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Abstract: Sulfur (S), one of the crucial macronutrients, plays a pivotal role in fundamental plant pro-
cesses and the regulation of diverse metabolic pathways. Additionally, it has a major function in plant
protection against adverse conditions by enhancing tolerance, often interacting with other molecules
to counteract stresses. Despite its significance, a thorough comprehension of how plants regulate
S nutrition and particularly the involvement of phytohormones in this process remains elusive.
Phytohormone signaling pathways crosstalk to modulate growth and developmental programs in a
multifactorial manner. Additionally, S availability regulates the growth and development of plants
through molecular mechanisms intertwined with phytohormone signaling pathways. Conversely,
many phytohormones influence or alter S metabolism within interconnected pathways. S metabolism
is closely associated with phytohormones such as abscisic acid (ABA), auxin (AUX), brassinosteroids
(BR), cytokinins (CK), ethylene (ET), gibberellic acid (GA), jasmonic acid (JA), salicylic acid (SA), and
strigolactones (SL). This review provides a summary of the research concerning the impact of phyto-
hormones on S metabolism and, conversely, how S availability affects hormonal signaling. Although
numerous molecular details are yet to be fully understood, several core signaling components have
been identified at the crossroads of S and major phytohormonal pathways.
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1. Introduction

Plants, being immobile organisms, have developed unique regulatory mechanisms to
adjust their growth and development in response to changing environmental conditions.
Nutrients serve as crucial signals for plants, transmitting information about the environ-
ment to modulate internal programs governing growth and development. The soil exhibits
substantial fluctuations in nutrient availability, even over short distances. Consequently,
plants have evolved mechanisms to adapt to the diverse nutrient supply in natural envi-
ronments. Sulfur (S) is an essential element playing a vital role in various physiological
processes. S is primarily absorbed in the form of sulfate from the soil by specialized sulfate
transporter proteins (SULTRs) [1] (Figure 1). Subsequently, it undergoes translocation to
plastids in leaves, also via SULTR transporters, where it is activated to generate adenosine
5′-phosphosulfate (APS), in a process facilitated by ATP sulfurylase [2]. APS is reduced
by APS reductase to sulfite, which is then reduced to sulfide by sulfite reductase (SIR).
Alternatively, APS is further activated by APS kinase to form 3′-phosphoadenylylsulfate
(PAPS), which is necessary for various sulfation reactions in secondary metabolism [3].
Sulfide is incorporated into the carbon skeleton of O-acetylserine (OAS) through the activity
of serine acetyltransferases (SATs) and O-acetylserine(thiol)lyase (OASTL), resulting in
the production of cysteine [4]. Cysteine is the first S-containing organic compound and
a central hub for the synthesis of other compounds, like methionine, sulfolipides, vita-
mins, coenzymes, and prosthetic groups (iron–S clusters, thiamine, lipoic acid, coenzyme
A, etc.) [5,6]. The smallest S-containing molecule is hydrogen sulfide (H2S), which is a
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gasotransmitter regulating many critical processes due to its high chemical reactivity [7].
H2S production occurs mainly in chloroplasts thanks to SIR activity; however, it can also
be synthesized in mitochondria by cyanoalanine synthase and in cytosol by L-cysteine
desulfhydrase (LCD and DES1) [8]. Metabolites associated with stress resistance in plants,
such as glutathione (GSH), phytochelatins, defense peptides, and glucosinolates, also con-
tain S [9,10]. GSH is a major cell redox status regulator, and it serves as the primary means
of storing and transporting organic S in plants [6]. The circulation of S between plants and
the environment is of great importance for the nutrition and health of humans and animals
because animals cannot synthesize S-containing amino acids on their own. They rely on
obtaining them through their diet, emphasizing the crucial interplay between plants and
the environment for overall nutritional well-being [11].

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 2 of 22 
 

 

acid, coenzyme A, etc.) [5,6]. The smallest S-containing molecule is hydrogen sulfide (H2S), 
which is a gasotransmitter regulating many critical processes due to its high chemical re-
activity [7]. H2S production occurs mainly in chloroplasts thanks to SIR activity; however, 
it can also be synthesized in mitochondria by cyanoalanine synthase and in cytosol by L-
cysteine desulfhydrase (LCD and DES1) [8]. Metabolites associated with stress resistance 
in plants, such as glutathione (GSH), phytochelatins, defense peptides, and glucosin-
olates, also contain S [9,10]. GSH is a major cell redox status regulator, and it serves as the 
primary means of storing and transporting organic S in plants [6]. The circulation of S 
between plants and the environment is of great importance for the nutrition and health of 
humans and animals because animals cannot synthesize S-containing amino acids on their 
own. They rely on obtaining them through their diet, emphasizing the crucial interplay 
between plants and the environment for overall nutritional well-being [11].  

 
Figure 1. The scheme of plant sulfate assimilation. The enzymes of S metabolism are in light-yellow 
rectangles and are as follows: sulfate transporter (SULTR), ATP sulfurylase (ATPS), adenosine 5′-
phosphosulfate reductase (APR), sulfite reductase (SIR), serine acetyltransferase (SAT), O-acetyl-
thiol-lyase (OAS-TL), cysteine desulfhydrase (LCD, DES), APS kinase (APK), and sulfotransferase 
(SOT). The metabolites in the scheme are as follows: 5′-phosphosulfate (APS), 3′-phosphoade-
nylylsulfate (PAPS), O-acetylserine (OAS), cysteine (CYS), glutathione (GSH), and glucosinolates 
(GSLs). Refer to the text for a detailed description. 
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nate growth, development, and responses to environmental stimuli. They often interact 
in complex signaling networks, and their levels and activities are finely tuned to orches-
trate various aspects of plant growth. The efficient use of nutrients is intricately connected 
to the signaling pathways of phytohormones, and therefore, they play a crucial role in 
regulating the assimilation, transport, and metabolism of S. On the other hand, some of 
the phytohormones require S-containing compounds for their synthesis. The network of 
mutual relations between phytohormones and S metabolism, according to the current lit-
erature, is the subject of this review and is depicted in Figure 2. 

Figure 1. The scheme of plant sulfate assimilation. The enzymes of S metabolism are in light-yellow
rectangles and are as follows: sulfate transporter (SULTR), ATP sulfurylase (ATPS), adenosine 5′-
phosphosulfate reductase (APR), sulfite reductase (SIR), serine acetyltransferase (SAT), O-acetyl-thiol-
lyase (OAS-TL), cysteine desulfhydrase (LCD, DES), APS kinase (APK), and sulfotransferase (SOT).
The metabolites in the scheme are as follows: 5′-phosphosulfate (APS), 3′-phosphoadenylylsulfate
(PAPS), O-acetylserine (OAS), cysteine (CYS), glutathione (GSH), and glucosinolates (GSLs). Refer to
the text for a detailed description.

Phytohormones, also known as plant hormones or plant growth regulators, are chem-
ical messengers that play crucial roles in regulating various physiological processes in
plants. In contrast to plant growth regulators that are synthetic, phytohormones are nat-
ural regulators, which are produced by the plant itself. Phytohormones help coordinate
growth, development, and responses to environmental stimuli. They often interact in
complex signaling networks, and their levels and activities are finely tuned to orchestrate
various aspects of plant growth. The efficient use of nutrients is intricately connected
to the signaling pathways of phytohormones, and therefore, they play a crucial role in
regulating the assimilation, transport, and metabolism of S. On the other hand, some of
the phytohormones require S-containing compounds for their synthesis. The network
of mutual relations between phytohormones and S metabolism, according to the current
literature, is the subject of this review and is depicted in Figure 2.
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The synthesis of ABA is connected with S availability. S deficiency results in a reduced 
rate of cysteine synthesis, subsequently leading to lower levels of ABA and diminished 
tolerance to abiotic stress [13]. Moreover, sulfate has been shown to impact ABA signaling 
from roots to shoots, influencing stomatal closure during drought conditions [14]. How-
ever, the association between ABA synthesis and S assimilation is somewhat indirect. Cys-
teine availability plays a crucial role in ensuring an adequate supply of a coenzyme for 
abscisic aldehyde oxidase, AAO3 [15] (Figure 2). This enzyme requires a molybdenum 
cofactor that has undergone sulfurylation, a process carried out by a specific sulfurase 
called ABA3, where cysteine serves as the S donor. ABA3, in turn, activates AAO3, which 
catalyzes the final step in ABA biosynthesis [16]. Additionally, increased sulfate and cys-
teine levels enhance the transcription of 9-cis-epoxycarotenoid dioxygenase 3 (NCED3), 
which provides a substrate precursor for AAO3, thus also contributing to ABA biosynthe-
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Figure 2. The interplay of sulfur (S) and phytohormones. The enzymes of S metabolism are in
light-yellow circles and are as follows: sulfotransferase (SOT), sulfate transporter (Sultr), ATP sulfury-
lase (ATPS), adenosine 5′-phosphosulfate reductase (APR), serine acetyltransferase (SAT), O-acetyl-
thiol-lyase (OAS-TL), cysteine desulfhydrase (LCD, DES), γ-glutamylcysteine synthetase (γECS),
glutathione reductase (GR), and γ-glutamylcyclotransferase (GGCT). The phytohormones are in
brown circles and are as follows: abscisic acid (ABA), auxin (AUX), brassinosteroids (BR), cytokinins
(CK), ethylene (ET), gibberellic acid (GA), jasmonic acid (JA), and salicylic acid (SA). The S-containing
metabolites that either regulate phytohormone levels or are affected by them are as follows: sulfur
dioxide (SO2), hydrogen sulfide (H2S), cysteine (CYS), glutathione (GSH), and glucosinolates (GSLs).
Positive and negative effects are indicated by blue and red lines, respectively. Refer to the text for a
detailed description.

2. Abscisic Acid Crosstalk with S Metabolism

Abscisic acid (ABA), recognized as a stress hormone, plays a crucial role in regulating
various physiological processes, including cell division, seed germination, organ senescence,
stomatal movement, and the response and adaptation to environmental stress [12]. The
synthesis of ABA is connected with S availability. S deficiency results in a reduced rate of
cysteine synthesis, subsequently leading to lower levels of ABA and diminished tolerance
to abiotic stress [13]. Moreover, sulfate has been shown to impact ABA signaling from
roots to shoots, influencing stomatal closure during drought conditions [14]. However,
the association between ABA synthesis and S assimilation is somewhat indirect. Cysteine
availability plays a crucial role in ensuring an adequate supply of a coenzyme for abscisic
aldehyde oxidase, AAO3 [15] (Figure 2). This enzyme requires a molybdenum cofactor
that has undergone sulfurylation, a process carried out by a specific sulfurase called ABA3,
where cysteine serves as the S donor. ABA3, in turn, activates AAO3, which catalyzes
the final step in ABA biosynthesis [16]. Additionally, increased sulfate and cysteine levels
enhance the transcription of 9-cis-epoxycarotenoid dioxygenase 3 (NCED3), which provides
a substrate precursor for AAO3, thus also contributing to ABA biosynthesis [14] (Figure 3).
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sultr3 quintuple mutant, with the complete knockout of all five members of the subfamily 
of chloroplast sulfate transporters, the levels of cysteine and ABA were reduced by ∼67 
and ∼20% from the wild-type levels, respectively, and this led to the abolishment of sto-
matal closure [18]. The seed germination of the sultr3 quintuple mutant displays height-
ened sensitivity to external ABA and salt stress, yet supplementation with sulfide restores 
its normal germination rate. In certain situations, particularly during salt and drought 
stress, ABA is important in signaling and has a substantial influence on sulfate assimila-
tion. These conditions are often accompanied by an increased production of reactive oxy-
gen species (ROS), leading to a reduced S pool and an elevated demand for GSH. Notably, 
various enzymes involved in sulfate assimilation, such as APS reductase, ATP sulfurylase, 
sulfite reductase, the cytosolic isoform of O-acetylo-thiolyase, and sulfate transporters 
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Figure 3. Model depicting the role of sulfur (S) metabolism in abscisic acid (ABA) biosynthesis and
the regulation of stomatal closure. Enzymes catalyzing reactions (black arrows) in S metabolism are
shown in yellow boxes (ATP sulfurylase (APS), adenosine 5′-phosphosulfate reductase (APR), sulfite
reductase (SIR), cysteine desulfhydrase (DES), γ-glutamylcysteine synthetase (γECS)), while enzymes
of ABA synthesis and signaling for stomatal closure are shown in blue boxes. The stimulating effects of
metabolites or enzymes on downstream reactions are depicted as blue arrows, while red ones indicate
a negative impact. Cysteine (CYS) synthesis is limited by sulfate availability, and it affects abscisic
aldehyde oxidase (AAO3) activity, serving as the S donor to its cofactor (MoCo-S) in the reaction
catalyzed by a sulfurase called ABA3. Moreover, elevated levels of cysteine boost the transcription of
9-cis-epoxycarotenoid dioxygenase 3 (NCED3), thereby augmenting the availability of the substrate
precursor for AAO3. PYR/PYL acts as an ABA receptor and regulates ABI2 phosphatase activity,
which, in turn, activates SnRK2;6 kinase. SnRK2;6 phosphorylates RBOHF oxidase and activates
the anion transporter SLAC1 by phosphorylation at multiple residues [13]. H2S produced from
cysteine is needed for protein persulfhydration, positively affecting their activity (RBOHD oxidase
and ABA-INSENSITIVE 4 transcription factor (ABI4)). Oxidative burst and ROS production, together
with anion efflux, are necessary for stomatal closure.

The upregulation of chloroplast sulfate transporter SULTR3;1 transcription in roots
under exogenous ABA application suggests its essential role in the coregulation of plastid
sulfate uptake [17]. The loss of sulfate transporter3;1 function in sultr3;1 mutant led to
notable reductions in both AAO3 activity and ABA levels in seedlings and seeds [15]. In a
sultr3 quintuple mutant, with the complete knockout of all five members of the subfamily
of chloroplast sulfate transporters, the levels of cysteine and ABA were reduced by ∼67 and
∼20% from the wild-type levels, respectively, and this led to the abolishment of stomatal
closure [18]. The seed germination of the sultr3 quintuple mutant displays heightened
sensitivity to external ABA and salt stress, yet supplementation with sulfide restores its
normal germination rate. In certain situations, particularly during salt and drought stress,
ABA is important in signaling and has a substantial influence on sulfate assimilation. These
conditions are often accompanied by an increased production of reactive oxygen species
(ROS), leading to a reduced S pool and an elevated demand for GSH. Notably, various
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enzymes involved in sulfate assimilation, such as APS reductase, ATP sulfurylase, sulfite
reductase, the cytosolic isoform of O-acetylo-thiolyase, and sulfate transporters (SULTR1;2,
3;1, 3;4, and 4;1), are induced by salt stress [15,19,20]. Surprisingly, this transcriptional
regulation does not involve the same mechanisms as salt stress signaling, which includes
both ABA-dependent and ABA-independent pathways [21]. While O-acetylo-thiol-lyase is
induced by salt in an ABA-dependent manner, the regulation of APS reductase by salt is
independent of ABA [20,22].

The widely recognized function of H2S is its involvement in the regulation of stomatal
opening. This has been thoroughly examined in a recent review [23] and is depicted in
Figure 3. The control of stomatal opening exhibits intermittent patterns in mutants lacking
the enzyme responsible for H2S production—DES1 [24]. Pretreatment with sodium hydro-
sulfide (NaHS), a H2S precursor, not only induced the transcription of ABA receptors during
drought stress but also initiated the sulfhydration (or persulfidation, a posttranslational
modification) of ABA receptors, namely, Pyrabactin Resistance 1 (PYR1) and Pyrabactin
Resistance Like 1 (PYL1) [25]. Likewise, in Arabidopsis des1 knockout mutants with im-
paired H2S production, this modification was diminished. Also, the persulfidation of
SNF1-Related Protein Kinase2.6 (SnRK2.6), which acts as a core component of ABA signal-
ing that controls stomatal movements, was recently reported [26]. The external application
of ABA induces the synthesis of H2S, indicating the presence of intricate crosstalk between
these two signaling molecules under both drought and heat stress conditions [27]. DES1
itself was also shown to be necessary for the expression of several ABA biosynthetic genes,
such as ZEAXANTHIN DEEPOXYDASE (ZEP), NCED3, AAO3, and ABA3 [28]. Another
study unveiled that ABSCISIC ACID INSENSITIVE 4 (ABI4), a vital transcription factor
in the ABA signaling cascade, plays a role in mediating the interaction between ABA and
H2S at the transcriptional level [29]. ABA accumulation induces a significant production of
H2S, resulting in the persulfidation of ABI4 at Cys250. This persulfidation enables ABI4
to bind to the promoter of MITOGEN-ACTIVATED PROTEIN KINASE KINASE KINASE
18 (MAPKKK18), which propagates the MAPK signaling cascade induced by ABA [30].
ABI4 also requires persulfidation to bind to the promoter of DES1 and activate its transcrip-
tion, thus forming a regulatory loop. This, in turn, contributes to stomatal closure via the
ABA-dependent signaling cascade (Figure 3).

Furthermore, stomata are closed in the cad2 mutant, characterized by reduced GSH
levels [31,32]. Decreasing GSH enhanced ABA-induced stomatal closure, while the produc-
tion of ROS in guard cells was not affected. Thus, GSH is a negative modulator of a signal
component other than ROS production in the ABA signal pathway [31]. Another report has
shown that this phenomenon is rather connected with the accumulation of cysteine, which
is not consumed for GSH production but affects ABA biosynthesis in the cad2 mutant [13].
On the other hand, the overexpression of the gene encoding γ-glutamylcysteine synthetase,
a rate-limiting enzyme in GSH biosynthesis, led to notable decreases in both stomatal
aperture and density and, in turn, increased tolerance to drought stress in transgenic Ara-
bidopsis [33]. Therefore, to ensure the proper functioning of ABA, a continuous and steady
supply of cysteine is essential. Recently, it was demonstrated that peroxisome-localized
sulfite oxidase (SO), which oxidizes excess sulfite to sulfate, has a role in stomatal open-
ing [34]. Sulfite application limited sulfate- and ABA-induced stomatal closure in a SO
knockdown Arabidopsis mutant and resulted in significant water loss. At the same time,
APS reductase activity was increased, leading to the enhanced production of internal sulfite,
further increasing stomatal aperture and water loss.

The accumulation of ABA induces the negative role of the glutathione S-transferase
GSTU17 in stress tolerance by impacting the GSH pool [35]. This suggests a more profound
effect of ABA on the control of S metabolism under stress conditions [4]. ABA plays a
crucial role in maintaining the redox state by elevating the level of GSH in Arabidopsis [36].
Glutathione peroxidase (GPX) is an antioxidant enzyme utilizing GSH to protect plants
from oxidative stress. Arabidopsis gpx3 mutants, which lack GPX activity, are insensitive
to ABA during seed germination due to the modulation of the activity of ABI2 phos-
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phatase [37]. GPX3 physically binds to ABI2 to inactivate it by regulating its redox state.
Glutaredoxins (GRXs), thiol-disulfide oxidoreductases that catalyze the reversible reduction
of disulfide bonds in proteins using GSH, have been implicated as negative regulators of
ABA signaling during seed germination/preharvest sprouting [38]. Most probably, GRXs
affect the level of H2O2, which is known to positively regulate ABA signaling and thereby
inhibit seed germination.

3. Auxin Crosstalk with S Metabolism

Auxins (AUXs) are pivotal plant hormones that exert central control over various
aspects of plant growth and development, effectively coordinating responses to diverse
environmental conditions [39]. Transcriptome studies have revealed that S deficiency can
trigger the expression of genes related to the most common among AUXs—indole-3-acetic
acid (IAA) synthesis [40]. This suggests a potential increase in AUX levels, consequently
contributing to enhanced root development in Arabidopsis under S-deficient conditions.
Glucosinolates, major secondary S metabolites in the Brassicaceae family, are decomposed
into sulfate and indole-3-acetonitrile (IAN) by myrosinase action [41] (Figure 4). IAN can
be converted into IAA under the action of nitrilase (NIT). Three out of the four nitrilases
present in Arabidopsis (NIT1, NIT2, and NIT3) can catalyze this reaction [42]. Under
S-deficient conditions, the expression of NIT3 increases, thus promoting the conversion
of glucosinolates to IAN and then to IAA. It was therefore believed that the synthesis
of AUX is heightened to stimulate root development in Arabidopsis when subjected to
S-deficient conditions [43] (Figure 4). However, no disparity in AUX content has been
observed in plants growing under S-deficient conditions compared to those in S-sufficient
conditions [43]. Other studies have demonstrated that the overexpression of AUX-related
genes in response to S deficiency leads to alterations in numerous metabolic processes in
plants while not influencing S metabolism [44]. Under the exogenous application of AUX,
the S-deficiency-activated expression of β-glucosidase 28 (BGLU28), the major catabolic
enzyme of glucosinolates, is downregulated [45] (Figure 4). Through the utilization of
the DR5::GUS reporter Arabidopsis line responding to AUX levels, it was discovered
that the inhibition of lateral root development under S deficiency stems from decreased
AUX synthesis or reduced AUX sensitivity. This finding suggests a negative regulatory
role for AUX in plants’ response to S deficiency [45]. Hence, it is plausible that AUX
regulates root morphology under S-deficient conditions through both positive and negative
feedback pathways [46]. The root levels of cysteine, GSH, and IAA exhibit a positive
correlation with external sulfate supply within the physiological range, thereby influencing
the root system architecture of Arabidopsis plants [47]. Additionally, low sulfate levels
lead to the downregulation of genes associated with AUX transport while promoting the
accumulation of PLT1 and PLT2 proteins, encoding two AP2 transcription factors essential
for root stem cell niche patterning [47]. In a new report, the role of S deficiency-induced
SULFATE UTILIZATION EFFICIENCY 4 (SUE4), a novel plasma membrane-localized
protein, in primary root elongation is described [48]. The interaction of SUE4 with the polar
AUX transporter PIN1 leads to reduced levels of the PIN1 protein, possibly through 26S
proteasome-mediated degradation, consequently diminishing AUX transport to the root
tips. This process ultimately facilitates primary root elongation (Figure 4).

Alongside the positive regulation pathway, where S deficiency boosts root growth by
elevating AUX synthesis, there exists an AUX-related transcription factor IAA28-mediated
negative regulation pathway. This pathway serves to impede the augmentation of plant
root development under S-deficient conditions, thereby initiating a negative feedback
regulation mechanism to restrict root growth [46]. Elevated AUX levels lead to alterations
in cell calcium ion concentrations, subsequently upregulating the expression of calmod-
ulin. Calmodulin, in turn, interacts with IAA28, potentially resulting in the inhibition of
AUX-induced gene expression [49] (Figure 4). A decrease in GSH levels in the cell (e.g.,
during S starvation) causes a significant decrease in the AUX gradient in the root tips,
leading to alterations in lateral root growth and density [50]. Interestingly, a genetic screen
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investigating alterations in the S limitation response unveiled that mutants in the BIG gene,
encoding a protein responsible for the polar transport of AUX, exhibited the constitutive
upregulation of genes typically induced by S deficiency [51]. Nevertheless, given that
the loss of BIG resulted in elevated AUX levels, and considering that AUX treatment also
induced these genes even under full-S conditions, these results suggest that BIG might be
indirectly related to the sulfate starvation response. The establishment of an AUX gradient,
facilitated by polar AUX transport (PAT) from aerial to basal tissues, is closely linked to nu-
merous physiological processes [52]. In Arabidopsis, elevated levels of H2S hindered PAT,
subsequently leading to modifications in root structure [53]. Moreover, H2S disrupted AUX
transport by affecting the distribution of PIN proteins, ultimately causing alterations in root
development (Figure 4). The localization of PIN proteins relies on actin-dependent mech-
anisms, and the expression of various actin-binding proteins (ABPs), as well as the AUX
receptor, is influenced by H2S [54]. It was also observed that IAA had the ability to increase
the expression of the L-cysteine desulfhydrase (LCD) gene in Arabidopsis seedlings, which
stimulated H2S biosynthesis and the subsequent development of adventitious roots [55]
(Figure 4). These findings indicate that there is reciprocal regulation between H2S and AUX
in the regulation of root formation.

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW 7 of 22 
 

 

that the loss of BIG resulted in elevated AUX levels, and considering that AUX treatment 
also induced these genes even under full-S conditions, these results suggest that BIG 
might be indirectly related to the sulfate starvation response. The establishment of an AUX 
gradient, facilitated by polar AUX transport (PAT) from aerial to basal tissues, is closely 
linked to numerous physiological processes [52]. In Arabidopsis, elevated levels of H2S 
hindered PAT, subsequently leading to modifications in root structure [53]. Moreover, H2S 
disrupted AUX transport by affecting the distribution of PIN proteins, ultimately causing 
alterations in root development (Figure 4). The localization of PIN proteins relies on actin-
dependent mechanisms, and the expression of various actin-binding proteins (ABPs), as 
well as the AUX receptor, is influenced by H2S [54]. It was also observed that IAA had the 
ability to increase the expression of the L-cysteine desulfhydrase (LCD) gene in Arabidop-
sis seedlings, which stimulated H2S biosynthesis and the subsequent development of ad-
ventitious roots [55] (Figure 4). These findings indicate that there is reciprocal regulation 
between H2S and AUX in the regulation of root formation. 

 
Figure 4. A model linking the response to S deficiency with the auxin role in primary root elonga-
tion. In yellow are enzymes of S metabolism: β-glucosidase 28 (BGLU28), L-cysteine desulfhydrase 
(LSD), and SULFATE UTILIZATION EFFICIENCY 4 (SUE4). In blue are proteins of auxin metabo-
lism: nitrylase (NIT), INDOLE-3-ACETIC ACID INDUCIBLE 28 (IAA28), auxin efflux carrier PIN1 
(PIN1), and polar auxin transport (PAT). Other abbreviations are as follows: glucosinolates (GSLs), 
indole-3-acetonitrile (IAN), and indole-3-acetic acid (IAA). Positive and negative effects are indi-
cated by blue and red lines, respectively. Refer to the text for a detailed description. 

Moreover, SURE, the key regulatory cis-element of the S-deficiency response, in-
cludes a binding sequence (GAGACA) for the AUX response factor. Nevertheless, there is 
currently no evidence suggesting a connection between SURE and AUX signaling [56]. 

4. Brassinosteroid Crosstalk with S Metabolism 
Brassinosteroids (BRs) play a crucial role in governing both growth and development 

[57], but when applied externally, they exhibit the ability to increase oxidative stress tol-
erance through various mechanisms [58]. Very little is known about the effect of BRs on S 
metabolism. It was shown that BRs regulate glucosinolate levels in Arabidopsis and radish 
by increasing the expression of glucosinolate biosynthesis genes [59]. As a result, the Ar-
abidopsis BRASSINOSTEROID INSENSITIVE 1 (bri1-5) mutant defective in BR receptor 
functions is preferred by chewing insects over wild-type plants, because it exhibits an al-
tered glucosinolate profile. Glucosinolates are an important class of secondary metabolites 

Figure 4. A model linking the response to S deficiency with the auxin role in primary root elongation.
In yellow are enzymes of S metabolism: β-glucosidase 28 (BGLU28), L-cysteine desulfhydrase (LSD),
and SULFATE UTILIZATION EFFICIENCY 4 (SUE4). In blue are proteins of auxin metabolism:
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Moreover, SURE, the key regulatory cis-element of the S-deficiency response, includes
a binding sequence (GAGACA) for the AUX response factor. Nevertheless, there is currently
no evidence suggesting a connection between SURE and AUX signaling [56].

4. Brassinosteroid Crosstalk with S Metabolism

Brassinosteroids (BRs) play a crucial role in governing both growth and develop-
ment [57], but when applied externally, they exhibit the ability to increase oxidative stress
tolerance through various mechanisms [58]. Very little is known about the effect of BRs
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on S metabolism. It was shown that BRs regulate glucosinolate levels in Arabidopsis and
radish by increasing the expression of glucosinolate biosynthesis genes [59]. As a result, the
Arabidopsis BRASSINOSTEROID INSENSITIVE 1 (bri1-5) mutant defective in BR receptor
functions is preferred by chewing insects over wild-type plants, because it exhibits an al-
tered glucosinolate profile. Glucosinolates are an important class of secondary metabolites
in Brassicales plants with a critical role in defense against pathogens and herbivores [60]. In
a contradictory report, it was demonstrated that BRs inhibit the accumulation of glucosino-
lates while simultaneously enhancing the biosynthesis of primary S metabolites, such as
cysteine and GSH, in both Arabidopsis and Brassica crops [61]. BRASSINAZOLE RESIS-
TANT 1 (BZR1), a key regulator in BR signaling, exerts specific transcriptional regulation
by directly repressing the biosynthesis of indolic glucosinolates through MYB51-dependent
mechanisms, while it partially suppresses the biosynthesis of aliphatic glucosinolates via
MYB29-dependent pathways. Moreover, through the direct transcriptional activation of
two APS reductases, APR1 and APR2, BZR1 increases the biosynthesis of cysteine. This
dual effect fine-tunes both secondary and primary S metabolism, ultimately promoting
plant growth. Heat stress decreases S content while increasing ATP sulfurylase activity and
the contents of cysteine and methionine in rice. However, the application of BRs under
heat stress further increases S assimilation [62].

BRs undergo modification through sulfation, and two sulfotransferases responsible
for this reaction have been characterized [63]. In vitro, the sulfotransferase SOT12 has
the capability to sulfate several BRs, yet it demonstrates a distinct preference for the BR
precursor 24-epicathasterone [63]. SOT10 exhibits a preference for the biologically ac-
tive end-products of BR biosynthesis, such as 24-epibrassinolide and naturally occurring
(22R,23R)-28-homobrassinosteroids. Notably, the sulfation of 24-epibrassinolide can re-
sult in the suppression of its bioactivity [64]. However, BR-related phenotypes were not
observed in either sot10 or sot12 loss-of-function mutants [65]. The attachment of polar moi-
eties, such as in sulfation, to comparatively non-polar BRs has been suggested as a strategy
to enhance the intracellular transport of BRs. This movement is crucial for transferring
them from their origin at the endoplasmic reticulum to their site of perception at the plasma
membrane [66]. Consequently, it is proposed that SOTs play a role in regulating the activity,
mobility, and/or perception of BRs, although the precise mechanism(s) remain elusive.

5. Cytokinin Crosstalk with S Metabolism

Ever since their initial discovery in the last century as the regulators of cell divi-
sion, cytokinins (CKs) have been associated with numerous physiological processes in
plants, including growth and development, as well as diverse responses to environmental
stimuli [67]. The connection between S deficiency and CK status is suggested by the down-
regulation of IPT3, encoding isopentenyl transferase, which catalyzes the first rate-limiting
step of CK synthesis, in the roots of Arabidopsis plants [68] and changes in CK levels
observed in poplar trees [69]. The gene GGCT2;1, encoding a crucial enzyme involved in
GSH degradation, exhibits high responsiveness to both S starvation and CKs [70]. This
indicates that CKs may have a role in regulating GSH homeostasis, and the CK-mediated
degradation of GSH could potentially play a significant physiological role in nutrient mobi-
lization. It was shown that CKs inhibit the expression of the major S transporters Sultr1;1
and Sultr1;2, thereby negatively regulating S uptake in Arabidopsis. This process relies on
CK receptors CRE1/WOL/AHK4 [71]. Nonetheless, CKs do not impact the induction of S
assimilation under S-deficient conditions. This suggests that the negative regulation of CKs
and the signaling pathway for S uptake under S-deficient conditions are distinct and inde-
pendent pathways [71]. Furthermore, research has indicated that the exogenous treatment
of Arabidopsis leaves with CKs induces the expression of Sultr2;2, a S transporter expressed
only in the bundle sheath and veins, and the key S assimilation enzyme APS reductase [72].
The treatment of potato plants with CKs did not affect either the glutathione transferase or
glutathione reductase activity, nor did the level of GSH change. However, when potato
plants were challenged with salt stress, all these parameters increased, and they were
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further positively affected by CK application [73]. These findings imply that the precise
role of CKs in regulating the plant response to S deficiency is not yet fully comprehended.

A recent study shows that the application of CKs to Arabidopsis resulted in the
induction of gene expression patterns typically associated with S starvation, concurrent
with a reduction in both sulfate and GSH levels [74]. In contrast, mutants deficient in the
CK receptor ARABIDOPSIS HISTIDINE KINASE 3 (AHK3), as well as CK-deficient plants,
exhibited an accumulation of GSH. Moreover, CK-deficient plants showed enhanced root
growth when exposed to chemicals that deplete GSH levels, indicating a heightened ability
to sustain GSH levels in these plants [74]. Thus, CKs emerge as crucial regulators of S
uptake, assimilation, and redistribution in plant defense against xenobiotics, as well as in
the modulation of root growth.

6. Ethylene Crosstalk with S Metabolism

Ethylene (ET), a gaseous phytohormone, actively participates in various physiological
processes, including seed germination, organ maturation and senescence, and stomatal
movement, as well as the response and adaptation to environmental stress [75]. The
biosynthesis of ET is firmly connected with methionine metabolism [76]. Methionine
is activated to form S-adenosylmethionine (SAM), which undergoes transformation to
produce 1-aminocyclopropane carboxylate (ACC). ACC serves as the substrate for ET
biosynthesis. Prolonged S deficiency leads to a lowering of the ACC pool, thus negatively
affecting the ET level. Nonetheless, this is not the only association between ET synthesis
and S. During the synthesis of ET from ACC, highly toxic hydrocyanic acid is produced.
The primary detoxification mechanism for cyanide involves its reaction with cysteine, a
process catalyzed by ß-cyanoalanine synthase, which is a member of the O-acetylserine-
thiolyase family [77]. Transgenic Nicotiana tabacum plants overexpressing a tomato gene
that encodes glutathione synthetase 1 (GSH1) significantly upregulated the expression
of ET biosynthesis genes, such as ACS (1-aminocyclopropane-1-carboxylate synthase)
and ACO (1-aminocyclopropane-1-carboxylate oxidase), when compared to wild-type
plants [78]. Similarly, transgenic A. thaliana plants overexpressing GSH1 showed elevated
GSH contents and a strong increase in ET biosynthesis transcripts (ACS, ACO), while the
expression of these genes was downregulated in the GSH-depleted pad2-1 mutant [79]. In
addition, S-glutathionylation of the ACO1 protein was detected. Such posttranslational
modification may impact protein stability/activity. Another putative link to S metabolism
is the interaction of tobacco ACO1 with the UP9C protein of unknown function [80]. UP9C
belongs to the plant-specific family of LSU proteins, which are strongly induced at the
transcriptional level during S deficiency [81,82]. A short-term S deficiency triggers the
increased expression of certain ET-related genes and the accumulation of ET in tobacco,
a response that is notably absent in antisense UP9C plants [80,83]. This may suggest the
relevance of the interaction between UP9C and ACO1 for its proper functioning.

ET plays a pivotal role during heavy-metal stress. After exposure to cadmium, plants
quickly allocate resources to produce phytochelatins, which are oligomers of GSH, leading
to the disruption of the redox environment by temporarily reducing GSH concentrations.
As a result, a cascade of signaling responses is triggered, with ET playing a crucial role in
restoring GSH levels [84]. It was recently shown that there is crosstalk between glucosi-
nolate levels and the expression of ET-related genes under S deprivation [85]. Apparently,
the genes involved in the ET response were not regulated by S limitation in a double
bglu28/30 Arabidopsis mutant unable to catabolize glucosinolates. A rapid reduction in
glucosinolate levels following ET treatment further elucidated ET’s role in controlling their
accumulation [86]. On the other hand, it was shown that ET has a positive effect on the
sulfate reduction pathway. It was observed that the levels of APR1 and APR3 transcripts,
as well as overall APS reductase activity, were increased after the exogenous application
of ACC [87]. Additionally, some reports indicate that ET enhances ATP sulfurylase activ-
ity and promotes sulfate uptake in Brassicaceae plants [88,89]. However, the treatment of
oilseed rape plants with ET with prolonged S deprivation has an adverse effect. Through
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the S-starvation-induced downregulation of ATP sulfurylase and, to a greater extent, sulfate
transporter genes, ET could regulate S acquisition [90]. Interestingly, the heterologous
expression of the Arabidopsis ET receptor gene, etr1-1 (though encoding a mutated ETR1
protein incapable of transmitting ET signals post-hormone binding), in N. attenuate plants
led to a reduction in sulfate uptake and impaired S metabolism [91]. The phenotypes
resembling those of plants experiencing S deficiency observed in these seedlings imply that
alterations in ET signaling mimic the signal associated with S deficiency. It was reported
that ET facilitated the abscission of the petiole in tomatoes and the floral organs in roses,
and the external application of H2S counteracted these effects by inhibiting the transcription
of genes encoding enzymes such as cellulase and polygalacturonase, which are associated
with cell wall modification [92]. Moreover, in banana, H2S downregulated the expression
of ACS1, ACS2, and ACO2 while concurrently upregulating the expression of ET receptors,
including Ethylene Receptor (ETR), Ethylene Response Sensor1 (ERS1), and ERS2 [93].
The analysis of grape berry transcriptomes following treatment with SO2 demonstrated
significant changes in gene expression profiles, with notable upregulation observed in
transcripts associated with AUXs, ET, and jasmonate signaling pathways [94].

ETHYLENE INSENSITIVE LIKE 1 (EIL1), one of the crucial signaling factors of the
ET pathway, is involved in transcriptional regulation during S deficiency [95]. It is worth
mentioning here that SULFUR LIMITATION 1 (SLIM1), belonging to the same EIL protein
family, is the pivotal factor in S deficiency signaling. An examination of slim1 mutants
demonstrated that SLIM1 influences the expression of various genes involved in enhancing
the flux through the S assimilation pathway, the transport of S to the shoot, and the break-
down of glucosinolates under S-deficient conditions [95,96]. It was clearly demonstrated,
though, that SLIM1 does not take part in ET signaling [96].

7. Gibberellic Acid Crosstalk with S Metabolism

Gibberellic acid (GA), a naturally occurring tetracyclic diterpenoid plant hormone, is
involved in regulating various growth and developmental processes in plants. Furthermore,
GA plays a crucial role in alleviating the adverse effects of abiotic stressors [97]. It has
been reported that the transcriptional induction of all three isoforms of APS reductase due
to salinity can be impeded in a GA-insensitive mutant by disrupting GA signaling [87].
Interestingly, the enzyme activity remains unaltered. In another study, it was proposed
that the combined application of GA and S has the potential to alleviate oxidative stress
in mustard plants exposed to cadmium stress [98]. This mitigation is attributed to the
formation of ET, enhanced S-use efficiency, improved photosynthesis, and increased GSH
production. The improved S acquisition upon GA application under cadmium stress helped
to boost the photosynthetic performance and growth of mungbean and that involved nitric
oxide signaling [99]. GA tightly regulates the process of programmed cell death in cereal
aleurone cells occurring after germination [100]. It was shown that the application of SO2
alleviates the programmed cell death of GA-treated barley aleurone cells by reducing ROS
accumulation by enhancing the activities of antioxidant enzymes [100]. GA was found to
exert a negative influence on MYB51 transcription (responsible for glucosinolate synthesis)
in emerging true leaves of Brassica oleracea [101]. Interestingly, GA along with glucose had
a positive effect on glucosinolate accumulation in Brassica oleracea sprouts [102]. There is
still not enough research on GA and S crosstalk, especially on the molecular mechanisms
behind it.

8. Jasmonic Acid Crosstalk with S Metabolism

Jasmonates are derived from the controlled oxygenation of polyunsaturated fatty
acids by lipoxygenases. They primarily contribute to stress-related responses by regulat-
ing the transcript levels of numerous genes involved in stress tolerance [103]. Jasmonic
acid (JA) or its derivatives have been observed to induce the synthesis of sulfide, GSH,
and glucosinolates without causing alterations in the steady-state levels of cysteine [104]
(Figure 5). Transcription factors such as MYC2, MYC3, and MYC4, which regulate JA
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responses, are also implicated in the control of glucosinolate synthesis [105]. These findings
suggest that JA plays a beneficial role in the regulation of S metabolism. The expression
profiling of metabolic genes in Arabidopsis in response to JA revealed that the regula-
tion of genes in primary and secondary S-related pathways is by far the most strongly
affected among the genes [106]. Additionally, the synthesis of JA was upregulated as a
consequence of oxidative stress induced by a deficiency in GSH. In GSH-deficient cad2
Arabidopsis mutants, there are observed alterations in the expression of genes related to JA
synthesis and activation compared to wild-type plants [107]. Moreover, these researchers
discovered that the application of exogenous GSH restores the normal expression of JA-
related defense genes in cad2 mutants. The expression of 12-oxophytodienoate reductase
(OPR), encoding an enzyme in the JA synthetic pathway, was increased in response to a
transfer to S-deficient conditions [108] (Figure 5). Interestingly, the plastidic cyclophilin
CYP20-3 was shown to be a protein able to bind a precursor of JA, 12-oxo-phytodienoic
acid (OPDA) [109]. The binding of OPDA to CYP20-3 enables an interaction between the
cyclophilin and serine acetyltransferase, the enzyme responsible for synthesizing the cys-
teine precursor. This process enhances cysteine production, and by subsequently increasing
GSH synthesis, it influences the redox potential of the cells [109] (Figure 5). JA is also the
substrate of sulfotransferase SOT15, and as such, it is inactive and negatively affects the
expression of genes encoding enzymes in JA biosynthesis [110]. Therefore, SOT15 serves
as a component of an inhibitory mechanism within the JA signaling pathway, acting as a
regulatory “off” switch (Figure 5). In Arabidopsis, JA significantly increased H2S content,
the activities of L-cysteine desulfhydrase, glutathione reductase, and γ-glutamylcysteine
synthetase [111]. Moreover, it has been reported that the interaction between H2S and JA
regulates various plant functions, such as the induction of stress resistance. As an example,
in Arabidopsis cotyledones, H2S has been reported to act downstream of JA, inhibiting
stomatal development [112]. The high stomatal density of JA-deficient mutants could be
rescued by exogenous NaHS treatment. Apart from that, JA stimulates H2S generation to
improve physiological adaptation to heavy-metal exposure, probably by initiating CDPK
signaling [113]. The interaction between H2S and JA under various stress conditions has
been extensively reviewed by Li et al. [114].
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Figure 5. The mutual regulation of S metabolism and jasmonic acid biosynthesis and signaling. S
deficiency activates the expression of 12-oxophytodienoate reductase (OPR), leading to higher JA
levels. This positively impacts the levels of sulfide, glutathione (GSH), and glucosinolates (GSLs).
12-Oxo-phytodienoic acid (OPDA) binds to cyclophilin CYP20-3, thus stimulating its binding to
serine acetyltransferase (SAT) to activate O-acetylserine (OAS) production. The sulfotransferase
SOT15 inactivates JA through sulfation. Positive and negative effects are indicated by blue and red
lines, respectively.
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9. Salicylic Acid Crosstalk with S Metabolism

Salicylic acid (SA) is a regulator of pathogen responses and cell death [115]. A signifi-
cant interaction exists between SA-mediated S assimilation and stress defense responses.
Plants treated with exogenous SA exhibit increased GSH content, accompanied by height-
ened glutathione reductase activity [116]. SA also increases cysteine content as a result of
higher activities of ATP sulfurylase and serine acetyltransferase [117]. It has been reported
that the exogenous application of SA under various abiotic stresses in Brassica napus leads
to an increase in various S-containing secondary metabolites, such as thionines, glucosi-
nolates, and GSH [118]. On the other hand, SA homeostasis is positively regulated by
a sulfotransferase (SOT12) via sulfation, which results in higher resistance to pathogen
infection [119]. The burst of ROS during pathogen infection leads to alterations in the ratio
of reduced glutathione (GSH) to oxidized glutathione (GSSG). This change induces the
expression of the isochorismate synthase 1 (ICS1) gene, which encodes the key enzyme
involved in SA biosynthesis in Arabidopsis [120] (Figure 6). Indeed, studies have demon-
strated that increasing the GSH content through the overexpression of tomato GSH1 in
transgenic tobacco leads to enhanced GSH synthesis and higher levels of SA. Consequently,
these plants exhibit higher resistance to Pseudomonas syringae [78]. Similarly, the infiltration
of exogenous GSH into the leaves resulted in a substantial rise in bound SA and, to a
lesser extent, free SA levels in tobacco, especially following tobacco mosaic virus (TMV)
infection [121]. Also, elevated levels of glutathione in TMV-infected tobacco were observed,
and these could compensate for SA deficiency in NahG mutant plants to maintain virus
resistance [121].

S-nitrosoglutathione (GSNO), formed through the reaction of NO with GSH, serves as a
crucial S-nitrosylating agent in plant cells [122]. S-nitrosoglutathione reductase 1 (GSNOR1)
catalyzes the degradation of GSNO to GSSG and NH3, utilizing reduced β-nicotinamide
adenine dinucleotide (NADH). The loss of GSNOR1 function increased protein-SNO levels
in Arabidopsis, leading to enhanced susceptibility to Pseudomonas syringae, while increased
activity reduces protein-SNO formation and positively regulates SA-induced defense
responses [123]. Recent findings suggest that the activation of the GSNOR1 enzyme by
GSH results in the alleviation of inhibition of ICS1 expression in the presence of H2O2 [124].
In contrast, inactive GSNOR1 results in the buildup of GSNO, thereby causing the inhibition
of ICS1 expression. Additionally, GSNOR1 undergoes posttranslational activation through
direct denitrosylation in a GSH-dependent manner. A reduction in protein-SNO formation
results in intact protein-SH, and this process results in enhanced ICS1 expression and
SA accumulation (Figure 6). GSH can also react directly with protein-SNOs to form
protein-SH. The accumulation of SA triggers the expression of defense genes by inducing
conformational changes in the NON-EXPRESSOR OF PATHOGENESIS-RELATED 1 protein
(NPR1). In plants that have not been challenged by pathogens, NPR1 remains in the
cytoplasm as an inactive oligomer, sustained by redox-sensitive intermolecular disulfide
bonds. The S-nitrosylation of the Cys156 residues of NPR1 is crucial for preserving its
oligomeric form. Upon a pathogen challenge, alterations in the redox status of plant cells
prompt the reduction of cysteine residues in NPR1, catalyzed by thioredoxins (TRXs),
causing NPR1 monomers to dissociate from the oligomeric complex [125]. Conversely, the
S-nitrosylation of NPR1 monomers by GSNO promotes its oligomerization. Studies have
demonstrated that Arabidopsis NPR1 acts as a receptor for SA, and the interaction between
SA and NPR1 is essential for the monomerization and subsequent activation of NPR1 [126].
The activated monomer of NPR1 is translocated from the cytoplasm into the nucleus, where
it exerts its transcriptional function in SA-related genes. GSNO treatment facilitates the
nuclear translocation and accumulation of NPR1 and its interaction with TGA transcription
factors. It has also been shown that the S-nitrosylation of TGA1 enhances its DNA-binding
activity in NPR1’s presence [127] (Figure 6).
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Figure 6. The glutathione (reduced/oxidized form, GSH/GSSG)-mediated regulation of the plant
hormone salicylic acid (SA) through the expression of isochorismate synthase (ICS1). The generation
of reactive oxygen species (ROS) and nitrogen oxide (NO) during plant defense alters the GSH/GSSG
ratio. NO inhibits while GSH activates S-nitrosoglutathione reductase (GSNOR), which catalyzes
the degradation of S-nitrosoglutathione (GSNO). The breakdown of GSNO results in the decreased
formation of protein-SNO, thereby preserving protein-SH groups, which activates the increased
expression of ICS1 and the synthesis of SA. Furthermore, NO accumulating during the initial stages
of plant defense can react with GSH to produce GSNO, which, in turn, suppresses the accumulation
of SA. The accumulation of SA triggers the expression of defense genes by causing conformational
changes in the NON-EXPRESSOR OF PATHOGENESIS-RELATED 1 protein (NPR1). Alterations
in the redox state of plant cells cause the reduction of the cysteine residues within NPR1, leading
to the release of NPR1 monomers from the tetrameric complex, catalyzed by thioredoxins (TRXs).
Activated NPR1 monomers are translocated to the nucleus, mediated by GSNO. The activated NPR1
monomer interacts with TGA transcription factors to induce the expression of SA-related genes,
while the S-nitrosylation of TGA, facilitated by GSNO, further increases gene expression. Positive
and negative effects are indicated by blue and red lines, respectively.

Total S deprivation in Arabidopsis results in SA accumulation and the further activa-
tion of the SA signaling pathway via the function of NPR1 [128]. The interplay between S
metabolism and SA signaling also plays a major role in the mitigation of stress effects in
salinity-exposed plants [129]. In maize seedlings, irrigating the roots with SA increased
L-cysteine desulfhydrase activity, which, in turn, led to the accumulation of H2S, ultimately
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enhancing heat tolerance [130]. Likewise, SA stimulated the activity of L-cysteine desulfhy-
drase in Arabidopsis, leading to an increase in H2S production and, ultimately, to higher
resistance to cadmium stress [131]. The expression levels of PAD4 and EDS1, which are
associated with SA biosynthesis, were increased in Arabidopsis plants exposed to elevated
H2S concentrations. Conversely, their expression was diminished in plants with lower
levels of H2S [132]. Recent evidence strongly suggests that SA plays a significant role in
plant defense against various environmental stresses, such as heat and drought [133]. It
was shown that the application of SO2 to maize seedlings before heat stress is beneficial for
mitigating the deleterious effects. SO2 pretreatment serves to activate SA synthesis, through
which plants cope with stress, mainly by activating the antioxidant defense system [134].
On the other hand, the SA treatment of wheat seedlings exposed to heat stress had a
stimulating effect on S assimilation by increasing ATP-sulfurylase activity [135]. S and SA
collectively reduced the negative effects of arsenic on Brassica napus through the tempering
of oxidative stress and the enhancement of photosynthetic capability [136]. The precise
mechanisms of SA-mediated stress responses are still under investigation, and additional
research is required to fully grasp its complexity.

10. Strigolactone Crosstalk with S Metabolism

Strigolactones (SLs) are carotenoid-derived plant hormones and signaling molecules
that are fundamental for the recognition of the plant by symbiotic fungi but also regulate
physiological processes to adapt plant architecture to nutrient availability [137,138]. In rice,
SL production is induced in response to S deficiency and inhibits shoot branching while, at
the same time, accelerating leaf senescence [139,140]. The primary factor behind this was
found to be the upregulation of a gene responsible for SL biosynthesis, DWARF27 (D27),
while the expression of other genes involved in SL biosynthesis remained unchanged [130].
These findings indicate that D27 might have a significant impact on efficient sulfur ac-
quisition through arbuscular mycorrhizal fungi, as they were shown to provide sulfate
ions in addition to nitrogen and phosphate [141]. Using a split-root assay in rice, it was
shown that shoots, not roots, recognize S deficiency, which induces SL production in the
roots [142]. However, the shoot-derived signal for SL production is unknown. In a maize
mutant deficient in SL biosynthesis (zmccd8), the altered expression of sulfate transporters
genes was detected, suggesting that sulfate uptake and translocation are also controlled by
SL [143].

11. Conclusions

S nutrition plays a crucial role in the growth and development of plants, influencing
their response to both biotic and abiotic stresses, as well as the yield and quality of crops.
The gradual emergence of S deficiency in soils has become a significant factor limiting plant
growth and crop yields. Despite its importance, there is currently insufficient research
on plant S nutrition compared to other macronutrient elements. A comprehensive under-
standing of the regulation of S nutrition in plants, especially the role of phytohormones in
this process, is still elusive. Currently, phytohormones are recognized as pivotal targets
for enhancing both plant productivity and stress tolerance, exerting a significant influence
on the yield and quality of crop plants. The current review underscores the significance
of S in the regulation of phytohormone-mediated responses. It appears that S is a vital
requirement for phytohormones to perform optimally. A brief summary of the influence
of S deficiency on plant hormones is depicted in Figure 7. Further exploration into the
molecular genetics of these aspects would be intriguing and valuable for a deeper un-
derstanding. It is also necessary to examine the influence of S availability on yet other
important phytohormones—polyamines and peptide hormones—or the effect of these phy-
tohormones on S metabolism, as this field is understudied. Therefore, there is a pressing
need for more extensive research to unravel the mechanisms behind the plant’s response
to S-deficiency stress, including phytohormonal signaling. Such insights will serve as a
foundation for enhancing S utilization efficiency in crops.
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Figure 7. The influence of inadequate sulfur (S) nutrition on phytohormones. The known en-
zyme/transcription factor activities affected by S deficiency are marked in ovals below each
phytohormone. The abbreviations are as follows: sulfurylase ABA DEFICIENT 3 (ABA3), 9-cis-
epoxycarotenoid dioxygenase 3 (NCED3), nitrilase 3(NIT3), isopentenyltransferase 3 (IPT3), ACC
synthase (ACS), ACC oxidase (ACO), 12-oxophytodienoate reductase (OPR), NON-EXPRESSOR OF
PATHOGENESIS-RELATED 1 protein (NPR1), and DWARF27 (D27). Positive and negative impacts
on phytohormone levels are indicated by blue and red lines, respectively. Refer to the text for a
detailed description.
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