion to mucin in different gastrointestinal
conditions. Curr Res Food Sci. (2022) 5:581–9. doi: 10.1016/j.crfs.2022.02.015

109. Miyamoto J, Shimizu H, Hisa K, Matsuzaki C, Inuki S, Ando Y, et al. Host
metabolic benefits of prebiotic exopolysaccharides produced by Leuconostoc
mesenteroides. Gut Microbes. (2023) 15:2161271. doi: 10.1080/19490976.2022.2161271

110. Athalye-Jape G, Esvaran M, Patole S, Simmer K, Nathan E, Doherty D, et al.
Effect of single versus multistrain probiotic in extremely preterm infants: a randomised
trial. BMJ Open Gastroenterol. (2022) 9:e000811. doi: 10.1136/bmjgast-2021-000811

111. Patole S, Keil AD, Chang A, Nathan E, Doherty D, Simmer K, et al. Effect of
Bifidobacterium breve M-16V supplementation on fecal bifidobacteria in preterm
neonates–a randomised double blind placebo controlled trial. PloS One. (2014) 9:
e89511. doi: 10.1371/journal.pone.0089511

112. Alcon-Giner C, Dalby MJ, Caim S, Ketskemety J, Shaw A, Sim K, et al.
Microbiota supplementation with bifidobacterium and lactobacillus modifies the
preterm infant gut microbiota and metabolome: an observational study. Cell Rep
Med. (2020) 1:100077. doi: 10.1016/j.xcrm.2020.100077

113. Dogra SK, Chung CK, Wang D, Sakwinska O, Colombo Mottaz S, Sprenger N.
Nurturing the early life gut microbiome and immune maturation for long term health.
Microorganisms. (2021) 9:2110. doi: 10.3390/microorganisms9102110

114. Lynch CMK, Cowan CSM, Bastiaanssen TFS, Moloney GM, Theune N, van de
Wouw M, et al. Critical windows of early-life microbiota disruption on behaviour,
neuroimmune function, and neurodevelopment. Brain Behavior Immun. (2023)
108:309–27. doi: 10.1016/j.bbi.2022.12.008

115. Maier L, Goemans CV, Wirbel J, Kuhn M, Eberl C, Pruteanu M, et al.
Unravelling the collateral damage of antibiotics on gut bacteria. Nature. (2021)
599:120–4. doi: 10.1038/s41586-021-03986-2

116. Rashid M-U, Zaura E, Buijs MJ, Keijser BJF, Crielaard W, Nord CE, et al.
Determining the long-term effect of antibiotic administration on the human normal
intestinal microbiota using culture and pyrosequencing methods. Clin Infect Dis. (2015)
60:S77–84. doi: 10.1093/cid/civ137

117. Liu P, Zhang Y, Zhang Z, Huang X, Su X, Yang S, et al. Antibiotic-induced
dysbiosis of the gut microbiota impairs gene expression in gut-liver axis of mice. Genes.
(2023) 14:1423. doi: 10.3390/genes14071423

118. Stecher B, Hardt W-D. Mechanisms controlling pathogen colonization of the
gut. Curr Opin Microbiol. (2011) 14:82–91. doi: 10.1016/j.mib.2010.10.003

119. Kadry AA, El-Antrawy MA, El-Ganiny AM. Impact of short chain fatty acids
(SCFAs) on antimicrobial activity of new b-lactam/b-lactamase inhibitor combinations
and on virulence of Escherichia coli isolates. J Antibiot. (2023) 76:225–35. doi: 10.1038/
s41429-023-00595-1

120. Zhang S, Dogan B, Guo C, Herlekar D, Stewart K, Scherl EJ, et al. Short chain
fatty acids modulate the growth and virulence of pathosymbiont escherichia coli and
host response. Antibiotics. (2020) 9:462. doi: 10.3390/antibiotics9080462

121. Guinan J, Wang S, Hazbun TR, Yadav H, Thangamani S. Antibiotic-induced
decreases in the levels of microbial-derived short-chain fatty acids correlate with
increased gastrointestinal colonization of Candida albicans. Sci Rep. (2019) 9:8872.
doi: 10.1038/s41598-019-45467-7

122. Zhao X, Jiang Z, Yang F, Wang Y, Gao X, Wang Y, et al. Sensitive and simplified
detection of antibiotic influence on the dynamic and versatile changes of fecal short-
chain fatty acids. PloS One. (2016) 11:e0167032. doi: 10.1371/journal.pone.0167032

123. Holota Y, Dovbynchuk T, Kaji I, Vareniuk I, Dzyubenko N, Chervinska T, et al.
The long-term consequences of antibiotic therapy: Role of colonic short-chain fatty
acids (SCFA) system and intestinal barrier integrity. PloS One. (2019) 14:e0220642.
doi: 10.1371/journal.pone.0220642

124. van Staa TP, Palin V, Li Y, Welfare W, Felton TW, Dark P, et al. The
effectiveness of frequent antibiotic use in reducing the risk of infection-related
hospital admissions: results from two large population-based cohorts. BMC Med.
(2020) 18:40. doi: 10.1186/s12916-020-1504-5

125. Shekhar S, Petersen FC. The dark side of antibiotics: adverse effects on the infant
immune defense against infection. Front Pediatr. (2020) 8:544460. doi: 10.3389/
fped.2020.544460

126. Vallianou N, Dalamaga M, Stratigou T, Karampela I, Tsigalou C. Do antibiotics
cause obesity through long-term alterations in the gut microbiome? A review of current
evidence. Curr Obes Rep. (2021) 10:244–62. doi: 10.1007/s13679-021-00438-w

127. Imhann F, Bonder MJ, Vich Vila A, Fu J, Mujagic Z, Vork L, et al. Proton pump
inhibitors affect the gut microbiome. Gut. (2016) 65:740–8. doi: 10.1136/gutjnl-2015-310376

128. McDonald EG, Milligan J, Frenette C, Lee TC. Continuous proton pump
inhibitor therapy and the associated risk of recurrent clostridium difficile infection.
JAMA Internal Med. (2015) 175:784–91. doi: 10.1001/jamainternmed.2015.42
Frontiers in Immunology 16
129. Vich Vila A, Collij V, Sanna S, Sinha T, Imhann F, Bourgonje AR, et al. Impact
of commonly used drugs on the composition and metabolic function of the gut
microbiota. Nat Commun. (2020) 11:362. doi: 10.1038/s41467-019-14177-z

130. de la Cuesta-Zuluaga J, Mueller NT, Corrales-Agudelo V, Velásquez-Mejıá EP,
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