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Abstract: A series of novel salts of heterocyclic polyamines with 5-sulfosalicylic acid (C4H7N4
+)

(C7H5O6S−)·2(H2O) (1), (C4H6ClN4
+)(C7H5O6S−)·H2O (2), (C5H8N3

+)(C7H5O6S−)·H2O (3),
(C5H7N6

+)(C7H5O6S−)·H2O (4), (C6H14N2
2+)(C7H4O6S2−)·H2O (5), and (C14H19N2

+)(C7H5O6S−)
(6) have been successfully synthesized. Their crystal structures have been determined by single-
crystal X-ray diffraction. Overall, compounds adopt a layered structure with aminium cations and
5-sulfosalicylic anions linked via water molecules. The solid-state architectures of these compounds
are dominated by O(N,H)-H· · ·O and N-H· · ·N hydrogen bonds and stabilized by weak intercon-
nects. C-Cl· · ·π and S-O· · ·π interactions, apart from π· · ·π and C-H(O)· · ·π, were reported. Diverse
approaches were used to study the effect of substituents in the polyamines in solid-state arrangement.
A Hirshfeld surface analysis, with associated 3D Hirshfeld surface maps and 2D fingerprint plots,
molecular electrostatic potential, and energy frameworks were used to comprehensively investigate
the nature and hierarchy of non-covalent interactions and inspect supramolecular differences. The
contact enrichment ratio calculations provided deeper insight into the propensity of interconnects
to influence crystal packing. The evaluation of the effects of H-bonding synthons resulting from
different substituents in the polyamines on self-assemblies is also presented. In the context of crystal
engineering, a specific intramolecular synthon via O-H· · ·O observed in nearly all crystals can be
employed in the pseudo-cyclic replacement strategy in the design of new molecules.

Keywords: 5-sulfolsalicylic acid; heterocyclic polyamines; synthesis; crystal structure; Hirshfeld
surface; enrichment ratio; energy frameworks; molecular electrostatic potential

1. Introduction

Organic salts based on 2-hydroxy-5-sulfobenzoic (5-sulfosalicylic) acid are eagerly
studied due to their interesting optical and pharmaceutical properties [1–6]. Many salts,
including one negative 3-carboxy-4-hydroxybenzenesulfonate anion, C7H5O6S− (with a
negative charge at the sulfonyl group), have been presented. These include compounds
mostly with organic [7–10] but also inorganic cations [11,12]. Still, there are only a few of
its salts with cations originating from pyrimidine. One salt with 2-aminopyrimidin-1-ium
ion [13] and two with 2,4-diaminopyrimidin-1-ium ion derivatives can be distinguished.
Among these 2,4-diaminopyrimidin-1-ium ions, the first has the trimethoxybenzyl group in
the 5-position of the pyrimidine ring [14], and the second o-chlorophenyl and ethyl groups
in the 5- and 6-positions, respectively [15]. The 2,4-diaminopyrimidin-1-ium cation has been
reported in several ion pairs with simple inorganic [16] and some organic anions [17–21].
The crystal structures of a series of 2,4-diaminopyrimidin-1-ium salts with chain dicarboxy-
late ions have been discussed by us recently [22].
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Of the presented organic connections, only the crystal structure of salt 3, derived from
5-sulfosalicylic acid and 2,6-diaminopyridine, has been measured at room temperature ear-
lier [23]. In addition, the crystal structure of the C7H5O6S− and 2,3-diaminopyridinium ion
pair has also been reported [24]. Moreover, a few other structures with 2-aminopyridinium
ion [13] and its derivatives substituted by chloro [25,26], bromo [27] or methyl [28] group
can be found in the CSD. For 2,6-diamino-9H-purin-1-ium cation, only its salts with 2-(2-
carboxylatophenyl)acetate and closo-dodecafluorododecaborate (B12F12

2−) anions have been
described [29,30]. In turn, for 3-carboxy-4-hydroxybenzenesulfonate anion, its salts with
9H-purin-6-aminium, 6-aminopurin-1-ium and 6-(benzylamino)-9H-purin-1-ium cations
have been reported [31,32]. The ion pairs of 8-(dimethylamino)-N,N-dimethylnaphthalen
-1-aminium (dmanH+) and the salicylic acid derivatives have also been discussed [33,34].

Recently, salts of the dipositive 1,4-diazabicyclo[2.2.2]octane-1,4-diium cation (dabcoH2
2+)

have been widely presented as attractive materials for use in opto-electronics [35–40]. In
addition, crystal structures containing 3-carboxylato-4-hydroxybenzenesulfonate dianion,
C7H4O6S2− (with a negative charge at both sulfonyl and carboxyl groups), and singly or
doubly charged organic cations have been structurally characterized [1,41–44]. Among
them, the salts of C7H4O6S2− with 2-aminopyridinium [45], 2,6-diaminopyridinium [46]
2-amino-4,6-dimethylpyrimidinium [47], and 6-(benzylamino)-3H-purin-7-ium ions [48]
can also be distinguished.

N-rich heterocyclic polyamines, together with popular multifunctional 5-sulfosalicylic
acid, have received a lot of interest in both academic and industrial studies and applications
as building blocks of appealing multifunctional supramolecular architectures. Supramolecu-
lar chemistry, as a key branch of crystal engineering, has wide implications in the rational de-
sign of novel compounds, especially in the context of control of the self-organization and, in
further consequence, predictable and desirable structural complex assemblies (such as salts
or co-crystals). H-bonding, as well as other non-covalent interactions, have emerged to be
the most important tool in crystal engineering [49–51]. Organic crystals composed of specific
functional groups with diverse applications attracted much attention in the context of the
predictable assemblies of supramolecular architectures. The utilization of self-assembly of
small compounds with either strong O(N)-H· · ·O or weak C-H· · ·O hydrogen bonds, halo-
gen bonds, and π-based interactions to the formation and stabilization of 3D supramolecular
networks is a vital aspect. The rational design of well-defined structures from complex multi-
functional moieties is possible via supramolecular synthons—structural units within crystals
composed of hydrogen bonds and/or other non-covalent interactions [52]. The synthons
can be classified as homo- or heterosynthons, which are formed from self-complementary
half units and different components/functionalities, respectively [53].

Considering all these points in the course of our supramolecular studies on the hier-
archy of non-covalent interactions [22,54–57] here, we report the synthesis and thorough
supramolecular investigations of the series of new salts, namely, 2,4-diaminopyrimidin-1-
ium 3-carboxy-4-hydroxybenzenesulfonate dihydrate (1), 2,4-diamino-6-chloropyrimidin-
1-ium 3-carboxy-4-hydroxybenzenesulfonate monohydrate (2), 2,6-diaminopyridin-1-ium
3-carboxy-4-hydroxybenzenesulfonate monohydrate (3), 2,6-diamino-9H-purin-1-ium 3-
carboxy-4-hydroxybenzenesulfonate monohydrate (4), 1,4-diazabicyclo[2.2.2]octane-1,4-
diium 2-hydroxy-5-sulfonatobenzoate monohydrate (5), and 8-(dimethylamino)-N,
N-dimethylnaphthalen-1-aminium 3-carboxy-4-hydroxybenzenesulfonate (6) (Figure 1). It
should be mentioned that these structures have not previously been structurally authen-
ticated. They are presented for the first time to the best of our knowledge; only one salt
(3) is a better re-determination, at low temperatures with a higher precision, of previously
published structure (CSD refcode: KAXAE) [23]. These compounds can construct appealing
supermolecules and diverse either strong or weak synthons because of the presence of a
large amount of oxygen and nitrogen atoms, excellent acceptors and donors, and different
functional groups such as the sulfonic, carboxylic, hydroxyl, amino, and methyl groups.
In addition, water solvent molecules offer an enriched portfolio of H-bonding patterns.
This study was undertaken to understand the nature and relevance of the hierarchy of
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non-covalent interactions either between the cations or between the anions, as well as
the cation–anion interplay, focusing on the effect of the H-bonding synthons on novel
self-assemblies. The analysis of interaction preferences was supported by Full Interaction
Maps. The supramolecular topology of H-bonding networks was examined by an extended
Hirshfeld surface analysis, including the enrichment ratios, the molecular electrostatic
potentials, and the energy frameworks.
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Figure 1. Structures of analysed salts: 2,4-diaminopyrimidin-1-ium 3-carboxy-4-
hydroxybenzenesulfonate dihydrate (1), 2,4-diamino-6-chloropyrimidin-1-ium 3-carboxy-
4-hydroxybenzenesulfonate monohydrate (2), 2,6-diaminopyridin-1-ium 3-carboxy-4-
hydroxybenzenesulfonate monohydrate (3), 2,6-diamino-9H-purin-1-ium 3-carboxy-4-
hydroxybenzenesulfonate monohydrate (4), 1,4-diazabicyclo[2.2.2]octane-1,4-diium 2-hydroxy-5-
sulfonatobenzoate monohydrate (5), and 8-(dimethylamino)-N,N-dimethylnaphthalen-1-aminium
3-carboxy-4-hydroxybenzenesulfonate (6).

2. Materials and Methods
2.1. Synthesis of Compounds 1–6

The commercially available chemicals were of reagent grade and used as received.
The ATR-FTIR spectra were recorded on a Thermo Scientific Nicolet iS10 FTIR spectrometer
using the ATR technique with ZnSe crystal. The following procedure was applied to obtain
the requested crystals of heterocyclic polyamines and 5-sulfonylsalicylic acid.

The 5-sulfosalicylic acid (0.1 mmol, 1 equiv., 22 mg) and appropriate organic di-
amine (0.1 mmol, 1 equiv., 11 mg of 2,4-diaminopyrimidine, 15 mg of 2,4-diamino-6-
chloropyrimidine, 11 mg of 2,6-diaminopyridine, 15 mg of 2,6-diaminopurine, 12 mg of
1,4-diazabicyclo[2.2.2]octane, and 22 mg of 1,8-bis(dimethylamino)naphthalene) were dis-
solved in 2 mL of warm distilled water, the solution was filtered through a small cotton
pad and left in the room temperature for solvent evaporation (about two weeks). The
obtained crystals of the salts were used for the X-ray measurements and recording the
ATR-FTIR spectra.

Compound 1: ATR-FTIR (ZnSe), νmax/cm−1: 3434 s, 3350 s (N–H), 3245 m (N–H),
3089 w (C–H), 3039 w (C–H), 2952 w, 2837 w, 1658 vs (C=O), 1636 m sh (C–O), 1606 sh
(C–O), 1519 m, 1475 w, 1451 w, 1395 w, 1334 w (SO3), 1295 w, 1236 sh, 1211 m sh (SO3),
1169 s (SO3), 1156 sh (SO3), 1119 m, 1078 w, 1034 m, and 792 w.

Compound 2: ATR-FTIR (ZnSe), νmax/cm−1: 3507 m, 3455 w (N–H), 3304 m br (N–H),
3117 s, 2772 w br, 1665 vs (C=O), 1652 sh (C=O), 1605 m (C–O), 1551 m (C–O), 1530 w,
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1479 w, 1371 w (SO3), 1305 w, 1217 m (SO3), 1169 s (SO3), 1151 s (SO3), 1126 s, 1079 m, 1032
s, 987 m, 796 w, 711 w, and 664 w.

Compound 3: ATR-FTIR (ZnSe), νmax/cm−1: 3471 m, 3424 m, 3372 m (N–H), 3343
(N–H), 3271 m, 3221 m, 3124 w, 3096 w (C–H), 3075 w (C–H), 2974 w br, 2863 m br, 2790 m
br, 2703 w br, 1652 vs (C=O), 1631 s (C=O), 1582 m (C–O), 1474 w, 1432 w, 1406 w, 1303 w
(SO3), 1225 m (SO3), 1208 m (SO3), 1169 m sh (SO3), 1158 m (SO3), 1144 m, 1116 s, 1017 s,
922 w, 830 w, 775 w, 714 w, and 662 w.

Compound 4: ATR-FTIR (ZnSe), νmax/cm−1: 3397 vs br, 3360 vs br (N–H), 3209 vs br
(N–H), 3048 m (C–H), 2851 w br, 1655 s sh (C=O), 1619 s (C=O), 1588 s sh (C–O), 1478 m,
1437 m, 1406 w, 1377 w (SO3), 1347 w sh, 1156 m (SO3), 1125 m (SO3), 1086 w, 1029 w, and
668 w.

Compound 5: ATR-FTIR (ZnSe), νmax/cm−1: 3394 w br (N–H), 3045 w (C–H),
2566 w vbr, 1644 w (C=O), 1595 m (C–O), 1474 m, 1377 w (SO3), 1291 w, 1270 w, 1291
s (SO3), 1180 s (SO3), 1159 m (SO3), 1145 s (SO3), 1122 s, 1084 m, 1076 m, 1057 w, 1034 s,
1021 vs, 888 w br, 832 m, 777 w br, 728 w, and 668 s.

Compound 6: ATR-FTIR (ZnSe), νmax/cm−1: 3050 w (C–H), 3004 w (C–H), 2973 w,
1662 m (C=O), 1603 m (C–O), 1585 w, 1474 m, 1465 m, 1288 w, 1250 s (SO3), 1216 s (SO3),
1188 w, 1157 m (SO3), 1140 s (SO3), 1119 m, 1080 m, 1016 vs, 885 w, 841 m, 831 m, 784 w,
767 m, 746 w br, 711 m, and 664 m.

2.2. Single-Crystal X-ray Diffraction

Diffraction data of single crystals of the studied compounds were collected at T = 100 K
using a mirror-monochromated Cu Kα radiation (λ = 1.54184 Å) from a microfocus Nova
X-ray source on a Rigaku SuperNova (dual source) four-circle diffractometer operating
with an Eos CCD detector. CrysAlis PRO software (version CrysAlisPro 1.171.41.112a)
was used to perform data collection and reduction, and multi-scan absorption correction.
Direct method and full matrix least-squares treatment on F2 data were applied to solve
and refine the crystal structures. All non-hydrogen atoms were refined with anisotropic
atomic displacement parameters. Hydrogen atoms bonded to carbon atoms were placed in
calculated positions and refined isotropically as a riding model with standard parameters.
The H atoms bonded to the N and O atoms were located from a different Fourier map,
and their positions were freely refined. All calculation procedures were carried out using
SHELXTL programs [58], integrated with the OLEX2 crystallographic software (version
1.3) [59]. Mercury (version 2023.3.1) [60] and PLATON (version 2023.1) [61] programs were
applied for the graphical representation of the structures and geometry analysis.

2.3. Computational Details
2.3.1. Full Interaction Maps

3D Full Interaction Maps (FIMs) based on CSD interaction data [62] for all analyzed
crystals to check their preferred interaction behavior were calculated using Mercury soft-
ware [60]. This tool generates the landscape of interactions using 3D coordinates from an
X-ray experiment. The comparison of the predicted most likely positions of functional
groups with a crystal packing can help evaluate whether a corresponding crystal fulfills
the desired interactions.

2.3.2. Hirshfeld Surface Analysis

A Hirshfeld analysis was performed using the newest version of CrystalExplorer
21.5 [63,64]. The 3D maps of the Hirshfeld’s surfaces revealing qualitative information
on non-covalent interactions were mainly mapped with the dnorm property by a colored
scheme, where red spots denote the shortest inter-contacts, the white regions illustrate
distances close to the van der Waals (vdW) contacts (dnorm equal to zero), and the blue areas
signify the interactions longer than the sum of the vdW radii (positive values of dnorm) [64].
The map was generated by calculation of the normalized distances from the contact points
on the surface to the nearest nucleus inside (di) or outside (de) the Hirshfeld surface



Crystals 2024, 14, 497 5 of 23

where all H-bond lengths adopted the neutron-derived values [65]. Two-dimensional
fingerprint plots, drawn as a function of di and de values, reveal quantitative data on close
inter-contacts [64].

2.3.3. Molecular Electrostatic Potential

The molecular electrostatic potential mapped onto Hirshfeld surfaces was obtained at
the wave function of the HF/STO-3G level using Crystal Explorer 21.5 [63,66].

2.3.4. The Enrichment Ratio

The enrichment ratios (ER) of the intermolecular interactions in the analyzed crystal
structures 1–6 were calculated based on the HS methodology. ER for an element pair (X,
Y) is the ratio of the actual percentage of random inter-contacts within the crystal (CXY)
to the percentage of theoretically equivalently distributed random contacts (RXY), when
EXY = CXY/RXY. In this way privileged (when ER > 1) and disfavored inter-contacts
(ER < 1) can be highlighted in the crystal structures [67].

2.3.5. Energy Frameworks

The pairwise interaction energies between the moieties within the crystal were com-
puted by Crystal Explorer 21.5 program [63,64,66,68,69] using the wavefunction calculated
at the B3LYP/6-31G(d,p) functional basis set that is widely accepted in computational
chemistry. The electrostatic (Eele), polarization (Epol), dispersion (Edisp), and exchange
repulsion (Erep) energy components, according to Equation (1), were obtained. More specif-
ically, the electrostatic term is characterized by the forces among charged particles, the
polarization term is concerned with the interactions resulting from the distortion of a
molecule’s electron cloud via other near-charge distributions, dispersion term is considered
to be the weak forces caused by fluctuations in a molecule’s electron distribution, while
repulsion term means the energy needed to overcome the forces that prevent a molecules
pair from interaction [70,71].

To calculate the total energy (Etot) framework, a molecular cluster with a radius of
3.8 Å was generated around a selected single moiety of the reference compound. Symmetry
operations were applied to build molecular wave functions and calculate the electron
densities of a cluster. A tube size of 100 was used for the images.

Etot = Eele + Epol + Edisp + Erep (1)

3. Results and Discussion
3.1. X-ray Structure and Supramolecular Features

The crystal structures of 1–6 were determined by single crystal X-ray diffraction with
high precision at low temperature. Crystals 1, 2, 4, 5, and 6 are novel, while 3 is a better
equivalent of the previously published structure KASXAE, which was earlier determined
at ambient temperature [23]. The molecular structures of 1–6 are shown in Figure 2.
Compounds 1, 2, 4, and 5 crystallize in the triclinic P1 space group, while compounds
3 and 6 crystallize in the monoclinic space groups—P21 and P21/c, respectively. Full
crystallographic data of studied salts are collected in Table 1. The unit cells of 1–5 contain
solvent (water) molecules, apart from aminium cation and 5-sulfosalicylate anion. The unit
cell of 6 consists of two crystallographically independent cations and anions. The structure
of 5 represents the dicationic and dianionic species. The deprotonated carboxylic (COO−)
and sulfonic (SOO−) groups of the anion show bond lengths of 1.275 and 1.261, as well as
1.453 and 1.456 Å, respectively. It indicates a delocalized anionic charge. Selected bond
lengths and angles of 1–6 can be found in Table S1. The values are comparable to those
found in the literature.
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Figure 2. The molecular structures of 1–6 showing the atom numbering schemes. Displacement
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Table 1. Crystal data and structure refinement details obtained from measurements at 100 K for the
studied compounds.

Compound 1 2 3 4 5 6

Chemical formula C11H16N4O8S C11H13ClN4O7S C12H15N3O7S C12H14N6O7S C13H20N2O7S C21H24N2O6S
Formula weight 364.34 380.76 345.33 386.35 348.37 432.48

λ (Cu Kα) (Å) 1.54184 1.54184 154184 1.54184 1.54184 1.54184
Crystal system triclinic triclinic monoclinic triclinic triclinic monoclinic

Space group P1 P1 P 21 P1 P1 P 21/c
a (Å) 7.9539(3) 6.8906(6) 6.6358(2) 6.6755(4) 6.7903(4) 19.7312(3)
b (Å) 9.5529(4) 6.9077(6) 12.9481(4) 10.6495(5) 8.7284(8) 12.33559(11)
c (Å) 11.2394(4) 16.9140(11) 8.4812(3) 10.9153(5) 13.3336(7) 18.4437(3)
α (◦) 67.904(4) 96.621(6) 90 84.427(4) 101.707(6) 90
β (◦) 85.375(3) 96.880(6) 104.703(3) 87.076(5) 103.408(5) 114.7954(16)
γ (◦) 78.700(3) 108.636(8) 90 83.698(5) 94.585(6) 90

Volume (Å) 775.92(6) 747.20(11) 704.84(4) 767.01(7) 746.02(9) 4075.28(10)
Z 2 2 2 2 2 8

Dcalc (g·cm−3) 1.559 1.692 1.627 1.673 1.551 1.775
µ (mm−1) 2.344 4.022 2.470 2.405 2.312 1.410

F (000) 380 392 360 400 368 1824

Crystal size (mm) 0.18 × 0.16 ×
0.08 0.15 × 0.08 × 0.03 0.18 × 0.10 ×

0.05 0.22 × 0.04 × 0.03 0.18 × 0.14 ×
0.10 0.20 × 0.18 × 0.10

θ range (◦) 4.245–70.422 2.667–70.282 5.392–70.328 4.073–70.352 3.500–70.225 2.467–70.187
Reflections
collected 11,295 5414 4501 9276 4728 28,523

Unique reflections 2926 2792 2451 2858 2776 7674
Reflections I > 2σ(I) 2805 2419 2365 2484 2513 6949

Rint 0.0220 0.0290 0.0211 0.0361 0.0187 0.0222
Restraints/parameters 1/261 1/253 1/244 0/274 1/223 2/567

Goodness-of-fit 1.086 1.116 1.073 1.073 1.047 1.043
R1, wR2 (I > 2σ(I)) 0.0261, 0.0735 0.0379, 0.0986 0.0276, 0.0695 0.0432, 0.1096 0.0335, 0.0853 0.0303, 0.0827
R1, wR2 (all data) 0.0273, 0.0745 0.0443, 0.1047 0.0293, 0.0716 0.0533, 0.1161 0.0373, 0.0881 0.0338, 0.0855
Max. peak/hole

(e·Å−3)
0.359/−0.468 0.307/−0.602 0.202/−0.298 0.674/−0.473 0.398/−0.427 0.302/−0.482

K.P.I. [%] 70.2 72.6 72.7 74.2 70.6 74.4

K.P.I.—Kitaigorodsky’s packing index.
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The crystal packing can be quantified by the Kitaigorodsky packing index (K.P.I.) [72,73].
It was calculated with the ‘calc void’ procedure implemented in the PLATON program [61].
The results showed that 6 is the most, while 1 is the least closely packed structure with
74.4% and 70.2% of filled space, respectively. No space accessible for voids was found
(Table 1). The appealing feature of analyzed salts is the presence of diverse functional
groups (sulfonate, carboxyl, hydroxyl, amine, methyl) with available H-atom donor and
acceptor atoms of both cation and anion species, as well as water molecules, which results
in extensive H-bonding interactions. The crystal packing of all salts is formed mainly
by O-H· · ·O, N-H· · ·O, and C-H· · ·O interactions, with the distances shorter than the
sum of the mean van der Waals radii of the two corresponding atoms, from 1.63 Å for
O-H· · ·O in 4 and 6 to 2.59 Å for C-H· · ·O in 5. Furthermore, O-H· · ·N in 1 and N-H· · ·N
interactions in 2, 4, and 6 are observed. The intramolecular network is affected by O-H· · ·O
and C-H· · ·O, and also N-H· · ·N in 6. The geometrical parameters of H-bonds are listed in
Table 2. It can be mentioned that nearly all available acceptors in all crystals, apart from 6,
interact with all available donors. The two oxygen atoms in the sulfonic group play the
role of bifurcated acceptors participating in the formation of O(N,C)-H· · ·O interactions
with anion, cation, and water molecules. A rare trifurcated (and tetrafurcated) acceptor is
observed in 6 (Figures 3–8).

Table 2. Geometric parameters of H-bonds for 1–6.

9 D-H [Å] H· · ·A [Å] D· · ·A [Å] D-H· · ·A [o]

1
N1-H1· · ·O2 i 0.883(19) 1.869(19) 2.7472(14) 172.7(17)

N3-H3A· · ·O8 ii 0.886(19) 2.154(19) 2.9655(16) 152.1(17)
N3-H3B· · ·O5 iii 0.853(19) 2.136(19) 2.9698(16) 165.5(19)

O4-H4· · ·O7 0.90(2) 1.69(2) 2.5685(13) 166(3)
N4-H4A· · ·O6 ii 0.857(19) 2.141(19) 2.9205(17) 151.1(17)
N4-H4B· · ·O3 iv 0.869(19) 2.082(19) 2.9313(16) 165.5(18)

*O6-H6· · ·O5 0.86(2) 1.87(2) 2.6397(14) 149(2)
O6-H6· · ·N2 iii 0.86(2) 2.44(2) 2.9052(15) 114.9(17)
O7-H7A· · ·O1 v 0.83(2) 1.96(2) 2.7803(14) 172(2)
O7-H7B· · ·O8 0.84(2) 1.90(2) 2.7306(15) 168(2)

O8-H8A· · ·O3 iv 0.81(2) 2.10(2) 2.8640(14) 157(2)
O8-H8B· · ·O1 vi 0.85(3) 1.93(3) 2.7594(15) 166(2)

*C2-H2· · ·O3 0.95 2.53 2.9197(17) 105
C5-H5· · ·O1 vii 0.95 2.57 3.2961(16) 134

C10-H10· · ·O4 iv 0.95 2.54 3.2942(18) 137
C11-H11· · ·O7 iv 0.95 2.42 3.3590(18) 168

(i) 1 − x, 1 − y, 2 − z; (ii) x, y, 1 + z; (iii) −x, 2 − y, 1 − z; (iv) 1 − x, 1 − y, 1 − z; (v) −x, 1 − y, 1 − z; (vi) x, 1 + y, −1 + z; (vii) −x, 1
− y, 2 − z

2
O1-H1· · ·O4 i 0.80(3) 1.93(3) 2.666(3) 154(3)
N2-H2· · ·O6 0.94(4) 1.84(4) 2.758(3) 166(3)
*O3-H3· · ·O2 0.89(4) 1.85(4) 2.615(3) 144(3)

N3-H3B· · ·N1 ii 0.87(3) 2.10(3) 2.953(3) 170(3)
N3-H3C· · ·O5 0.89(4) 1.98(3) 2.862(3) 169(3)

N4-H4A· · ·O2 iii 0.86(3) 2.08(3) 2.925(3) 168(3)
N4-H4B· · ·O7 0.92(4) 1.92(4) 2.813(3) 163(3)

O7-H7A· · ·O5 iv 0.82(3) 2.02(3) 2.838(3) 174(3)
O7-H7B· · ·O6 v 0.78(5) 2.11(5) 2.867(3) 164(5)
C3-H3A· · ·O3 vi 0.95 2.54 3.355(4) 144

*C6-H6· · ·O4 0.95 2.48 2.885(3) 106
C6-H6· · ·O1 i 0.95 2.54 3.339(3) 142
(i) 3 − x, 1 − y, 1 − z; (ii) 1 − x, −y, −z; (iii) 2 − x, 1 − y, 1 − z; (iv) −1 + x, 1 + y, z; (v) −1 + x, y, z; (vi) 1 − x, −y, 1 − z

3
N1-H1· · ·O7 0.86(4) 1.91(4) 2.754(4) 170(4)
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Table 2. Cont.

9 D-H [Å] H· · ·A [Å] D· · ·A [Å] D-H· · ·A [o]

N2-H2A· · ·O3 i 0.85(5) 2.38(5) 3.206(3) 163(4)
N3-H3A· · ·O6 ii 0.85(5) 2.24(5) 3.012(3) 152(4)
N3-H3B· · ·O2 iii 0.87(4) 2.09(4) 2.924(3) 162(4)
O4-H4· · ·O1 iii 0.88(4) 1.76(4) 2.613(2) 165(4)
*O6-H6· · ·O5 0.80(5) 1.89(5) 2.606(3) 148(5)
O7-H7A· · ·O3 0.81(5) 2.07(5) 2.842(4) 161(5)

O7-H7B· · ·O1 iv 0.81(5) 2.00(5) 2.768(3) 160(5)
*C2-H2· · ·O3 0.95 2.53 2.917(4) 104

(i) 1 − x, −1/2 + y, 2 − z; (ii) 1 − x, ½ + y, 1 − z; (iii) x, y, −1+z; (iv) 1 + x, y, z
4

N2-H2A· · ·O7 0.91(3) 1.84(3) 2.730(3) 166(3)
O4-H4· · ·N3 i 0.97(4) 1.63(4) 2.573(2) 165(4)

N4-H4A· · ·N1 ii 0.87(3) 2.04(3) 2.891(3) 170(3)
N5-H5A· · ·O7 0.88(3) 2.36(3) 3.091(3) 141(3)

N5-H5B· · ·O2 iii 0.84(3) 1.99(3) 2.817(3) 170(3)
*O6-H6· · ·O5 0.86(3) 1.82(3) 2.594(2) 150(3)
N6-H6B· · ·O3 0.89(3) 1.94(3) 2.781(3) 159(2)

N6-H6C· · ·O5 iv 0.84(3) 2.02(3) 2.851(3) 168(3)
O7-H7A· · ·O1 v 0.83(4) 2.07(4) 2.827(3) 153(4)
O7-H7B· · ·O3 vi 0.80(4) 2.09(4) 2.877(3) 165(3)

*C2-H2· · ·O3 0.95 2.47 2.868(3) 105
C5-H5· · ·O6 vii 0.95 2.58 3.455(3) 153

C11-H11· · ·O2 viii 0.95 2.37 3.098(3) 133
(i) x, 1 + y, z; (ii) 1 − x, −y, 2 − z; (iii) x, y, 1 + z; (iv) x, −1 + y, z; (v) −x, 1 − y, 1 − z; (vi) 1 − x, 1 − y, 1 − z; (vii) −x, 2 − y, −z; (viii)

1 − x, −y, 1 − z
5

N1-H1· · ·O6 i 0.91(2) 1.84(2) 2.7102(18) 161(2)
N2-H2· · ·O1 ii 0.916(17) 1.632(17) 2.5451(18) 174.0(17)
N2-H2· · ·O2 ii 0.916(17) 2.59(2) 3.1463(19) 119.9(14)
*O3-H3· · ·O2 0.91(3) 1.67(3) 2.5278(19) 155(2)

O7-H7A· · ·O4 iii 0.85(3) 2.13(2) 2.9623(19) 168(2)
O7-H7B· · ·O5 iv 0.81(3) 2.05(3) 2.841(2) 167(2)

*C6-H6· · ·O4 0.95 2.59 2.951(2) 103
C8-H8A· · ·O5 v 0.99 2.47 3.423(2) 161
C8-H8B· · ·O7 vi 0.99 2.44 3.314(3) 147
C9-H9B· · ·O3 vi 0.99 2.47 3.329(2) 145

C11-H11A· · ·O2 vi 0.99 2.59 3.363(2) 135
C13-H13B· · ·O7 vi 0.99 2.59 3.356(2) 134
(i) 1 − x, 1 − y, 2 − z; (ii) −x, 1 − y, 1 − z; (iii) 1 + x, y, −1 + z; (iv) 1 − x, −y, 1 − z; (v) 1 + x, 1 + y, z; (vi) 1 − x, 1 − y, 1 − z

6
*N1-H1· · ·N2 0.930(18) 1.713(18) 2.5973(15) 157.6(17)

O1-H1A· · ·O5 i 0.93(2) 1.63(2) 2.5468(13) 169(2)
*N3-H3· · ·N4 0.93(2) 1.707(19) 2.5907(16) 158.8(17)

*O3-H3A· · ·O2 0.87(2) 1.83(2) 2.6134(17) 148(2)
O7-H7· · ·O11 ii 0.92(2) 1.66(2) 2.5714(13) 169(2)
*O9-H9· · ·O8 0.89(2) 1.79(2) 2.6005(16) 149(2)

C25-H25B· · ·O4 iii 0.98 2.52 3.4370(16) 157
C25-H25C· · ·O2 iv 0.98 2.51 3.3061(18) 138
C26-H26A· · ·O5 v 0.98 2.46 3.3977(18) 161
C27-H27C· · ·O10 0.98 2.57 3.381(2) 140
C30-H30· · ·O11 vi 0.95 2.49 3.4349(16) 173
C39-H39C· · ·O8 iii 0.98 2.51 3.0482(17) 114

C40-H40A· · ·O10 vi 0.98 2.39 3.3235(18) 159
C41-H41B· · ·O12 0.98 2.50 3.1961(17) 128
C42-H42C· · ·O12 0.98 2.58 3.2782(16) 128
(i) −x, ½ + y, ½ − z; (ii) 1 − x, −1/2 + y, ½ − z; (iii) x, −1 + y, z; (iv) x, −1 + y, z; (v) −x, −1/2 + y, ½ − z; (vi) 1 − x, 1 − y, −z
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Overall, at first glance, novel salts exhibit similar self-assembly behavior. Nevertheless,
a thorough examination revealed that the structures differ markedly as demonstrated
in Figures 3–8. More specifically, compounds feature extensive H-bonding 3D-layered
structures with significant π· · ·π interactions in 2–4 with a Cg-Cg distance below 4 Å; and
with the shortest distance—3.4111(12) Å in 4, and C-H· · ·π in 5 and 6 (H· · ·Cg distance
below 3 Å) between the cations and anions, as demonstrated in Figures 3–8. With respect
to other weak π-based interactions, C-O· · ·π (O· · ·Cg distance below 4 Å) exist in 2, 4, and
5. It can be noted that the S-O· · ·π [3.841(2) Å] inter-contact and C-Cl· · ·π [Cl-Cg distance
3.6827(13) Å] halogen interaction were found in 2 (see Tables S2 and S3). In 2, a specific
zig-zag layered structure is formed via alternating perpendicular separate anionic and
cationic layers. Notably, water solvent molecules are significant contributors to building
supramolecular architectures in all suitable cases (1–5). They play an important role as
either a donor or acceptor of a bridge-linking moieties. The interplay of strong and weak
H-bonding interactions and π-based inter-contacts gives rise to interesting supramolecular
motifs at diverse levels of self-assembly. First of all, a specific intramolecular synthon,
namely S(6), via O-H· · ·O between the phenol OH group and a carboxyl O atom is observed
in all crystals (Figure 9). It is key information from the crystal engineering point of view.
This synthon can be employed in the pseudo-ring replacement strategy in the design of
molecules. Another intramolecular H-bonding supramolecular motif via (NH)N-H· · ·N(N)
interactions in cationic moiety, but denoted by a similar descriptor S(6), is observed in
crystal 6 (Table S4). In 2 and 4, a robust and very popular homosynthon R2

2(8) via O-H· · ·O
interaction is observed. Additionally, other centrosymmetric dimers, such as R2

2(16) in 2 by
O-H· · ·O, R2

2(12) in 1, R2
2(10) and R2

2(13) in 2 through C-H· · ·O, were found. Moreover,
heterosynthon R2

2(7) via O-H· · ·O and C-H· · ·O interactions is generated. Here, the OH
group plays as role of either donor or acceptor simultaneously (Table S4). Moving forward,
water molecules, linking ions, are involved in the formation of cyclic homosynthons
as a donor and acceptor. Figure 9 illustrates the above supramolecular motifs taking
into account anions. On the other hand, the protonated pyridine N atom of a cation
forms diverse, interesting H-bonding supramolecular motifs with either COOH/COO−

or SO− groups of anions or the water molecules as shown in Figure S1 (in Supplementary
Materials). A library of supramolecular H-bonding synthons, including the first and second
levels of the graph-set theory is provided (see Table S4). It is noteworthy that novel salts
demonstrate remarkably varied supramolecular features arising mainly from different
cationic polyamine species and their substituents.
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The Full Interaction Maps (FIMs), related to statistical interaction data extracted from
the CSD [62], helped us understand the effect of diverse substituents in the polyamines
on supramolecular interactions and synthons formed by them. FIMs generated for all
analyzed salts in the Mercury program [55] are presented in Figure 10. They illustrate
zones around cations and anions where interactions are expected. It allowed us to estimate
whether synthon preferences within the corresponding crystal lattices are satisfied. The
FIMs of analyzed compounds 1–6 visualize the expected directions of the formation of
either H-bonding or π-based interactions. Notably, nearly identical maps were obtained
for the anions in all analyzed crystals, apart from 5. On the other hand, FIMs for cations
are completely different. Areas of H-bonding donor probabilities are shown in blue while
H-bonding acceptors are demonstrated in red. Aromatic/hydrophobic interactions are
denoted in beige/light brown. It can be mentioned that the intensity of the color areas is
compatible with the likelihood of the relevant inter-contacts occurring. It can be seen that
cation 6 has the largest probability of being involved in hydrophobic interactions, while
anion 5 can participate in forming synthons as acceptors only. The substituent effect on
multifaceted classical and non-classical non-covalent interactions was thoroughly examined
using complex Hirshfeld surfaces analysis, described in the next section.
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3.2. Hirshfeld Surface Analysis

To gain a deep understanding of the crystal-packing behavior and the hierarchy of
non-covalent interactions Hirshfeld surface analysis was performed. The 3D Hirshfeld
surface maps for 1–6 were generated using either a standard surface solution of three-
dimensional dnorm surfaces or shape index and curvedness properties (Figure 11). The
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normalized contact distance, called dnorm, is the sum of the distance of the point from
the nearest nucleus within the Hirshfeld surface (di) and the distance of the point from
the nearest nucleus outside the Hirshfeld surface (de) normalized via the van der Waals
radius of the corresponding atom [66]. The surfaces were calculated for the 5-sulfosalicylate
moiety, which is the same in all compounds to emphasize nuanced differences. The bright,
larger red spots on the views of the dnorm surfaces indicate closer distances than the van der
Waals radii. In particular, they display strong H-bonding interactions such as O-H· · ·O
and N-H· · ·O between carboxyl and amino groups of anions and cations, respectively. The
smaller spots signify weaker C-H· · ·O interactions with neighboring moieties. The blue
regions present longer inter-contacts than the van der Waals radii, while the white spots
represent the close interactions equal to the sum of van der Waals radii. On the other hand,
the convex blue spots on the shape index maps indicate hydrogen donor groups, while the
concave red regions characterize acceptor groups. The π· · ·π inter-contacts are represented
via adjacent red and blue triangles on the shape index surfaces and as flat green areas
around the rings, delineated by the blue outlines, on the curvature maps. Moving forward,
orange-colored deformations of the Hirshfeld surfaces in crystals 5 and 6 indicate C-H· · ·π
interactions. For a better overview, the colored fragment patch surfaces were also generated
to specify the nearest surrounding moiety [66], as shown in Figure 11. It can be used to
calculate the number of moieties interacting with the main one.

Crystals 2024, 14, x FOR PEER REVIEW 16 of 26 
 

 

 
Figure 11. Views of the transparent Hirshfeld surfaces of analyzed salts 1–6 mapped with shape 
index (b), curvedness (c), and fragment patch (d). In addition, molecular electrostatic potential 
mapped on the Hirshfeld surfaces is presented (a). Red circles on the shape index and curvedness 
maps signify C…C interactions 

3.2.1. Molecular Electrostatic Potential 
In Figure 11, the electrostatic potential mapped onto the Hirshfeld surfaces is also 

presented. It visualizes molecular electrostatic complementarities verifying the acceptor’s 
and donors’ functions in the 3D supramolecular network. Blue areas indicate a positive 
electrostatic potential (H-bond donors), while red regions denote a negative electrostatic 
potential (acceptors) [64].  

3.2.2. Fingerprints 
The 2D fingerprint plots are constructed based on the distances de and di from the 

Hirshfeld surfaces. The shapes of the graphs are unique for each compound. They 
manifest differences and summarize the intricate quantitative information contained in 
molecular crystals 1–6 as illustrated in Figure 12. The percentage contribution of close 
interactions in these crystal structures is included in the same Figure. It is clear at first 
sight that the O…O/H…O interactions have the highest contribution in all crystals, at the 
level of 50%. They are characterized by long symmetrical/parallel ‘spikes’ in the 
fingerprint histograms. The absence of the second spike in 5 means that the anionic moiety 

Figure 11. Views of the transparent Hirshfeld surfaces of analyzed salts 1–6 mapped with shape index
(b), curvedness (c), and fragment patch (d). In addition, molecular electrostatic potential mapped on
the Hirshfeld surfaces is presented (a). Red circles on the shape index and curvedness maps signify
C· · ·C interactions.
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3.2.1. Molecular Electrostatic Potential

In Figure 11, the electrostatic potential mapped onto the Hirshfeld surfaces is also
presented. It visualizes molecular electrostatic complementarities verifying the acceptor’s
and donors’ functions in the 3D supramolecular network. Blue areas indicate a positive
electrostatic potential (H-bond donors), while red regions denote a negative electrostatic
potential (acceptors) [64].

3.2.2. Fingerprints

The 2D fingerprint plots are constructed based on the distances de and di from the
Hirshfeld surfaces. The shapes of the graphs are unique for each compound. They manifest
differences and summarize the intricate quantitative information contained in molecular
crystals 1–6 as illustrated in Figure 12. The percentage contribution of close interactions
in these crystal structures is included in the same Figure. It is clear at first sight that
the O· · ·O/H· · ·O interactions have the highest contribution in all crystals, at the level
of 50%. They are characterized by long symmetrical/parallel ‘spikes’ in the fingerprint
histograms. The absence of the second spike in 5 means that the anionic moiety only serves
as an H-bonding acceptor, while the cationic is a donor. The H· · ·H and C· · ·H/H· · ·C
interactions are second and third contributors, representing an average of 21.5% and 11%,
respectively. The latter interactions change from 4.9% in 2 to 23.5% in 6. The H· · ·H
contacts are visualized in the central region between the spikes, while the C· · ·H/H· · ·C
interactions are visualized as ‘wings’ in the upper side of fingerprint plots. The C· · ·C
inter-contacts are significant to share in the 2–4 crystal structures, showing from 3.7% in
1 to 9.8% in 2. The C· · ·O/O· · ·C contacts, observed in 1–5, represent from 1.5% in 3 to
8.6% in 2. In addition, N· · ·C/C· · ·N contacts are observed in 1 (2.9%), 3 (3.5%), and 4
(5.3%), while N· · ·H/H· · ·N are reported in 1 (2.6%) and 4 (7.4%). A much smaller share
falls on O· · ·O (in 1, 2, and 5) and N· · ·O/O· · ·N (in 1 and 4), at a level of 3% and 1.5%,
respectively (Table S5).

Enrichment ratios were calculated based on the Hirshfeld surface concept for all
analyzed compounds to analyze the interactions with a high propensity to form contacts in
the crystal packing. The obtained values are tabulated in Table 3 and Table S6. Privileged
interactions are as follows: O· · ·H/H· · ·O in all crystals, C· · ·H/H· · ·C—in 1 and 6,
N· · ·H/H· · ·N in 4, C· · ·C in nearly all structures (apart from 6), O· · ·C/C· · ·O in 2,
C· · ·N/N· · ·C in 1 and 4. The highest value is obtained for the contacts O· · ·H in 1, C· · ·C
in 1–5, and C· · ·N in 1 and 4. However, C· · ·C and C· · ·N represent only ~5.5% and 4%
of the contact surfaces, respectively. Surprisingly, H· · ·H is one of the most abundant
interactions in all structures (~20%), but they are disfavored in the crystal packing. The
enrichment ratio values are below 1. O· · ·N are disfavored, while O· · ·O are impoverished.

Table 3. Enrichment ratios for 1–6.

1 2 3 4 5 6

H· · ·H 0.756 0.83 0.79 0.686 0.73 0.62
O· · ·H 3.131 1.607 1.791 1.804 1.53 1.64
C· · ·H 0.962 0.407 0.42 0.512 0.81 1.64
N· · ·H 0.719 1.138
O· · ·O 0.246 0.247 0.27
O· · ·C 0.471 1.043 0.202 0.382 0.57
O· · ·N 0.57 0.418
C· · ·C 1.967 6.53 4.3 3.279 2.99
C· · ·N 4.03 3.223
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Figure 12. (a) Percentage contributions of individual close inter-contacts to the Hirshfeld surfaces of
1–6 (contacts with >0.5% are taken into account); (b) full fingerprint plots and Hirshfeld surfaces of
the 5-sulfosalicylic moiety for 1–6 mapped with dnorm property over a range between −0.50 and 1.50 Å
and drawn with the surrounding moieties. Circles on the fingerprint plots characterize corresponding
interactions: C...C in red, C...H/H...C in green, H...H in blue, O...O in pink (according to the legend).

The energy framework concept enables the visualization of strong interaction chains
and an understanding of the distinct energy types. The three-dimensional energy frame-
works for all six analyzed compounds are depicted in Figure 13. It emphasizes the neigh-
boring moieties located in a radius of 3.8 Å from the analyzed molecule. Energy types are
symbolized by different colors. In particular, red is for classical electrostatic (the coulombic),
while green is for dispersion terms. In addition, the total energy is presented in blue. No-
tably, the cylinder/tube size (diameter) signifies the energy value; thicker cylinders mean
higher energies. The tube thicknesses denote the relative interaction strengths. The calcu-



Crystals 2024, 14, 497 17 of 23

lated values of interaction energies, including the crystallographic symmetry operations,
are summarized in Table 4. It depicts the energy contributions of all components, such as
electrostatic (Eele), polarization (Epol), dispersion (Edisp), and repulsion (Erep), as well as to-
tal (Etot) for various intermolecular interactions in the analyzed crystals. Details presented
in Table 4 are pivotal for the calculations of lattice energy [71]. The results revealed several
types of interactions between the center moiety and the neighboring moieties. The thorough
analysis revealed that in 1, total interaction energy (Etot = −85.9 kJ/mol) is associated with
a symmetric pair of molecules distanced at R = 5.66, 5.80, and 7.34 Å, respectively. Similarly,
in 2, a closer look at the obtained values of energies shows significant insights. As an exam-
ple, in 1, the electrostatic, polarization, dispersion, and repulsion energies were calculated
to be −218.9, −92.5, −162.7, and 57.2 kJ/mol, respectively (see Table 4). Further analysis
indicated total lattice energies: −383.5 kJ/mol for 1, −153 kJ/mol for 2, −469.5 kJ/mol
for 3, −237 kJ/mol for 4, −86.8 kJ/mol for 5, and −333.4 kJ/mol for 6. Thus, Etot values
show significant differences. The most thermodynamically stable salt is considered to be 3.
Interestingly, 3 presents remarkable red cylinders that joined the molecular pairs forming a
hexagon energy topology. It is noteworthy that overall, the electrostatic energy is clearly a
dominant component in 1, 3, 4, and 6, while dispersive energy is in 2 and 5. This means
that van der Waals forces, contributing to dispersion interactions, are significant in the
supramolecular assembly in 2 and 5. In this regard, the interactions between the reference
moiety and the symmetry-related molecule at −x, −y, and −z in 2 and 5 are the most
important interactions, with Etot = 175.6 and −49.7 kJ/mol, respectively.

Table 4. The interaction energies via energy framework calculations. Energy values are given in
kJ mol−1. (R means the distance between molecular centroids; N is the number of interactions
involving the central moiety).

N R Eele Epol Edisp Erep Etot Symmetry Operation

1
1 5.98 7.1 0.0 −21.2 5.8 −7.1 −x, −y, −z
1 5.90 7.1 −12.5 −21.2 5.8 −15.3
1 6.55 −66.6 0.0 −16.5 9.3 −75.2 −x, −y, −z
1 5.66 −66.6 −16.4 −16.5 9.3 −85.9
1 7.85 15.5 −4.0 −12.9 1.3 2.6 −x, −y, −z
1 7.64 −7.9 −0.7 −0.5 0.0 −9.0
1 5.68 −7.9 −0.7 −0.5 0.0 −9.0
1 5.80 −66.6 −16.4 −16.5 9.3 −85.9
1 3.46 9.2 −1.4 −1.4 0.0 7.2
1 6.38 7.1 −12.5 −21.2 5.8 −15.3
1 6.93 15.5 −4.0 −12.9 1.3 2.6
1 6.16 9.2 −1.4 −1.4 0.0 7.2
1 8.58 −7.4 −6.1 −3.5 0.3 −14.5 −x, −y, −z
1 7.34 −66.6 −16.4 −16.5 9.3 −85.9

−218.9 −92.5 −162.7 57.2 −383.5
2

1 5.13 28.7 −18.6 −43.8 21.2 −5.2 −x, −y, −z
1 8.39 6.8 −4.2 −10.4 8.1 1.4 −x, −y, −z
0 4.07 19.2 −37.6 −57.8 30.3 −32.4 −x, −y, −z
1 6.89 26.6 −8.0 −10.9 2.3 13.8 x, y, z
1 7.00 0.0 −4.2 0.0 0.0 −2.7
0 6.96 35.9 −2.5 −2.2 0.0 32.9
1 4.79 26.6 −8.0 −10.9 2.3 13.8
0 6.09 −176.3 −61.8 −22.7 79.7 −175.6 −x, −y, −z
0 5.65 8.7 −2.3 −1.8 0.0 5.7
0 6.53 8.7 −2.3 −1.8 0.0 5.7
1 8.65 28.7 −18.6 −43.8 21.2 −5.2
1 7.90 28.7 −18.6 −43.8 21.2 −5.2

42.3 −186.7 −249.9 186.3 −153
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Table 4. Cont.

N R Eele Epol Edisp Erep Etot Symmetry Operation

3
1 9.13 8.5 −1.1 −5.6 2.9 5.2
1 4.05 −93.4 −30.6 −11.1 55.8 −79.8
1 3.65 −46.1 −18.2 −50.1 32.6 −77.5
2 9.01 −23.9 −3.7 −2.3 0.1 −28.7 −x, y + 1/2, z
2 8.48 −93.4 −30.6 −11.1 55.8 −79.8 x, y, z
1 4.14 −12.0 −2.4 −1.9 0.0 −15.5
1 6.21 0.0 −0.2 0.0 0.0 −0.1
1 3.49 −55.6 −21.0 −48.5 28.3 −91.1
1 8.13 1.4 −2.5 −8.0 13.5 3.6
1 6.20 0.9 −8.3 −14.2 8.4 −10.4
2 8.49 −25.3 −5.5 −3.8 0.2 −32.6 −x, y + 1/2, z
1 5.82 −0.9 −5.1 −9.2 1.2 −11.5
1 7.81 −11.2 −8.7 −12.9 15.0 −16.5
1 7.58 −33.3 −14.8 −9.0 20.8 −34.8

−384.3 −152.7 −187.7 234.6 −469.5
4

1 7.40 −76.4 −14.8 −11.5 2.8 −95.6 −x, −y, −z
1 8.81 6.5 −3.1 −8.9 5.7 1.3 −x, −y, −z
1 9.38 0.0 −2.4 0.0 0.0 −1.6
1 9.45 15.2 −2.7 −5.5 0.4 9.1 −x, −y, −z
1 7.04 6.5 −3.1 −8.9 5.7 1.3
1 8.27 −76.4 −14.8 −11.5 2.8 −95.6
1 4.11 43.4 −2.9 −2.6 0.0 40.1
1 7.88 15.2 −2.7 −5.5 0.4 9.1
1 8.55 −10.7 −0.6 −0.3 0.0 −11.6
1 7.63 −57.3 −6.7 −4.6 0.0 −66.8
1 4.30 −57.3 −6.7 −4.6 0.0 −66.8
1 3.97 43.4 −2.9 −2.6 0.0 40.1

−148 −63.4 −66.5 17.8 −237
5

1 4.81 44.8 −37.4 −40.7 16.9 −1.7 −x, −y, −z
1 7.06 −3.7 −0.6 −1.3 0.0 −5.2
1 5.38 10.1 −0.5 −0.7 0.0 9.3
1 8.75 0.0 −6.4 0.0 0.0 −4.1 −x, −y, −z
1 5.87 10.7 −1.4 −1.5 0.0 8.6
1 6.64 −13.6 −9.5 −10.7 2.6 −27.6
1 7.38 −39.5 −4.5 −7.6 0.5 −49.7 −x, −y, −z
1 7.29 44.8 −37.4 −40.7 16.9 −1.7
1 4.83 4.5 −0.2 −0.2 0.0 4.3
1 6.01 −13.6 −9.5 −10.7 2.6 −27.6
1 6.96 10.7 −1.4 −1.5 0.0 8.6

55.2 −108.8 −115.6 39.5 −86.8
6

2 7.91 −123.7 −40.9 −8.7 74 −100.5 −x, y + 1/2, −z + 1/2
1 6.17 −16.6 −2.4 −1.7 0.0 −19.9
2 9.34 −16.6 −2.4 −1.7 0.0 −19.9 x, −y + 1/2, z + 1/2
1 8.06 28.9 −1.4 −0.5 0.0 28.1
1 6.45 −123.7 −40.9 −8.7 74 −100.5
1 6.94 0.0 −0.1 0.0 0.0 −0.1
1 9.53 −16.6 −2.4 −1.7 0.0 −19.9
1 9.60 0.0 −0.3 0.0 0.0 −0.2
1 9.73 −123.7 −40.9 −8.7 74 −100.5

−392 −131.7 −31.7 222 −333.4
Energy model k_ele k_pol k_disp k_rep

CE-HF· · ·HF/3-21G electron densities 1.019 0.651 0.901 0.811
CE-B3LYP· · ·B3LYP/6-31G(d,p) electron

densities 1.057 0.740 0.871 0.618

k—scale factor. Each form of energy should be multiplied by its relevant factor.
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4. Conclusions

In summary, a series of novel salts of heterocyclic polyamines with 5-sulfosalicylic acid,
namely 2,4-diaminopyrimidin-1-ium 3-carboxy-4-hydroxybenzenesulfonate dihydrate (1),
2,4-diamino-6-chloropyrimidin-1-ium 3-carboxy-4-hydroxybenzenesulfonate hydrate (2),
2,6-diaminopyridin-1-ium 3-carboxy-4-hydroxybenzenesulfonate monohydrate (3), 2,6-
diamino-9H-purin-1-ium 3-carboxy-4-hydroxybenzenesulfonate monohydrate (4), and
8-(dimethylamino)-N,N-dimethylnaphthalen-1-aminium 3-carboxy-4-hydroxybenzenesulfonate
(6) have been reported for the first time, to the best of our knowledge. We managed to
successfully synthesize and crystallize new salts and determine their crystal structures
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by single-crystal X-ray diffraction. The hierarchical supramolecular features were char-
acterized by diverse modern approaches, including mainly extended Hirshfeld surface
concepts. In addition, in the analysis, we included 1,4-diazabicyclo[2.2.2]octane-1,4-dium
2-hydroxy-5-sulfonatobenzoate monohydrate (5) as a better re-determination of its pre-
viously published equivalent (CSD refcode: KAXAE). The new compounds 1, 2, 4, and
5 crystallize in the triclinic P1 space group, while compounds 3 and 6 crystallize in the
monoclinic P21 and P21/c space groups, respectively. Differences in the intermolecular
interactions in 1–6 were seen on the Hirshfeld surface maps and fingerprint plots, as well
as the energy frameworks. More specifically, O· · ·H/H· · ·O interactions are significant
contributors (~ 50%). However, C· · ·H/H· · ·C (5–23%) N· · ·H/H· · ·N (below 7%) and
C· · ·C (below 10%) inter-contacts also govern the crystal packing of the studied structures.
The latter represents π· · ·π contacts with the shortest interplanar distance of 3.4111(12) Å in
4. The electrostatic interactions in most crystals (in 1, 3, 4, and 6), while the dispersion forces
only in 2 and 5, were regarded as dominant in stabilizing the crystal packing. Notably, the
presence of water molecules has a pivotal role in determining the crystal packing, as either
a donor or acceptor, as well as, to some extent, the electrostatic properties. A library of hier-
archical supramolecular H-bonding motifs is provided. A specific intramolecular synthon
via O-H· · ·O is observed in nearly all crystals. It can be employed in the pseudo-cyclic
replacement strategy in the design of new molecules.
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