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ABSTRACT
Coronaviruses utilize a positive-sense single-strand RNA, functioning simultaneously as mRNA and the genome. An RNA-
dependent RNA polymerase (RdRP) plays a dual role in transcribing genes and replicating the genome, making RdRP a critical 
target in therapies against coronaviruses. This review explores recent advancements in understanding the coronavirus transcrip-
tion machinery, discusses it within virus infection context, and incorporates kinetic considerations on RdRP activity. We also 
address steric limitations in coronavirus replication, particularly during early infection phases, and outline hypothesis regarding 
translation–transcription conflicts, postulating the existence of mechanisms that resolve these issues. In cells infected by coro-
naviruses, abundant structural proteins are synthesized from subgenomic RNA fragments (sgRNAs) produced via discontinuous 
transcription. During elongation, RdRP can skip large sections of the viral genome, resulting in the creation of shorter sgRNAs 
that reflects the stoichiometry of viral structural proteins. Although the precise mechanism of discontinuous transcription re-
mains unknown, we discuss recent hypotheses involving long-distance RNA–RNA interactions, helicase-mediated RdRP back-
tracking, dissociation and reassociation of RdRP, and RdRP dimerization.

1   |   Introduction

The emergence of COVID-19 in 2019, Middle East respiratory 
syndrome (MERS) in 2012, and severe acute respiratory syn-
drome (SARS) in 2002 posed significant global public health chal-
lenges in the 21st century. These respiratory diseases are caused 
by three novel coronaviruses (CoV)—SARS-CoV-2, MERS-CoV, 
and SARS-CoV, respectively—belonging to the Coronaviridae 
family (Al-Salihi and Khalaf 2021). The first human CoVs dis-
covered, HCoV-229E and HCoV-OC43, were identified in the 
1960s and are known to cause respiratory conditions (Peiris 
and Poon 2021). This family derives its name from the crown-
like morphology observed under an electron microscope (Al-
Salihi and Khalaf  2021). CoVs are classified under the order 

Nidovirales and comprise two subfamilies: Orthocoronavirinae, 
which includes the most pathogenic viruses, and Letovirinae. 
The Orthocoronavirinae subfamily is divided into four genera: 
Alpha- (α), Beta- (β), Gamma- (γ), and Deltacoronavirus (δ), with 
a potential additional genus, Epsilon (ε) (Peiris and Poon 2021; 
Wang et al. 2018). MERS-CoV and both SARS-CoV and SARS-
CoV-2 belong to the Betacoronavirus genus.

CoVs can infect both avian and mammalian species, exhib-
iting extensive genetic diversity in humans and reservoir spe-
cies, particularly bats. With a wide range of strains, variants, 
and lineages across species, these viruses can cause severe re-
spiratory illnesses and pose a significant life-threatening risk 
(Coronaviridae Study Group of the International Committee on 
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Taxonomy of Viruses 2020). Immunocompromised individuals, 
the elderly, and those with diabetes are at a higher risk of se-
vere COVID-19, as they tend to experience organ dysfunction, 
more severe pneumonia, and prolonged viral shedding (Wünsch 
et  al.  2022). These high-risk groups are also more suscepti-
ble to long COVID (also referred to as “post-acute sequelae of 
COVID-19”), which affects at least 10% of SARS-CoV-2-infected 
individuals. Long COVID is characterized by prolonged re-
covery, and involves over 200 symptoms across multiple organ 
systems, with an estimated 65 million global cases (Davis 
et al. 2023; Wünsch et al. 2022).

A deep understanding of CoV biology and structure provides a 
framework for developing diagnostic and treatment strategies, 
as demonstrated by several successful approaches: RT-qPCR 
tests, rapid antibody-based assays, monoclonal antibodies, and 
replication inhibitors such as remdesivir and nirmatrelvir.

In this work, we review the current knowledge of the CoV life 
cycle and protein components, with a particular focus on the 
transcription machinery and its kinetics. We provide new in-
sights into key stages of the CoV life cycle with a temporal per-
spective, raising questions that could lead to new regulatory 
and therapeutic strategies. As CoVs are positive-sense single-
stranded RNA (ssRNA+), some of these insights apply to all 
ssRNA(+) viruses.

2   |   Virus Morphology and Genomic Architecture

CoVs share common structural features and are recognized as 
the largest positive-strand RNA viruses, with genome sizes of 
approximately 30 kilobases (kb) and virion diameters around 
125 nm (Steiner et  al.  2024) (Figure  1). The genomic RNA 
(gRNA) has a 5′ cap and a 3′ polyadenylated tail (Figure 1A). 
More than half of the viral genome at the 5′ end encodes open 
reading frames (ORF1a and ORF1b), which are directly trans-
lated from the gRNA to produce two polyproteins. The polypro-
teins undergo cotranslational proteolysis into 16 nonstructural 
proteins (nsps) (Figure 1B). Nsps are available from the onset of 
viral infection as their translation does not depend on viral tran-
scriptional activity. These proteins are essential for viral RNA 
synthesis and facilitating interactions with the host cell during 
infection. Table 1 highlights the functions of all nonstructural 
and structural viral proteins during CoV infection.

The remaining 3′ portion of the gRNA encodes four structural 
proteins, as well as genes encoding accessory proteins (Zhou 
et al. 2020; Zhu et al. 2020). In contrast to ORF1a and 1b, struc-
tural and accessory proteins are produced through subgenomic 
messenger RNAs (sg-mRNAs or sgRNA(+)), arranged in nested 
sets. This mechanism allows the simultaneous production of 
template sgRNA(−) by RdRP and translation of ORF1a and 
ORF1b by ribosomes, both crucial for infection kinetics. The 
structural proteins of SARS-CoV-2 include the envelope (E), 
membrane (M), nucleocapsid (N), and spike (S) proteins. The 
spike protein plays a critical role in viral entry, while the other 
proteins coordinate various steps in viral replication, including 
the assembly, packaging, and budding of new virions. Accessory 
proteins, though not essential for viral replication in cell culture, 
serve additional functions (Jungreis, Sealfon, and Kellis  2021) 
(Figure 1C,D)

3   |   Coronavirus Life Cycle

3.1   |   Attachment and Entry

The initial binding of the viral particle to a host cell is triggered 
by the interaction between the spike (S) protein and its corre-
sponding receptor. This mechanism is key in determining the 
range of host species and the specific tissues targeted by CoVs. 
The S protein consists of two subunits: the variable S1 subunit, 
which facilitates receptor binding, and the conserved S2 sub-
unit, which undergoes conformational changes leading to the 
fusion of the viral and cellular membranes (Wang, Grunewald, 
and Perlman 2020).

The interaction of the S protein with the host cell receptor is es-
sential for infection and cross-species transmission, making it 
the primary target for neutralizing antibodies. In many CoVs, 
the S protein is cleaved during release from infected cells, often 
mediated by a furin-like protease (Millet and Whittaker 2014). 
This cleavage separates the RBD from the fusion domains of the 
S protein (Belouzard, Chu, and Whittaker  2009). After recep-
tor binding, the virus typically requires entry into the host cell 
cytosol. This is often achieved through a secondary proteolytic 
cleavage of the S protein by transmembrane serine protease 

Sidebar 1: The S Protein Determines the Type of Host Cell
The location of the receptor-binding domain (RBD) within 
the S1 region varies across different CoVs. For example, in 
some cases like murine hepatitis virus (MHV), the RBD 
is located at the N terminal of S1 (Wang, Grunewald, 
and Perlman  2020). In contrast, viruses such as SARS-
CoV (Wong et al. 2004), MERS-CoV (Wang et al. 2013), 
HCoV-229E (Bonavia et  al.  2003), HCoV-HKU1 (Qian 
et al. 2015), HCoV-NL63 (H.-X. Lin et al. 2008), and TGEV 
(Godet et al. 1994) have the RBD at the C terminal of S1.
Many δ-CoVs and α-CoVs use aminopeptidase N (APN) 
as their cellular receptor (Li et al. 2018; Wang et al. 2018). 
APN, also known as CD13, is a heavily glycosylated ho-
modimeric protein and a zinc-binding cell-surface pro-
tease predominantly found in respiratory, enteric, and 
neural tissues. On the other hand, β-CoVs like SARS-CoV 
and SARS-CoV-2 use angiotensin-converting enzyme 
2 (ACE2) as their receptor for cell entry (Li et al. 2003). 
ACE2 is primarily expressed in lung and small intestine 
epithelial cells, which are the main targets for SARS-CoV, 
SARS-CoV-2, and HCoV-NL63 (Hofmann et  al.  2005). 
ACE2 is also present in other tissues, such as the heart 
and kidneys (Hamming et al. 2004). ACE2 functions as 
a zinc-binding cell-surface carboxypeptidase, playing a 
crucial role in regulating cardiac function and blood pres-
sure. β-CoVs, like MERS-CoV, use dipeptidyl-peptidase 4 
(DPP4) as their cellular receptor (Raj et al. 2013). DPP4, 
also known as CD26, is a membrane-bound exoprotease 
distributed across various tissues, involved in the cleav-
age of dipeptides from chemokines, cytokines, and hor-
mones. Critical residues for binding to the RBD of both 
human and camel DPP4 are highly conserved, facilitating 
the zoonotic transmission of MERS-CoV (Li 2015).
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2 (TMPRSS2) or cathepsins (Kleine-Weber et  al.  2018; Park 
et al. 2016). After cleavage at the S2 site, a fusion peptide is ex-
posed, enabling the formation of an antiparallel six-helix bundle 

from two heptad repeats in the S2 region (Bosch et  al.  2003). 
The assembly of this bundle facilitates membrane fusion and 
the subsequent release of the viral genome into the cytoplasm. 

FIGURE 1    |     Legend on next page.
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Fusion typically occurs at the plasma membrane, though in 
some cases, it can happen within acidified endosomes (White 
and Whittaker 2016).

3.2   |   Translation of Viral Proteins

The next phase in the CoV life cycle involves the translation of two 
large polyproteins, pp1a and pp1b, from the viral genomic RNA 
(gRNA). To translate the second polyprotein, from ORF1ab, the 
virus employs a slippery sequence (5′-UUUAAAC-3′) followed 
by an RNA pseudoknot, which induce ribosomal frameshifting 
from the ORF1a reading frame to ORF1b (Wang, Grunewald, 
and Perlman 2020). Typically, the ribosome unravels the pseu-
doknot structure and continues translating until it encounters 
the stop codon of ORF1a. However, the pseudoknot can slow 
ribosome elongation, causing the ribosome to pause at the 
slippery sequence. This pause triggers a change in the reading 
frame, enabling the ribosome to shift back by one nucleotide (−1 
frameshift) before resuming translation into ORF1b (Baranov 
et al. 2005; Brierley, Digard, and Inglis 1989).

Various in  vitro studies have estimated the incidence of ribo-
somal frameshifting; however, its efficiency during actual virus 
infection in  vivo has not been definitively determined. Some 
studies suggest that frameshifting efficiency in infected cells 
may vary, ranging from 10% to 15% or as high as 15% to 30%, 
depending on cellular factors (Bhatt et al. 2021; Kelly et al. 2020; 
Kelly, Woodside, and Dinman  2021; Plant et  al.  2005). The 
frameshifting mechanism is believed to regulate the ratio be-
tween ORF1a and ORF1b proteins, potentially delaying ORF1b 
production until ORF1a creates an environment suitable for 
RNA replication (Araki et al. 2010).

Moreover, the RNA pseudoknot must first be unfolded by the 
translating ribosome and then refolded to induce frameshifting 
in subsequent ribosome. This means that the spacing between 
ribosomes affects the frameshifting rate: larger spacing in-
creases the chances of pseudoknot refolding and frameshifting. 
Since translation elongation is fairly constant, ribosome spacing 
is set during translation initiation. Thus, we propose that the 
probability of ribosome frameshifting is directly linked to the 
translation initiation rate.

The nonstructural proteins (nsps) 1–11 and 1–16 are encoded 
within the polyproteins pp1a and pp1ab, respectively. CoVs typ-
ically exhibit two types of polyprotein cleavage activities. The 
primary cleavage is carried out by a single papain-like proteases 

(PLpro) in nsp3, which cleaves nsp1, nsp2, and nsp3. Some vi-
ruses, such as arteriviruses (also belonging to the Nidovirales 
order), encode two PLpros with distinct cleavage sites. 
Additionally, many viral PLpro enzymes possess deubiquiti-
nase activity, which helps counteract certain host antiviral de-
fense mechanisms by removing ubiquitin and ISG15 conjugates, 
thereby modulating immune responses (Mielech et  al.  2014). 
The remaining 11 cleavage events are mediated by the main 
protease (Mpro), also known as nsp5 (Anand et al. 2002; Stobart 
et al. 2012). Mpro is frequently referred to as the 3C-like protease 
(3CLpro) due to its distant relation to the 3C proteases of picor-
naviruses. Both PLpro and Mpro are prime targets for antiviral 
drug development due to their critical roles in the viral life cycle 
(Mielech et al. 2014; Yang et al. 2005).

3.3   |   Transcription and Replication of Viral RNAs

Coronaviruses employ a distinctive transcription method, pro-
ducing genomic RNA (gRNA) and subgenomic RNAs (sgR-
NAs), with the sgRNAs serving exclusively as mRNAs (Wang, 
Grunewald, and Perlman 2020). All positive-sense sgRNAs(+) 
share a 3′ coterminal arrangement with the full-length viral 
genome, creating a set of nested RNAs, a key feature of the 
Nidovirales order. Both gRNAs and sgRNAs are synthesized 
via negative-strand (RNA(−)) intermediates, which are about 
1% as abundant as their positive-sense counterparts, containing 
both antileader and polyuridylate sequences (Sethna, Hofmann, 
and Brian  1991). Therefore, gRNA replication involves two 
rounds of transcription: ssRNA(+) to ssRNA(−) and ssRNA(−) 
to ssRNA(+).

The synthesis of sgRNAs involves a unique discontinuous 
transcription process. The 6- to 9-nt-long transcription regu-
latory sequences (TRS) are crucial in this process, facilitating 
RNA–RNA joining during transcription (Sawicki, Sawicki, and 
Siddell 2007). Body TRS (TRS-B) base pairs with the TRS-L pres-
ent in the leader sequence at the 5′ of the ssRNA(+) (Fung and 
Liu  2019; Zúñiga et  al.  2004) (Figure  2). The RNA-dependent 
RNA polymerase (RdRP) may pause at the TRS-B sequences, 
switching between amplification of the leader sequence at the 5′ 
end of the genome or elongation to the next TRS-B.

In SARS-CoV-2, all structural proteins, including the nucleo-
capsid (N), matrix (M), envelope (E), and spike (S) proteins, are 
encoded at the 3′ end of the genome and translated from sgRNAs 
(Kim et al. 2020). Discontinuous transcription leads to the syn-
thesis of sgRNA(−), followed by high-copy sgRNA(+) mRNAs 
synthesis (Enjuanes et al. 2006; Fung and Liu 2019; Sawicki and 

FIGURE 1    |    Basic features of coronaviruses (CoVs) (on the basis of Bresson et al. 2020; Hartenian et al. 2020; Hulo et al. 2011). (A) Architecture 
of CoV genomic ssRNA(+). The gRNA has a 5′ cap and a 3′ polyadenylated tail. The genome is organized to encode essential nonstructural proteins 
(ORF1a and ORF1b) and structural proteins (spike, S; envelope, E; membrane, M; and nucleocapsid, N) necessary for the formation of new virions. 
(B) Open reading frames in the CoV genome. The translation of ORF1b is allowed by ribosomal frameshifting. Subgenomic RNAs (sgRNAs) are 
generated by a discontinuous transcription mechanism. (C) Structure of mature CoV particles. Virions are spherical, enveloped with a round surface 
that forms corona-like spikes around them. (D) The life cycle of CoVs. Key steps include attachment, entry, translation, replication, assembly, and 
the release of new virions. This cycle begins when the viral spike (S) protein binds to a specific receptor on the host cell surface. After binding, the 
virus enters the host cell, typically through a fusion of the viral envelope with the cell membrane or endosomal membrane. Inside the cell, the viral 
genome is released and translated to produce viral proteins necessary for replication and the production of new virions. The assembled virions are 
then transported to the cell surface and released, ready to infect new cells.
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TABLE 1    |    Characteristics of coronavirus nonstructural and structural proteins (on the basis of (Malone et al. 2022; Steiner et al. 2024; Wang, 
Grunewald, and Perlman 2020; Yan et al. 2022).

Protein 
name

aa length 
for SARS-

CoV-2a Functions Reference

Nonstructural proteins (nsps)

nsp1 180 -  Binds to ribosomes to block mRNA entry, causing 
translational halt and degradation of host mRNAs 

lacking the 5′ viral leader sequence.
-  Hinders the induction and interferon signaling.

-  Interferes with nuclear mRNA export by interacting 
with NXF1 (nuclear RNA export factor 1) and NXT1 

(nuclear transport factor 2-like export factor 1).

•  Ghaleh et al. (2023), Schubert et al. 
(2020).

nsp2 638 -  Binds to host proteins (PHB1, PHB2, WASH), possibly 
disrupting host signaling.

-  Interacts with translational repressors GIGYF2 and 
EIF4E2, hindering IFNβ expression.

-  Weakens the suppression ability of the cap-binding 
eIF4E-homologous protein (4EHP)-GIGYF2 complex.

Cornillez-Ty et al. (2009); Xu 
et al. (2022); Zou et al. (2022).

nsp3 1945 -  Process polyyprotein via papain-like protease (PLpro) 
activity.

-  Interacts with the nucleocapsid (N) protein using 
ubiquitin-like1 (Ubl1) and acidic domains.

-  Macrodomains (Mac1, Mac2, Mac3) exhibit mono-
ADP-ribosylhydrolase activity.

-  Contributes in forming double-membrane vesicles 
(DMVs), inducing membrane curvature, constituent of 

the DMV pore.

Alhammad et al. (2021); Claverie 
(2020); Klemm et al. (2020); Qin 

et al. (2023); Shi, Feng, and Zhang 
(2021); Shin et al. (2020).

nsp4 500 -  Participate in formation of replication organelles 
by altering cell membranes, creating pores for RNA 

transport, and interacting with host factors to facilitate 
viral replication.

Angelini et al. (2013); Lin et al. 
(2023); Oudshoorn et al. (2017).

nsp5 306 -  Called the main protease (Mpro) or Picornavirus 3C-
like protease, cleavage of viral polyproteins.

-  Inhibits NF-κB activation by processing NLRP12 and 
TAB1, also cleaves RIG-I and IRF3.

-  Enhances viral replication by cleaving the host factor 
RNF20.

-  Interferes with host sensors, promoting MAVS 
degradation.

-  Sequesters G3BP1, disrupting stress granule 
formation.

Anand et al. (2003); Liu et al. (2021); 
Moustaqil et al. (2021); Zhang, 

Wang, and Cheng (2021); Zheng 
et al. (2022); Zhu et al. (2017).

nsp6 290 -  Potential transmembrane scaffold protein. Acts as a 
coordinator of DMV clusters and selectively replenishes 

them with lipids from lipid droplets, playing a role in 
the formation of the replication organelle and linking it 

to the ER.
-  Inhibits the phosphorylation of STAT1 and STAT2 

hindering interferon signaling.
-  Interacts with TBK1, leading to interference with host 

sensors.

Angelini et al. (2013); Oostra et al. 
(2008); Ricciardi et al. (2022); Sun 

et al. (2022); Xia et al. (2020).

nsp7 83 -  Function as nsp12 RdRP cofactor together with nsp8. 
Mediate RdRP activity as holoenzyme subunit.

-  Hinders IFNα signaling.

Kirchdoerfer and Ward (2019); Xia 
et al. (2020); Zhai et al. (2005).

(Continues)
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Protein 
name

aa length 
for SARS-

CoV-2a Functions Reference

nsp8 198 -  Functions as cofactors for nsp12 RdRP alongside nsp7, 
by serving as a subunit of the RdRP holoenzyme.

-  Was suggested as potential 3′-terminal 
adenylyltransferase and primase in the past.

-  Interferes with protein trafficking by binding to the 
signal recognition particle complex.

Banerjee et al. (2020); Imbert 
et al. (2006); Kirchdoerfer and 
Ward (2019); Tvarogová et al. 

(2019); Zhai et al. (2005).

nsp9 113 -  RNA-binding protein, disrupts protein trafficking by 
binding to the signal recognition particle complex.

-  Putative NiRAN UMP-transferase substrate in RNA 
capping, also serving as an adaptor for nsp14 and nsp16.
-  Involved in priming RNA synthesis as an NMPylation 

target for the NiRAN domain.

Banerjee et al. (2020); Egloff 
et al. (2004); Slanina et al. (2021); 
Wang, Svetlov, and Artsimovitch 

(2021); Yan et al. (2022).

nsp10 139 -  Serves as a cofactor for nsp14 and nsp16 by forming a 
heterodimer, enhancing the activity of 2-O-MT (nsp16 

methyltransferase) and ExoN (nsp14 exonuclease).
-  Regulates ribosomal frameshifting.

Bhatt et al. (2021); Bouvet et al. (2010); 
Decroly et al. (2011); Lin et al. (2021); 
Ma et al. (2015); Smith et al. (2015).

nsp11 13 -  Short peptide. Rogstam et al. (2020)

nsp12 932 -  Catalytic subunit of the RdRP. Core element together 
with nsp7 and two subunits of nsp8.

-  Involved in initiating RNA synthesis, its NiRAN 
domain performs NMPylation on nsp9.

-  Suggested role in viral RNA capping by functioning 
as GDP-PRNTase, transferring RNA to GDP/GTP after 

NiRAN RNAylates nsp9.

Kirchdoerfer and Ward (2019); 
Park et al. (2022); Slanina et al. 

(2021); Wang, Svetlov, and 
Artsimovitch (2021); Xu et al. 

(2003); Yan et al. (2022).

nsp13 601 -  Helicase activity at the zinc-binding domain.
-  RNA 5′-triphosphatase activity, crucial for viral RNA 

capping.
-  Facilitates backtracking during RNA synthesis.

-  Inhibits phosphorylation of IRF3, TBK1, STAT1, 
and STAT2, disrupting interferon signaling and host 

sensors.

Chen et al. (2022); Fung et al. (2022); 
Ivanov et al. (2004); Ivanov and 
Ziebuhr (2004); Lei et al. (2020); 

Malone et al. (2021); Yuen et al. (2020).

nsp14 527 -  3′ to 5′ exoribonuclease (ExoN) activity responsible 
for nascent RNA proofreading during viral RNA 

replication.
-  N7-MTase activity.

-  Plays a role in mRNA capping (5′ cap) during viral 
RNA replication.

-  Inhibits host translation with the assistance of nsp10.
-  Disrupts IFN-induced antiviral activity by targeting 
IFNAR1, playing role in lysosomal degradation and 

preventing nuclear localization of IRF3.

Bouvet et al. (2010); Chen et al. 
(2009); Eckerle et al. (2007, 2010); 
Hsu et al. (2021); Lei et al. (2020).

nsp15 346 -  Endoribonuclease (EndoU) with uridine specificity.
-  Plays a role in reducing content of pathogen-

associated molecular patterns (PAMPs) by cleaving 
5′-polyuridine tracts from viral RNA negative strands.

-  Prevents IRF3 from moving to the nucleus, disrupting 
interferon signaling.

Bhardwaj et al. (2006); Frazier et al. 
(2022); Ivanov et al. (2004); Kindler 

et al. (2017); Yuen et al. (2020).

(Continues)

TABLE 1    |    (Continued)
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Protein 
name

aa length 
for SARS-

CoV-2a Functions Reference

nsp16 298 -  Mg2+ and nsp10-dependent 2′-O-methyltransferase, 
playing a role in the capping of viral RNA.

-  Suppresses splicing by binding to recognition 
domains for mRNA of U1 and U2 (spliceosome RNA 

components).
-  Protects viral RNA from being recognized by MDA5.

Banerjee et al. (2020); Decroly 
et al. (2008); Park et al. (2022); 

Walker et al. (2021).

Structural proteins

Spike (S) 1273 -  The S1 subunit has the receptor-binding domain 
(RBD) that allows the virus to bind to the host receptor 

(ACE2 for SARS-CoV-2).
-  The S2 subunit is responsible for membrane fusion 

between the virus and host cell.
-  Undergoes proteolytic cleavage by host proteases like 
furin, separating S1 and S2 subunits to prepare for viral 

fusion.
-  Induces IRF3 degradation, interfering with host 

sensors.
-  Prevents JAK1 and STAT1 interaction, blocking 

interferon signaling.

Freitas, Crum, and Parvatiyar (2021); 
Taha et al. (2023); Zhang et al. (2021).

Envelope (E) 75 -  Involved in viral assembly in conjunction with M.
-  Exhibits viroporin function, forming calcium-

selective ion channels that disrupt host pathogenesis 
activity.

Boson et al. (2021); Bracquemond and 
Muriaux (2021); Mandala et al. (2020).

Membrane (M) 222 -  Plays a central role in virion assembly, interacting 
with N protein for nucleocapsid incorporation and E 

protein for regulating S protein intracellular trafficking, 
influencing viral envelope shape.

-  Interferes with IFN-I signaling by degrading TBK1, 
inhibiting STAT1 phosphorylation, and interacting with 

IKKϵ, TRAF3, and MDA5.
-  Impairs MAVS activation and blocks IRF3 nuclear 

translocation.

Boson et al. (2021); Fu et al. (2021); Lu 
et al. (2021); Mahtarin et al. (2022); 
Sui et al. (2021); Thomas (2020); Xia 

et al. (2020); Zhang et al. (2021).

Nucleocapsid 
(N)

419 -  Consist of two functional domains: the N-terminal 
domain (NTD) which binds to RNA and the C-terminal 
domain (CTD) that facilitates protein oligomerization. 
These regions work together to condense and package 

the viral genome.
-  Facilitates genome packaging and virion assembly 

by binding to the viral RNA genome and incorporating 
it into a helical ribonucleoprotein structure within the 

viral particle, creating a nucleocapsid.
-  Counteracting antiviral RNAi responses, and nuclear 
translocation of STAT1 and STAT2, aiding the virus in 

evading host immune defenses.
-  Disrupts stress granule formation by sequestering 
G3BP1, hindering RIG-I activation, and preventing 

IRF3 and MAVS activation.

Cubuk et al. (2021); Gao et al. (2021); 
Gori Savellini et al. (2021); Lu et al. 
(2021); Luo et al. (2021); Morse et al. 

(2023); Mu et al. (2020); Mu et al. 
(2020); Oh and Shin (2021); Wang 
et al. (2021); Zheng et al. (2022).

Abbreviations: DMV, double-membrane vesicle; EIF4E2, eukaryotic translation initiation factor 4E family member 2;G3BP1, Ras GTPase-activating protein-binding 
protein 1;GDP, guanosine diphosphate; GIGYF2, GRB10-interacting GYF protein 2; GTP, guanosine triphosphate; IFNAR1, interferon alpha and beta receptor 
subunit 1; IKKϵ, Inhibitor of nuclear factor kappa-B kinase subunit epsilon; IRF, interferon regulatory factor; IRN, interferon; JAK1, Janus kinase 1; MAVS, 
mitochondrial antiviral signaling protein; MDA5, melanoma differentiation-associated protein 5; Mpro, main protease; N7-MTase (guanine-N7-)-methyltransferas; 
NiRAN, nidovirus RdRP-associated nucleotidyltransferase; NLRP, NLR family pyrin domain-containing protein; NMP, nucleotidyl monophosphate; NXF1, nuclear 
RNA export factor 1; NXT1, nuclear transport factor 2-like export factor 1; PAMP, pathogen-associated molecular pattern; PLpro, papain-like protease; PRNT, 
polyribonucleotidyltransferase; RdRP, RNA-dependent RNA polymerase; RIG-I, retinoic acid-inducible gene I; RNF20, ring finger protein 20; SARS-CoV-2, severe 
acute respiratory syndrome coronavirus 2; STAT, signal transducer and activator of transcription; TAB1, transforming growth factor-β activated kinase 1 (TAK1)-
binding protein 1; TBK1, TANK-binding kinase 1; TRAF3, tumor necrosis factor (TNF) receptor-associated factor 3, Ubl, ubiquitin-like; UMP, uridine monophosphate.
aWuhan-Hu-1 isolate (GenBank entry MN908947.3).

TABLE 1    |    (Continued)
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Sawicki 1998). The 5′ leader sequence is necessary for ribosome 
binding and translation initiation, while the 3′ end varies in 
length (Nakagawa, Lokugamage, and Makino 2016).
The generation of sgRNA involves an unusual process where 
the RdRP skips over a large section of the viral genome. This 

leads to the production of short sgRNA(−), which are then 
transcribed to produce sgRNA(+), mRNA for the virus's struc-
tural proteins (Sola et al. 2011). Discontinuous transcription is 
controlled by transcription regulatory sequences (TRS), specif-
ically TRS-B and TRS-L. The TRS-L sequence is situated in the 
stem-loop of the 5′ leader sequence, allowing it to base pair.

3.4   |   Replication Organelles, Assembly of Virions, 
and Release

The replication of CoVs, like other positive-sense RNA viruses, 
takes place in the cytoplasm of host cells. CoV infection induces 
the formation of various small organelles, which create com-
partments within the cell. These organelles are thought to play 
different roles in the virus life cycle. The following structures 
have been described: double-membrane vesicles (DMVs), convo-
luted membranes (CMs), double-membrane spherules (DMSs), 
large virion-containing vacuoles (LVCVs), tubular bodies (TBs), 
and cubic membrane structures (CMSs) (Ulasli et  al.  2010). 
LVCVs likely function as secretory organelles for virions assem-
bled in the endoplasmic reticulum–Golgi intermediate compart-
ment (ERGIC) (Snijder et al. 2020; Ulasli et al. 2010). The roles of 
other virus-induced organelles remain speculative, but the most 
established role is for DMVs, connected to CMs, which appear to 
serve as transcription sites for viral RNA (Figure 3).

The encapsulation of replication machinery and newly syn-
thesized viral RNA within these replication organelles helps 
the virus evade cellular antiviral mechanisms, particularly 
those that detect double-stranded RNA (dsRNA). The pres-
ence of DMVs in cells was observed as early as 2 h postinfec-
tion (hpi) with SARS-CoV and MHV (Knoops et al. 2008; Ulasli 
et al. 2010). However, in the case of SARS-CoV-2 infection, DMV 
formation occurs around six hpi (Cortese et al. 2020; Eymieux 
et al. 2021). Viral proteins such as nsp8, nsp3, nsp4, and the nu-
cleocapsid (N) protein, along with viral RNA, were shown to 
colocalize with DMVs (Ulasli et al. 2010). Both viral ssRNA and 
dsRNA were found inside DMVs (Andronov et al. 2024; Snijder 
et al. 2020).

The replication organelles originate from host cell membranes, 
but viral proteins are essential for their formation. Nsp6 plays a 
key role in the restructuring of the endoplasmic reticulum (ER) 
to form DMVs and in linking DMVs to the ER and lipid drop-
lets, which are associated with the growth of DMVs (Ricciardi 
et al. 2022). DMVs contain molecular pores made of viral pro-
teins nsp3 and nsp4 (Figure 3) (Wolff et al. 2020). These pores are 
hexameric, crown-shaped structures that span the DMV mem-
branes. A channel in the center of the oligomer structure is wide 
enough to allow the passage of a single-stranded RNA (Huang 
et al. 2024). The discovery of these molecular pores supports the 
role of DMVs as replication sites for viral RNA. It is likely that 
newly synthesized RNA is exported from DMVs through these 
pores into the cytoplasm, where it undergoes translation or is 
packaged into virions, however, exact mechanism of this process 
remains unknown.

The precise cellular localization of viral transcription during the 
initial stages of infection remains to be elucidated. If the viral 
gRNA can be replicated solely within DMVs, the RNA strand 
released from the infecting virion would have to undergo mul-
tiple rounds of translation to produce the requisite amount of 
proteins for the formation of replication organelles. It can be 
postulated that transcription initially occurs in the cytoplasm, 
and that the transfer of this process into DMVs only enhances its 
efficiency in later stages of infection, however, more definitive 
answer require further research.

The assembly of a functional virion requires newly synthesized 
ssRNA(+) and the structural proteins (S, E, M, and N), which 
are translated from sgRNAs and incorporated into the ER. 
These structural proteins then follow the secretory pathway to-
ward the ERGIC (Wang, Grunewald, and Perlman 2020). Inside 
the ERGIC, the viral gRNA is encapsulated by the N protein 
and buds into ERGIC membranes containing the structural pro-
teins, leading to the formation of mature virions (de Haan and 
Rottier 2005).

Once assembled, virions are transported to the cell surface 
in vesicles and released via exocytosis. It remains unclear 
whether the virions hijack a conventional Golgi pathway for 
large cargo transport or whether the virus follows a unique 
pathway for exit. A host protein called valosin-containing pro-
tein (VCP/p97) was identified through genome-wide screen-
ing as being required for the release of CoVs from endosomes 
(Wong et al. 2015).

Sidebar 2: The Evolution of Coronaviruses Is Facilitated by a 
Template-Switching Mechanism
Coronaviruses also exhibit the ability to undergo recom-
bination through both homologous and nonhomologous 
mechanisms, primarily due to the strand-switching capa-
bilities of RdRP. This recombination significantly contrib-
utes to viral evolution and is the basis for reverse genetics 
techniques, such as engineering viral recombinants (Kuo 
et al. 2000; Lai et al. 1985).
Through homologous recombination, the virus can ex-
change genetic material between different strains or even 
different species, which can result in the emergence of 
novel viral variants with enhanced pathogenicity, immune 
evasion capabilities, or altered host range. Nonhomologous 
recombination, on the other hand, can lead to more drastic 
genetic rearrangements, including deletions, insertions, or 
duplications of genetic sequences, further accelerating viral 
diversity.
The strand-switching mechanism of the RdRP is central to 
this recombination process. During replication, the RdRP 
can dissociate from the template RNA strand and reassoci-
ate with a different RNA strand, effectively combining ge-
netic material from separate RNA molecules allowing CoVs 
to mix and match genetic sequences. The understanding of 
this mechanism has facilitated the development of reverse 
genetics systems. These systems allow scientists to manip-
ulate the viral genome in the laboratory, creating recombi-
nant viruses with specific genetic modifications.
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In many CoVs, S proteins that are not incorporated into virions 
are transported to the cell surface. At the surface, the S protein 
can facilitate cell–cell fusion between infected cells and neigh-
boring uninfected cells. This fusion forms multinucleated cells, 
or syncytia, allowing the virus to spread within an infected 
host without being detected or neutralized by virus-specific an-
tibodies (Wang, Grunewald, and Perlman 2020). This pathway 
of cell infection would exhibit markedly different dynamics. 
Initially, both gRNA and RdRP would not be limiting factors 
at the beginning of infection. However, a newly infected cell 
would still possess a fully operational innate immunity and 
an unaffected gene expression system. Consequently, predict-
ing the kinetics of viral infection during cell–cell fusion is 
challenging.

4   |   Transcription and Replication Machinery

The large size of CoV genomes require efficient replication 
mechanisms to enable fast and accurate duplication of genetic 
material. Current progress has highlighted that, in addition to 
the core machinery, various viral and host factors are involved 
in this process (reviewed in Steiner et al. 2024). Although the 
assembly of RdRP and its interaction with additional factors 
are still not fully understood, considerable information about 
its structure and functionality is available (reviewed in Malone 
et al. 2022).

4.1   |   RdRP Structure

Structural studies of the SARS-CoV-2 RdRP complex, bound 
to the dsRNA template–product helix, have unveiled the struc-
tural architecture and intricate mechanism of viral RNA syn-
thesis. The replicating core of the enzyme comprises one unit 
of nsp12, two units of nsp8, and one nsp7 protein (Figure 4A). 
The primary polymerase activity is attributed to the nsp12 “right 
hand” structure, featuring fingers, palm, and thumb domains. 
Each nsp8 subunit bound to nsp12 possesses a long N-terminal, 

positively charged α-helix structure protruding from the poly-
merase complex. Together, these proteins create a structure that 
nonspecifically binds, via phosphate backbone, the template–
product dsRNA, potentially contributing to high polymerase 
processivity (Campagnola et al. 2022; Hillen et al. 2020; Malone 
et al. 2023).

The extended replication–transcription complex may also in-
corporate other nonstructural viral proteins, supporting poly-
merase activity, including nsp9, nsp10, nsp13, nsp14, nsp15, 
and nsp16. While the complete structure of this extended com-
plex remains unsolved, molecular modeling studies propose 
a detailed configuration based on available structural data 
(Figure 4B). In this model, it is suggested that the nsp15 sub-
unit binds in proximity to the 5′ end of the template strand. 
The dsRNA complex navigates through nsp14 and nsp16, 
both assisted by their shared cofactor, nsp10. The zinc fin-
gers found in these proteins play a crucial role in separating 
the two RNA strands. The template strand is then oriented 
away from the complex, initiating a capping process in which, 
among other components, nsp14 and nsp16 actively partici-
pate (Perry et al. 2021).

4.2   |   RdRP Activity

The nsp12 subunit, housing the main enzymatic activity of 
RdRP, contains structural motifs highly conserved among 
single-stranded plus RNA viruses (Campagnola et al. 2022). It 
exhibits a substantially higher transcription rate than any other 
viral RNA polymerase (Shannon et al. 2020). This exceptional 
RNA polymerization velocity results from amino acid substi-
tutions in the catalytic core compared to other RNA(+) viruses 
(Campagnola et al. 2022). The replacement of Glu547 with Ala 
in the nsp12 motif F may facilitate structural flexibility and ac-
celerate the loading of incoming nucleotides. The potential re-
duction in enzyme fidelity is offset by the alteration of Gly759 to 
Ser in the nsp12 motif C. The serine side chain forms a hydrogen 
bond with the 2′ hydroxyl of the last incorporated nucleotide, 

FIGURE 2    |    Discontinuous transcription of subgenomic RNAs (sgRNA) (on the basis of Ge et al. 2024; V'kovski et al. 2021).
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positioning the ribose in an optimal orientation for the attach-
ment of the incoming nucleotide.

Structural data shed light on the nucleotide recognition and 
binding process by nsp12 at the atomic level. The incoming nu-
cleotide is bound within the active site created by the palm do-
main of nsp12, alongside the template RNA. The base-pairing 
event triggers the closure of the active site, facilitating the incor-
poration of two metal ions crucial for establishing the phospho-
diester bond in the synthesized strand. Following this reaction, 
the polymerase translocates along the template RNA, leading to 
the opening of the active site and creating room for the subse-
quent incoming nucleotide (Malone et al. 2023).

Replication of the large, nearly 30-kb-long, RNA genome requires 
proofreading mechanisms. The nsp14/nsp10 subunits, along 
with the helicase nsp13, contribute to this process, ensuring tran-
scription fidelity (Campagnola et al. 2022). Two nsp13 subunits 
in the RdRP complex bind to the helical structures of nsp8, with 
nsp13-T and nsp13-F acting from the thumb and finger domain 
sides of nsp12, respectively (Figure  4C). Interestingly, nsp13 is 
a processive helicase that unwinds dsRNA in the 5′→3′ direc-
tion of the template strand, opposite to the polymerase's 3′→5′ 
processing direction (Figure 4D). This raises questions about the 
specific function of nsp13 during processive transcription and its 
role in maintaining transcriptional fidelity. One possibility is that 
nsp13 induce RdRP backtracking, which seems to be a key mech-
anism for proofreading of eukaryotic RNA polymerases (Chen 
et al. 2020; Schwank et al. 2022). The RdRP backtracking medi-
ated proofreading mechanism may substantially influence RdRP 
kinetics, leading to an extended duration of stalled RdRP on the 
template strand.

The detailed cryo-EM study reveals different positions of 
nsp13-T, dependent on the current state of the polymerase com-
plex (Figure  4C) (Chen et  al.  2020). The outlined stages span 
from the open state during polymerase transcription, through 
a swiveled state induced by nucleotide mispairing in the active 
site, to the closed state when the helicase unwinds the template–
product dsRNA. The second helicase subunit, nsp13-F, has not 
been demonstrated to bind RNA. Its presumed role is that of a 
steric factor, stabilizing various conformations of nsp13-T. The 
helicase activity unzips the secondary structure in template 
RNA, inducing backtracking of the polymerase complex. This 
can result in the exposure of the 3′ end of the newly synthe-
sized RNA to the nsp14/nsp10 exonuclease (Figure  4D) (Chen 
et al. 2022; Robson et al. 2020).

The structure of the nsp14 protein is highly flexible. The 
protein comprised two principal functional domains: the N-
terminal 3′–5′ exonuclease domain (ExoN) and the C-terminal 
N7-MTase domain, involved in the process of viral RNA cap-
ping. The exonuclease domain (ExoN) exhibits similarity to 
the DEDD exonuclease superfamily and is responsible for the 
excision of mismatched nucleotides from the nascent RNA 
strand (Bouvet et al. 2012). The binding of nsp10 cofactor sta-
bilizes the structure of nsp14, placing the residues of the ExoN 
active site in the correct position to perform the hydrolysis re-
action of the nucleotide from the RNA strand product (Bouvet 
et al. 2012; Ferron et al. 2018). The exact mechanism of action 
of the nsp14/nsp10 is not known. However, it is speculated 
that the mismatched nucleotide has to be exposed to the 3′–5′ 
exonuclease. The interaction of nsp14 with nsp12 polymerase 
indicates that nsp14/nsp10 acts as a part of RdRP holoenzyme 
(Bouvet et al. 2012).

FIGURE 3    |    Formation of replication organelles. Convoluted membranes (CM) serve as an intermediate structure, from which double-membrane 
vesicles (DMVs) are generated (Knoops et al. 2008). The organelle formation involves three viral proteins: nsp3, nsp4, and nsp6 (Ricciardi et al. 2022; 
Zimmermann et al. 2023) Nsp3 and nsp4 are components of molecular pores that traverse the DMV membranes. These DMV pores enable the trans-
port of nascent viral RNA, synthesized by RdRP (right panel), into the cytoplasm (Huang et al. 2024). The assembly of virions takes place in the 
endoplasmic reticulum–Golgi intermediate compartment (ERGIC) (de Haan and Rottier 2005).
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4.3   |   RdRP Inhibitors

The search for drugs for the treatment of Covid-19 includes 
potential RdRP inhibitors, with nucleoside analogs being a 
primary focus (Table 2). The adenosine analog remdesivir is 
introduced into the nascent RNA strand by RdRP and causes 
polymerase stalling (Gordon et al. 2020; Gordon et al. 2020). 
This “delayed chain termination” is caused by the steric clash 
between the remdesivir cyano group and Ser861 of nsp12 after 
the incorporation of the n + 3 nucleotide into the nascent RNA 
strand (Bravo et al. 2021; Kokic et al. 2021). Polymerase stall-
ing caused by remdesivir can be overcome with high concen-
trations of ribonucleotides (Tchesnokov et al. 2020). This leads 
to “template-dependent inhibition,” where remdesivir in the 
template strand blocks the elongation of the nascent strand.

The cytidine analog molnupiravir is incorporated into the 
nascent strand but does not cause RdRP stalling. Instead, it 
promotes mutation in the second round of gRNA replication 
(Kabinger et  al.  2021). A similar mechanism of lethal muta-
genesis is utilized by favipiravir, a purine analog (Shannon 
et al. 2020).

Nucleotide analogs that show antiviral effects against CoVs 
share a common feature of escaping the proofreading mecha-
nism of the transcribing machinery. The inhibition of RdRP by 
remdesivir is suggested to result in impaired nsp14 exonuclease 

activity due to delayed RdRP stalling (Seifert et al. 2021). This, 
in turn, is thought to reduce the likelihood of nsp13-induced 
backtracking and the exposure of the misincorporated nucleo-
tide for removal. Furthermore, the bulky cyano group of remde-
sivir is postulated to prevent nucleotide excision by exonuclease. 
Molnupiravir has also been observed to evade the proofreading 
activity of the nsp14 exonuclease, though the specific mecha-
nism remains unclear. It is hypothesized that the base pairing of 
molnupiravir with adenine or guanine is highly stable and does 
not induce the backtracking of RdRP required for nucleotide ex-
cision (Kabinger et al. 2021).

4.4   |   Auxiliary Functions of RdRP Complex

Beyond its polymerase activity, the nsp12 protein exhibits 
two additional functions mediated by the nidoviral RdRP-
associated nucleotidyltransferase (NiRAN) domain. The 
NiRAN domain facilitates the transfer of nucleoside mono-
phosphate to the N terminus of the nsp9 protein (Schmidt 
et  al.  2023; Wang, Svetlov, and Artsimovitch  2021). It was 
suggested that NMPylated nsp9 can serve as a protein primer 
for transcription. This hypothesis finds support in the obser-
vation that nsp9 binds to the 5′ end of both positive and nega-
tive strands of the SARS-CoV-2 genome (Schmidt et al. 2023). 
It is still not established if RdRP is a primer-dependent poly-
merase. While earlier studies suggested nsp8 as an essential 

FIGURE 4    |    Transcription and replication machinery. (A) The structure of replicating RNA-dependent RNA polymerase (RdRP) with core sub-
units (nsp12, nsp7, nsp8) and dsRNA intermediate is shown (PDB: 7DTE) (Wu et al. 2021). Two nsp8 subunits form a scaffold that supports the 
template–product RNA hybrid. (B) Model of RdRP along with the predicted positions of its auxiliary proteins: nsp14, nsp15, nsp16, and nsp10 (Perry 
et al. 2021). (C) The RdRP structure with two subunits of the nsp13 helicase. The nsp13-T subunit is positioned on the “thumb” side of nsp12, while 
the nsp13-F subunit is situated on the “finger” side of nsp12. A close-up view reveals the template RNA strand passing through nsp13-T during poly-
merase backtracking (PDB: 7RDY) (Chen et al. 2022). (D) Directionality of RdRP and nsp13 helicase. The RdRP moves along the template strand in a 
3′→5′ direction, whereas nsp13 helicase unwinds dsRNA in the 5′→3′ direction. This indicates that nsp13 primarily functions in RdRP backtracking, 
which is crucial for maintaining RdRP fidelity, and was suggested to play a role in discontinuous transcription.
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cofactor with a primase function (Imbert et al. 2006), subse-
quent research questioned this model (Tvarogová et al. 2019). 
Establishing an elongation–competent complex is a key ener-
getic barrier in transcription, since only sufficiently long na-
scent RNA can support a stable elongation complex (Revyakin 
et  al.  2006). Therefore, determining whether the RdRP is a 
primer-dependent or primer-independent polymerase is par-
ticularly relevant for understanding the initiation mechanism 
of CoV transcription.

Nsp12 also RNAylates nsp9, contributing to the viral mech-
anism of 5′ capping of newly synthesized RNA (Park 
et  al.  2022). Previously, both the nsp16 and nsp14 proteins, 
possessing methyltransferase activity, along with their co-
factor nsp10, were demonstrated to play a significant role in 
the viral mRNA capping process. The recently uncovered 
features of nsp9 suggest a novel and comprehensive mecha-
nism for gRNA capping in CoVs. In this proposed mechanism, 
nsp9 and nsp12 contribute to cap core formation, while nsp14/
nsp16 collaborate to transform the cap core into a mature 
mRNA (Park et al. 2022).

4.5   |   Host Cell Factors Involved in CoV 
Transcription

Several host cellular factors may be recruited to participate in 
viral genome transcription. The exploration of these factors fo-
cuses on viral RNA interactions with cellular proteins, and pro-
tein–protein interactions between virus and host factors.

4.5.1   |   SND1

Recently, staphylococcal nuclease domain-containing protein 1 
(SND1) was identified as a regulator of SARS-CoV-2 transcrip-
tion. As an RNA-binding protein, SND1 appears essential for 
viral replication, binding to the negative strand of the viral ge-
nome and nsp9, thereby modulating nsp9 occupancy at the 3′ 
end of viral RNA. This finding introduces the first proposed 
mechanism by which a host factor regulates CoV transcription 
(Schmidt et al. 2023). Transcription from the negative strand is 
crucial for the dynamics of CoV infection and is discussed fur-
ther in Section 5.4 of this review.

4.5.2   |   hnRNP

Host proteins have been shown to bind specifically to the 5′ 
and 3’ UTR of viral RNA, selectively associating with either 
the positive or negative strand. These sequence-specific inter-
actions suggest a regulatory role for host proteins in viral RNA 
processes, including transcription. Members of the heteroge-
neous nuclear ribonucleoproteins (hnRNP) family, known for 
their roles in RNA processing and decay, have demonstrated 
affinity for CoV RNA. Notably, hnRNP A1 has been shown to 
bind to the 3′ end of the mouse hepatitis virus (MHV) negative 
strand, positively implicating it in subgenomic RNA transcrip-
tion (Li et al. 1997; Zhang and Lai 1995). Further studies sug-
gest that other hnRNP A/B family members may compensate 

for hnRNP A1 deficiency in cells lacking its expression (Shi, 
Yu, and Lai 2003), suggesting redundancy of hnRNP in CoV 
transcription.

Another key regulator is the polypyrimidine tract-binding 
protein (PTB), also known as hnRNP I, which binds to the 
leader sequence of MHV plus-strand RNA. Given hnRNP 
A1's interaction with the negative strand leader sequence 
and intergenomic region, it is proposed that these host pro-
teins may cooperate in viral discontinuous transcription (Li 
et al. 1999). Additionally, synaptotagmin-binding cytoplasmic 
RNA-interacting protein (SYNCRIP), another hnRNP family 
member, binds to the 5′ end of both RNA strands and is critical 
for MHV RNA synthesis, as its downregulation reduces viral 
RNA production (Choi, Mizutani, and Lai 2004). While these 
specific interactions have been confirmed in vivo, the detailed 
mechanisms through which hnRNP proteins influence CoV 
transcription remain unclear.

4.5.3   |   Other Factors

Following the SARS-CoV-2 pandemic, interest in CoV molec-
ular mechanisms surged, leading to comprehensive proteomic 
studies that have identified extensive interactions between viral 
and host proteins. These studies highlight the regulation of cel-
lular pathways during CoV infection and identify potential host 
protein candidates that could act as viral protein cofactors (Chen 
et  al.  2021; Gordon et  al.  2020; Stukalov et  al.  2021). Notably, 
human splicing factors SLU7, PPIL3, and AKAP8 have been 
shown to interact with nsp12, positively influencing SARS-
CoV-2 RdRP stability and viral replication in vivo. While these 
factors are suggested to contribute to RdRP complex assembly, 
this role was not confirmed in the in vitro transcription assays. 
Instead, interaction of nsp12 with these splicing factors appears 
to contribute to the alternative splicing of human mRNAs (Yang 
et al. 2024).

5   |   Kinetics of RDRP Activity

The outlined viral life cycle may suggest a linear order of events, 
whereas actually some stages of infection have to occur sequen-
tially and other simultaneously, what may raise conflicts espe-
cially in the early hours. Translation and transcription initially 
work on the same ssRNA(+) molecule, with translation of sev-
eral proteins needed to form the RdRP. Understanding the ki-
netics of these events brings us closer to identifying regulatory 
mechanisms.

Transcription results in the production of new RNA as double-
stranded RNA, accompanied by the template RNA, which could 
activate pattern recognition receptors like MDA5 and initiate 
antiviral signaling pathways (Chen and Hur 2022). This makes 
the virus particularly susceptible to cellular defense mecha-
nisms during the initial hours of its life cycle. Consequently, 
the timing of transcriptional processes is critical for the suc-
cess or failure of CoV infection, especially since two rounds of 
30-kb-long, full-length transcription are required to produce a 
copy of the gRNA (Figure 5A).
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5.1   |   Translation Precedes Transcription

In CoVs, the same ssRNA(+) molecule serves as both the genome 
and mRNA. The viral transcription machinery, along with other 
nonstructural proteins, is translated from two open reading 
frames (ORFs). The catalytic subunit of the RdRP is translated 
from ORF1b, which requires ribosomal frameshifting—a pro-
cess that occurs in a fraction of events (Nakagawa, Lokugamage, 
and Makino  2016). This unique arrangement results in 

significant variability in the expression levels of CoV proteins 
within infected cells. Products encoded by ORF1b, including the 
main replication machinery components nsp12 and nsp13, tend 
to have very low abundance (Finkel et al. 2021). Consequently, 
the formation of the very first RdRP complex depends on the 
successful translation of several proteins beforehand.

This observation has important implications for the kinetics 
of viral transcription. Assuming an average translation rate 

FIGURE 5    |    Kinetics of RdRP activity (on the basis of Boersma et al. 2020; Jochheim et al. 2021; Malone et al. 2021; Sawicki and Sawicki 1998). 
(A) Replication of SARS-CoV-2 genome requires transcription of ssRNA(−) serving further as a template for the synthesis of genomic ssRNA(+). 
(B) Phases of ssRNA(+) infection as per Boersma et al. (2020). Experimental results showed the viral translation dynamics (black line), interpreted 
considering steric conflicts between transcription and translation machinery (colored background). Detailed description in text. (C) Model outlining 
conflict between translation and transcription during the very first round of viral ssRNA(+) replication. Viral transcription machinery (RdRP) is 
translated from ORF1b (red), therefore ssRNA(+) has to be cleared from ribosomes to allow RNA transcription by RdRP. (D) Potential mechanisms 
behind discontinuous transcription. In this process, the RdRP skips over substantial stretches of the genome to link the 5′ leader sequence with 
downstream segments, creating distinct sgRNAs with given probability p. Potential mechanisms include: (i) long-range RNA–RNA interactions and 
nsp13-induced backtracking of RdRP, (ii) dissociation and reassociation of RdRP, and (iii) RdRP dimerization. These mechanisms are not mutually 
exclusive.
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of eight amino acids per second (Li, Bickel, and Biggin  2014), 
the first functional RdRP molecule could be available about 
15 min after successful translation initiation on ssRNA(+), but 
RdRP assembly and initiation via nsp9 might take longer. Due 
to frameshifting probability, the number of RdRP molecules 
will be 5- to 10-fold lower than proteins translated from ORF1a 
(nsp1–nsp11). The accumulation of nsp1–11 may play a role in 
suppressing the cellular antiviral response and safeguarding the 
30-kb-long gRNA.

The before consideration could be significantly affected by the 
presence of RdRP delivered with gRNA in the viral envelope. 
The mass of viral gRNA is estimated at 10.2 MDa, not includ-
ing N protein molecules, while the RdRP core is only 0.16 MDa, 
making its size negligible for the entire virion size. Although 
there are no data on the mechanism of packaging RdRP into 
virions, it cannot be excluded that some virions carry RdRP 
molecules.

5.2   |   RdRP-Directed Replication 
and Transcription–Translation Conflict

Replication of ssRNA(+) viruses involves continuous synthesis 
of ssRNA(−) to create a full-length complementary template 
strand that will be copied into multiple ssRNA(+) (Robson 
et  al.  2020). However, ongoing translation of ssRNA(+) raises 
a steric conflict between the translation and transcription ma-
chinery. Translation of ORF1ab follows the 5′–3′ direction of 
ssRNA(+), whereas replication proceeds in the opposite di-
rection. Both processes require continuous contact with the 
ssRNA(+) threaded through each particle's template channel 
(Figure 5B,C).

One might expect that a translating ribosome could displace or 
even strip a transcribing RdRP. Ribosomes are molecular ma-
chines that utilize four GTP molecules for each translocation 
step, moving three nucleotides at a time (Noller et  al.  2017). 
In contrast, transcription is a Brownian ratchet mechanism, 
where translocation is bidirectional and nucleotide addition pro-
vides directionality (Noe Gonzalez, Blears, and Svejstrup 2021; 
Turowski et  al.  2020). The RNA polymerase backtracking al-
lows for the nascent transcript proofreading. Due to these differ-
ences, it remains unlikely that RdRP can overcome a translating 
ribosome. It is very likely that the ribosome would cause the 
RdRP to stop, backtrack, or even be stripped by the translation 
machinery.

Kinetics must relate to RdRP speed. Biochemical studies on 
SARS-CoV-2 have reported various RdRP elongation rates, 
such as 100 nt/s and 200 nt/s, using core subunits (Figure 4A). 
These high elongation rates have not been observed in cells 
with long products and fully processive RdRP. It should be 
noted that under cellular conditions, the availability of nu-
cleotides is limited, the RNA template is coated with pro-
teins, processive transcription is maintained for thousands 
of nucleotides, and RdRP exhibits proofreading activity. All 
these factors influence the transcription elongation rate, 
making the velocity of other RNA polymerases measured 
in  vivo more relevant. Therefore, for our considerations, we 
use the average transcription elongation rate in  vivo, which 

is 40–80 nt/s (Turowski et  al.  2020). Given the large size of 
the SARS-CoV-2 genome, RdRP transcription would take ap-
proximately 10 min. Newly synthesized ssRNA(−) pairs with 
ssRNA(+), and dsRNA is known to induce host immune re-
sponses (Gantier and Williams  2007), suggesting the pres-
ence of mechanisms that protect the viral genome during the 
switch from translation to transcription of the first ssRNA(−).

Single-molecule investigations of picornaviruses, another group 
of ssRNA(+) viruses, have shed light on the translation kinetics 
by directly observing the translation of SunTagged viral pro-
teins (Boersma et al. 2020). These studies identified five distinct 
phases of viral infection, each corresponding to different stages 
of translation. We used these phases to annotate transcriptional 
activity (Figure 5B) and predict that in phase 2, translation is 
repressed to allow for the very first round of ssRNA(−) synthe-
sis. It is important to note that due to the shorter length of the 
constructs used in this research, the duration of each phase is 
not precise, but provides a general understanding of ssRNA(+) 
virus kinetics.

Therefore, how is the first round of processive, 30-kb-long 
transcription achieved? Nsp1, encoded by ORF1a, plays a 
major role in translation inhibition by blocking the mRNA 
entry tunnel in the ribosome (Lapointe et  al.  2021; Thoms 
et  al.  2020). Temporary inhibition of translation near tran-
scribing RdRP would be a potential mechanism. However, the 
5’ UTR of SARS-CoV-2 contains the stem-loop 1 (SL1) region, 
which evades nsp1-mediated translational suppression (Vora 
et  al.  2022) and it remains unknown if a high nsp1 dosage 
effect would be enough to overcome SL1 effect. Another pos-
sibility is the formation of replication organelles, specialized 
compartments that segregate viral RNA synthesis from cellu-
lar processes.

5.3   |   Discontinuous Transcription of sgRNAs

sgRNAs are composed of elements present in distant locations 
within the genomic ssRNA(+): the 69-nt-long 5′ leader sequence 
and the 3′ end of different lengths. To synthesize sgRNAs, CoVs 
use discontinuous transcription, where RdRP “jumps” over 
large genome regions before resuming transcription (Enjuanes 
et al. 2006; Fung and Liu 2019; Sola et al. 2015). the “jump” mech-
anism is also called template switching or strand switching.

A commonly accepted model proposes that template ssRNA(+) 
undergoes discontinuous transcription to sgRNA(−), and sub-
sequent amplification yields high copy numbers of sgRNA(+) 
mRNAs (Enjuanes et al. 2006; Fung and Liu 2019; Sawicki and 
Sawicki 1998). The exact mechanism of template switching re-
mains unknown (Figure  5D), but new structural data reveal 
long-range RNA–RNA interactions potentially involved in this 
process (Huston et al. 2021; Zhang et al. 2021) (Figure 5D, panel 
i). The demonstration of the dimeric form of SARS-CoV-2 RdRP 
suggested an intriguing possibility that the “jump” might be en-
abled through direct interaction between two RdRP molecules 
(Jochheim et al. 2021) (Figure 5D, panel iii).

Another explanation could be based on thermodynamic char-
acteristics of elongating polymerases. Mechanistically, this 
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would involve the dissociation (similar to premature termina-
tion) and reassociation of nascent transcript with the template 
strand through TRS-B–TRS-L interaction (see Figure 5D, panel 
ii). This mechanism is supported by spontaneous binding of 
DNA- and RNA-dependent polymerase complexes to the tem-
plate in vitro (Kohler et al. 2017; Kuhn et al. 2007; Turowski 
et  al.  2020), including the viral RdRP (Hillen et  al.  2020). 
Additionally, RNA polymerase II in mammalian genomes 
initiates transcription in  vivo using RNA:DNA hybrids be-
tween RNA and template DNA strand (Tan-Wong, Dhir, and 
Proudfoot 2019).

The mechanism of discontinuous transcription regulates the 
stoichiometry between structural proteins. Each sgRNA(+) con-
tains a common 5′ leader sequence followed by the ORF with 
its stop codon. The remaining ORFs function as the 3’ UTR se-
quence. Abundance of sgRNA(−) reflects levels of sgRNA(+), 
meaning “jump” probability at given TRS-B impacts sgRNA 
transcription rate (Figure 5D). This is supported by data mea-
suring SARS-CoV-2 sgRNA and protein abundance (Finkel 
et al. 2021; Kim et al. 2020), showing higher expression levels 
for 3′ end proximal genes.

5.4   |   Template RNA Assignment to Available RdRP

CoV infection leads to the rapid synthesis of viral RNA, with 
up to 90% of cellular RNA being viral after several hours of in-
fection (Schmidt et  al.  2021). Given the high number of viral 
RNA copies, including ssRNA(+), ssRNA(−), sgRNA(+), and 
sgRNA(−), a critical question arises: how does the viral RNA-
dependent RNA polymerase (RdRP) select the appropriate tem-
plate strand for replication?

This selection process is further complicated by the fact that 
the 3′ ends of ssRNA(+) contain poly(A) tails, which are simi-
lar to the cellular mRNAs. The presence of these poly(A) tails 
necessitates a specific mechanism by which RdRP can distin-
guish between viral and host RNA. The selection of template 
RNA by RdRP is a vital aspect of CoV replication that involves 
intricate interactions between viral and host factors. These in-
teractions determine the efficiency and fidelity of viral RNA 
synthesis, making this process crucial to CoVs ability to repli-
cate its RNA.

6   |   Conclusion

Understanding the biology of viruses reveals a fascinating 
mixture of common biological mechanisms and unique virus-
specific features. To comprehend how coronaviruses (CoVs) re-
program host cells, it is essential to examine both viral factors 
and their interactions with host factors. Focusing on viral tran-
scription, we outline how host elements, such as ribosomes and 
viral components like the RdRP depend on each other, adding 
temporal layer of complexity to virological studies. This raises 
several unresolved questions about CoV biology that require fur-
ther investigation:

•	 Does the synthesis of initial ssRNA(−) depend on DMV 
formation?

•	 Can functional RdRP molecules be transported within a 
CoV virion?

•	 What mechanism inhibits translation initiation to permit 
the first round of ssRNA(−) synthesis?

•	 Which mechanism is responsible for template-switching 
(Figure 5D)?

•	 How does RdRP select the template RNA strand?

We believe that considering kinetic factors will help to identify 
new regulatory mechanisms in viral biology. This understand-
ing will be crucial for developing novel antiviral drugs and 
treatment strategies, ultimately aiding in the fight against CoV 
infections.
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