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Abstract 

Resear c h on Esc heric hia coli DNA r e plication pav ed the gr ound work for man y br eakthr ough discov eries with important implications for 
our understanding of human molecular biology, due to the high level of conservation of key molecular processes involved. To this day, 
it attracts a lot of attention, partially by virtue of being an important model organism, but also because the understanding of factors 
influencing r e plication fidelity might be important for studies on the emergence of antibiotic r esistance. Importantl y, the wide access 
to high-resolution single-molecule and li v e-cell ima g ing, whole g enome sequencing, and cr yo-electr on micr oscopy tec hniques, whic h 

wer e gr eatl y popularized in the last decade, allows us to r evisit certain assumptions a bout the r e plisomes and offers v er y detailed 

insight into how the y work. F or man y parts of the r e plisome, ste p-by-ste p mechanisms hav e been r econstituted, and some ne w pla yers 
identified. This re vie w summarizes the latest de v elopments in the ar ea, focusing on (a) the structur e of the r e plisome and mechanisms 
of action of its components, (b) organization of r e plisome transactions and r e pair, (c) r e plisome dynamics, and (d) factors influencing 
the base and sugar fidelity of DNA synthesis. 

Ke yw ords: Esc heric hia coli r e plisome; DNA pol ymerase III holoenzyme; DNA r e plication fidelity; ribon ucleotide excision r e pair; single- 
molecule li v e-cell ima ging; Cr yo-EM 
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Introduction 

It has been over half a century since the discovery of the first 
DNA pol ymer ase that Kornber g and collea gues isolated fr om the 
commensal bacterium Esc heric hia coli in 1956 (Lehman et al. 1958 ).
No w ada ys , E. coli is a well-established model organism for studies 
of DNA synthesis. Its use facilitated many pioneering works that 
became the cornerstone of the recognized model of DNA repli- 
cation, including the semiconserv ativ e model of genome duplica- 
tion described by Meselson and Stahl in their classic paper from 

1958 (Meselson and Stahl 1958 ), the discontinuous mechanism of 
la gging-str and synthesis pr oposed by Okazaki in 1971 (Okazaki et 
al. 1971 ), but also the v ery natur e of m utations (Luria and Del- 
brück 1943 , Cairns et al. 1988 ). These findings ar e gener all y univ er- 
sal for all domains of life. Still, more recent disco veries , enabled in 

particular by the de v elopment of high-r esolution single-molecule 
imaging, whole genome sequencing (WGS), and cryo-electron mi- 
croscop y (Cry o-EM), paint a m uc h mor e complex pictur e of E. coli 
DNA replication than initially thought. This review aims to sum- 
marize the available knowledge about E. coli DNA replication with 

particular interest in the developments of the last decade. 

DN A r eplication by the r eplisome 

DNA replication is a highly evolutionarily conserved process that 
r equir es a coordinated action of m ultiple pr oteins r esponsible for 
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© The Author(s) 2024. Published by Oxford Uni v ersity Pr ess on behalf of FEMS. This
Commons Attribution License ( https://cr eati v ecommons.org/licenses/by/4.0/ ), whic
medium, provided the original work is properly cited.
he timely and accurate execution of different tasks that can
e grouped into three stages: initiation, elongation, and termi- 
ation (Yao and O’Donnell 2016 ). Bacterial genomes, which are
r equentl y small, circular c hr omosomes (suc h as the ∼4.6 Mb
enome of E. coli ), have their replication initiated from a single de-
ned origin site ( oriC ) containing DnaA-binding boxes recognized
y the DNA replication initiator protein DnaA (Kaguni 2011 , Tro-
anowski et al. 2018 ). Unlike eukaryotic cells, where origins are
icensed for DNA replication well before the S-phase of the cell
 ycle (when DN A is r eplicated), in man y bacteria, r eplication may
e initiated se v er al times befor e cell division. As a consequence,
aughter cells may inherit genomes that already undergo another 
ycle of replication (the so-called “multifork replication”) (Fossum 

t al. 2007 ). 
Cooper ativ e binding of the DnaA molecules at oriC promotes

he unwinding of an A:T-ric h DNA fr a gment and loading of the
naB 6 –DnaC 6 complexes onto each exposed single-stranded DNA 

r a gment. The binding of the DnaG primase to the DnaB heli-
ase with DnaC dissociation allows for r eplisome assembl y, com-
leting the last major step of DNA replication initiation (re-
iewed in Katayama 2017 ). DnaG primase synthesizes ∼10-nt 
ong RNA primers r emov ed at a later step (Zec hner et al. 1992a ).
ote that in the simplified model of E. coli DNA replication

nitiation presented abo ve , only the primary proteins involved
er e described. A mor e compr ehensiv e vie w on the bacterial
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eplication initiation factors can be found in Grimwade and
eonard ( 2021 ). 

The elongation stage of DNA replication is carried out by multi-
le proteins constituting functional complexes called replisomes.
he c har acteristics of the E. coli r eplisome, whic h is the focus of
his r e vie w, will be described in the following sections. 

The last step of DNA replication is termination, which happens
hen the two r eplisomes a ppr oac hing fr om opposite dir ections

onv er ge. E. coli r eplication termination system is centered
round the so-called termination region containing 10 terA –J
ites that interact with Tus proteins . T hese sites are oriented in
uch a way that the replication machinery bypasses the first five,
ut is tr a pped at one of the r emaining fiv e, whic h in turn ar e
asily b ypassed b y the r eplisome a ppr oac hing fr om the opposite
ir ection. Consequentl y, both r eplisomes become tr a pped in the
ermination region to avoid chromosome over replication and
ive the cell time to pr ocess r eplication intermediates (Rudolph et
l. 2009 , 2013 ). Termination is observed predominantly at the four
nnermost sites , terA –terD (Ivano va et al. 2015 , Dimude et al. 2018 ).
nter estingl y, r eplisome tr a pping might be a source of genome in-
tability as recent work utilizing next-generation-based methods
X-seq and END-seq that map the chromosomal positions of Hol-
iday junctions (HJs) and double-stranded breaks (DSBs), respec-
iv el y] identified ter sites as the region of fr equentl y occurring HJs
nd DSBs (Mei et al. 2021 ). According to the proposed model, these
ay arise as a consequence of replication fork stalling and the ar-

ival of another codirectional replisome before fork con vergence ,
esulting in the displacement of the leading strand, DSB end
 esection, and involv ement of homologous recombination (HR)
achinery that generates HJs. Ho w ever, these one-ended DSBs

annot be r epair ed until the sister replisome arrives, leading to the
ccum ulation of r epair intermediates (Mei et al. 2021 ). DNA r epli-
ation termination was r e vie wed r ecentl y in Goodall et al. ( 2023 ). 

sc heric hia coli replisome organization 

he DNA elongation step is carried out by the replisomes (re-
iewed in Yao and O’Donnell 2016 , Xu and Dixon 2018 ). The two
ost essential tasks for the replisome are (1) separation and

2) semiconserv ativ e duplication of the two par ental DNA str ands.
or e r ecent e vidence suggests that r eplisomes also play a r ole as

ensors of obstacles that hinder replication progression and facil-
tate their repair and tolerance via different interactions (Hawkins
t al. 2019 , Wolak et al. 2020 , Thrall et al. 2022 ). The two ma-
or models that explain the spatiotemporal organization of repli-
ation describe the replisomes as either mobile complexes that
un along DNA like a train on a track or stationary factories an-
 hor ed at a certain location in the cell with DNA pushed through.
n bacterial r esearc h, the dominant vie w is that the replisomes are
xed in space, supporting the factory model (Lemon and Gross-
an 1998 , Brendler et al. 2000 , Mangiameli et al. 2018 ). Ho w e v er,

oth modes were directly observed using live cell imaging in slow-
rowing E. coli (Bates and Kleckner 2005 , Reyes-Lamothe et al.
008 , Mangiameli et al. 2017 , Japaridze et al. 2020 ), leading to the
ypothesis that at the beginning of DN A replication, the tw o repli-
omes ar e coher ed but at some point before termination the two
ister replisomes may break apart and travel separately, at least
nder slo w-gro wth conditions. Recent evidence suggests that the
arly cohesion of sister replisomes facilitates the establishment
f the replication fork and its successful pr ogr ession, while loss
f this interaction increases replication fork stalling and the in-
olv ement of r eplication r estart pr otein RecB (Chen et al. 2023 ).
he cohesion of the replisomes might, for example, help with the
oordination of both replication forks for timely cohesion at the
ermination site by slowing down one re plicati ve machinery when
he other deals with obstacles such as transcription complexes,
hic h ar e particularl y abundant at the earl y r eplicating r egion,
nown to be heavil y tr anscribed in E. coli [see the section “Discus-
ion” in Chen et al. ( 2023 )]. 

In E. coli , the single re plicati ve polymerase, or the replicase, DNA
ol ymer ase III holoenzyme (Pol III HE), is responsible for the lion’s
har e of DNA r eplication. Pol III HE is a complex of 10 distinct
roteins that can be organized into three subassemblies: the poly-
er ase cor e (Pol III), the sliding clamp, and the clamp loader com-

lex (CLC; Fig. 1 A) (McHenry 2011 , Yao and O’Donnell 2016 ). An
mportant integral part of the replisome is the helicase DnaB 6 .
here is also a plethora of proteins that associate with the repli-
ome either tr ansientl y or for an extended period of time, such
s the primase DnaG, accessory DNA pol ymer ases, the single-
tr anded-DNA-binding (SSB) pr oteins, topoisomer ases, or some
 epair pr oteins suc h as RNase HI. These will be discussed in the
ollowing parts of this r e vie w. 

he DnaB helicase 
he major E. coli re plicati ve helicase is a homohexamer of DnaB
ubunits encoded by the dnaB gene (r e vie wed in Lewis et al. 2016 ,
u and Dixon 2018 ). DnaB 6 translocates 5 ′ → 3 ′ on the lagging-
trand template (Fig. 1 A). DnaB is loaded onto single-stranded
N A (ssDN A) as a part of the DnaB 6 –DnaC 6 complex, with the
elp of DnaA at oriC at the very beginning of DNA replication [see
laine et al. ( 2023 ) for a r e vie w]. Recent crystal structur es of the
naB 6 –DnaC 6 complex suggest that DnaC binding via its NTD to

he CTD of DnaB causes a distortion in the helicase ring. This dis-
ortion accumulates when more DnaC units are bound and even-
uall y r esults in the helicase opening (Chodav ar a pu et al. 2016 ,
hase et al. 2018 , Arias-Palomo et al. 2019 , Nagata et al. 2020 ). ATP
inding in the DnaC ATPase domain stabilizes DnaB open confor-
ation and is important for helicase activation (Arias-Palomo et

l. 2019 , Puri et al. 2021 ). During loading, DnaB assumes a dilated
onformation with a wide central channel, but it can also dynam-
call y switc h between dilated and constricted conformations as it
r av els on the ssDNA (Strycharska et al. 2013 ). 

The primary role of the helicase is to unwind the DNA duplex
nd produce single-stranded fragments, which is po w ered b y ATP
ydr ol ysis . T he ATP-binding sites positioned a picall y at the repli-
ation fork are located in the C-terminal domains (CTDs), whereas
he N-terminal domains (NTDs) that form a trimer of dimers par-
icipate in pr otein–pr otein inter actions with v arious partners . T he
wo are connected via linker domains . T he initial insight into
he mechanism of translocation was provided thanks to studies
nvolving viral and eukaryotic models (Enemark and Joshua-Tor
006 , also r e vie wed in Li and O’Donnell 2018 ), and the so-called
and-on-hand model that resembles rope climbing has been pro-
osed for DnaB based on the crystal structure (Itsathitphaisarn et
l. 2012 ). According to this model, during translocation, the heli-
ase assumes a spiral staircase-like conformation around ssDNA
nd binds 12 nucleotides (2 per subunit). ATP hydr ol ysis driv es the
ovement of the CTD of the 5 ′ -most DnaB subunit to w ar d the 3 ′ -
ost subunit, resulting in the unwinding of 2 nucleotides on the

a gging str and. For e v ery two mov ements of the CTDs, the dimeric
TDs would mo ve . T he hexameric state of the helicase would
e maintained by the presence of flexible linkers. Neither DNA
or the helicase itself rotates during translocation (Itsathitphais-
rn et al. 2012 ). The helicase alone in vitro unwinds at the rate of
round 30–35 nt s –1 (Kim et al. 1996 ) but is gr eatl y stim ulated by
he replisome subunits to support the in vivo rates of replisome
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Figure 1. Esc heric hia coli replication fork and its surroundings . T he replisome (A) and the major sites of activity in front of (B) and behind (C) the fork are 
magnified. (A): The multisubunit replisome consists of the DnaB helicase, the DnaG primase, tetrameric SSB proteins, the CLC, and 2–3 identical Pol III 
cor es r esponsible for r eplication. These subassemblies ar e inter connected b y a plethor a of inter actions. Ho w e v er, mor e r ecent e vidence shows that 
re plisome mak es contact with man y other pr oteins, so as to enric h and r ecruit them to the site of DNA synthesis . T he pur pose of these inter actions is 
to facilitate DNA damage repair or tolerance (e.g. an interaction between the C-terminal tail of SSB with DNA Pol IV is shown in the picture), Okazaki 
fr a gment matur ation (DNA Pol I), or r emov al of fr equentl y encounter ed r eplication obstacles suc h as pr oteins (inter action between the DnaB helicase 
and the Rep helicase) and RNA transcripts (interaction between the C-terminal SSB tail and RNase HI). Howe v er, the mec hanism of r ecruitment of 
some of them (e.g. mismatch repair proteins or Pol I) remains to be uncovered. (B): Movement of the replication fork increases the topological stress 
related to the accumulation of positive supercoils, which in front of the fork are relaxed by the gyrase. (C): The supercoils may migrate behind the fork 
by virtue of replisome rotation, leading to the entanglement of sister chromosomes, which is resolved predominantly by topoisomerase IV. Topo IV is 
tempor all y and spatially separated from the ongoing replication by the SeqA protein filaments that protect the immediate vicinity of the replisome, 
delaying DNA disentanglement and methylation. 
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r ogr ession (Chandler et al. 1975 , Mok and Marians 1987 ). Inter-
stingly, single-molecule FRET studies suggest that the external
urface of DnaB interacts with the excluded str and, downr egulat-
ng its pr ogr ession r ate (Carney et al. 2017 ). 

Another role of the helicase is a structural one. In vitro single-
olecule fluor escence micr oscopy studies r e v ealed that DnaB is

he most stable component of the replisome, as upon binding it
tays associated for up to 30 minutes (Beattie et al. 2017 , Spinks
t al. 2021 ). In principle, such a long dwell time allows it to remain
ound at the replication fork for the whole period of DNA replica-
ion. Based on these observations, it has been proposed that DnaB

ight serve as the anchor that not only organizes replisome as-
embly but also enables its dynamic and stochastic nature, which
as become evident in recent years (Beattie et al. 2017 ). DnaB in-
eracts with DnaA and DnaC, as well as the DnaG primase and the
subunit of the r eplicase, anc horing both to the replisome. Recent
ork utilizing genetic and live cell imaging approaches suggests

r equent inter actions between DnaB and the Rep helicase at the
eplication fork in vivo , allowing for enrichment of the repair heli-
ase near the sites of DNA synthesis, likely to aid barrier r emov al
n front of the fork, which is supported by in vitro data (Fig. 1 A)
Brüning et al. 2018 , Syeda et al. 2019 ). Another important inter-
cting partner is PriC, a protein involved in replisome reassembly
nd replication restart (Wessel et al. 2013 , 2016 ). 

What happens to the helicase near the termination sites is not
ell understood. In principle, the helicase could displace the 3 ′ 

nd of the ne wl y synthesized leading str and fr om the opposite
ork and continue unwinding. Ho w e v er, bioc hemical studies sug-
est that in this scenario, DnaB rather encircles double-stranded
N A (dsDN A), which w ould pr eclude an y unwinding (Ka plan and
’Donnell 2002 ). Encircling both DNA str ands r equir es DnaB to
e in a nonconstricted state when it is known to unwind more
lowl y (Stryc harska et al. 2013 ). Additionall y, DnaC w as sho wn to
acilitate helicase unloading in an ATP-dependent manner (Puri et
l. 2021 ). It is, ther efor e, possible that slowing down the helicase
omeho w allo ws it to bind DnaC, which aids its detac hment fr om
NA. Another possibility is that perhaps the two helicase hexam-
rs cannot pass each other and collide head-on, essentially block-
ng further tr anslocation. Whic h model persists and what exactl y
ould be the signal for this remains to be understood. 

he DnaG primase 
he monomeric primase is the product of the dnaG gene (Ro w en
nd Kornberg 1978 ). DnaG synthesizes 10–12-nt long RNA primers
hat start DNA replication (Fig. 1 A) (Kitani et al. 1985 ): at least one
hat primes the leading strand and roughly 2000 that prime each
kazaki fr a gment on the la gging str and. RNA synthesis in E. coli
tarts at template dCTG sequences (Swart and Griep 1995 ). 

DnaG contains three important regions: the zinc-binding do-
ain (ZBD) located at the N terminus, the RNA pol ymer ase do-
ain (RPD), and the CTD (DnaGC) responsible for interaction with

he helicase. DnaGC interacts with DnaB NTD, albeit weakly, and
his interaction is important to support in vivo rates of RNA syn-
hesis (Johnson et al. 2000 , Mitk ov a et al. 2003 , Manosas et al. 2009 ),
s DnaG on its own binds DNA weakly and is not very efficient
Khopde et al. 2002 , Corn et al. 2005 ). This interaction starts dur-
ng DNA replication initiation when synthesis of the first primer
romotes subsequent association of the replicase. Based upon bio-
 hemical studies, the pr esumed stoic hiometry was 1 DnaB hex-
mer to 2–3 DnaG monomers (Mitk ov a et al. 2003 ), but structural
nd biochemical studies suggest that during processive DNA repli-
ation, it might actually be 1:1 (Itsathitphaisarn et al. 2012 ), espe-
iall y giv en that m ultiple DnaG monomers bound to the helicase
eem to have an inhibitory effect on the replisome (Tanner et al.
008 ). In the same structur al anal ysis, Itsathitphaisarn et al. ( 2012 )
ut forw ar d the hypothesis that the contact between DnaB and
naG might not necessarily be maintained for the whole period
f primer synthesis. As DnaG can be bound to the lagging DNA
trand via the interaction with SSB (Yuzhakov et al. 1999 ), it is thus
ossible that the transient DnaB–DnaG interaction is more im-
ortant for the deposition of the primase on the template strand
nd/or quick termination of priming reaction on the one hand,
nd for the dynamic control of the behavior of DnaB on the other
and, which will be discussed later. It has been suggested that
wo DnaG copies acting in trans ar e r equir ed for primer synthesis,
ith one responsible for template recognition via the ZBD and the
ther carrying out primer synthesis using RPD (Corn et al. 2005 ). 

After primer synthesis, DnaG remains bound to the primer and
eeds to be displaced by the χ subunit of the CLC of the replicase
o allow for loading of the processivity factor (Fig. 1 A) (Yuzhakov
t al. 1999 , Manosas et al. 2009 ). This finalizes the cycle of DnaG
n the replisome. 

he CLC 

he CLC is composed of se v en subunits ( δδ′ τ (2/3) γ (1/0) ψχ ) and plays
 ultiple r oles in the r eplisome . T hese functions ar e br ought to-

ether via interactions with the five domains (I–V) of the τ sub-
nit. The τ subunit Domain V interacts with the Pol III core—
her e ar e 2–3 cor es (described later) r esponsible for DNA synthesis
nd pr oofr eading (Fig. 1 A). One cor e r eplicates the leading str and,
hile the other one or two replicate the ∼1000-nt long Okazaki

r a gments that together constitute the lagging strand (Okazaki et
l. 1971 , Zechner et al. 1992b , Tougu and Marians 1996 ). 

It was initially assumed that there are two cores that simulta-
eousl y r eplicate both leading and la gging DNA str ands. Under
his scenario, there are two τ subunits, while the third is replaced
y its shorter variant ( γ subunit) truncated at the C end, and thus
acking the core-interacting and the helicase-interacting Domains
V and V, r espectiv el y. While both τ and γ subunits ar e pr oducts of
he dnaX gene, the shorter γ subunit is a consequence of riboso-

al frameshifting taking place during tr anslation (Blink o w a and
alker 1990 ). Ho w e v er, an in vitro study sho w ed that a tri-core

eplicase could be functional in the replisome (McInerney et
l. 2007 ). Soon thereafter, in a series of experiments utilizing
uor escentl y ta gged r eplisome subunits, it w as sho wn that the

n vivo stoichiometry of the CLC observed in liv e-cell ima ging is

3 δδ
′ ( αεθ ) 3 ψχ (Reyes-Lamothe et al. 2010 ). It has been proposed

hat the purpose of the third τ -bound core might be to facilitate
im ultaneous r eplication of two Okazaki fr a gments (McInerney
t al. 2007 , Montón Silva et al. 2015 ), but another explanation is
hat only two cores occupy the sliding clamps, while the third

ight wait for another clamp to be loaded (Reyes-Lamothe et
l. 2010 ). Additionally, single-molecule studies sho w ed that the
ri-cor e r eplicase exhibits higher processivity than the two-core
soform (Georgescu et al. 2012 ). This might be related to the fact
hat Domain IV was also shown to interact with DNA (Jergic et
l. 2007 ). Ne v ertheless, a body of data supports the idea that the
eplisome might contain only two cores, at least under certain
onditions (also discussed in McHenry 2011 ). While the γ subunit
s not essential for surviv al (Blink ov a et al. 1993 ), it copurifies
ithin the replisome (McHenry 1982 , Glover and McHenry 2001 ,
ohrmann et al. 2016 ) and is also present in other bacteria (Larsen
t al. 2000 , Tashjian and Chien 2023 ). Additionally, cells lacking
he γ subunit show increased UV-sensitivity and defective DNA
ynthesis by one of the translesion synthesis (TLS) polymerases,
NA pol ymer ase IV (Pol IV), suggesting impaired DNA repair
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and/or damage tolerance (Dohrmann et al. 2016 ). Consistent 
r esults wer e also obtained in another bacterium, Caulobacter 
crescentus (Tashjian and Chien 2023 ). One possibility is that the 
third core outcompetes Pol IV under stress conditions, causing 
impair ed dama ge r esponse, but also during the stationary phase,
leading to selective disadv anta ge as low-fidelity pol ymer ases ar e 
str ongl y expr essed during that time and play a role in adaptation 

(Yeiser et al. 2002 , Corzett et al. 2013 ). On the other hand, a three- 
cor e r eplicase might be handy under nutrient-rich conditions,
incr easing the pr ocessivity of DNA synthesis during fast gr owth.
This suggests that perhaps replicase composition is regulated 

depending on the cellular state. 
The τ subunit Domain IV interacts with the DnaB helicase 

(Fig. 1 A). The exact interface is not known but is presumed to be 
dynamic. This interaction is important for processive DNA repli- 
cation and possibly for sensing the uncoupling of DNA unwind- 
ing and synthesis, as the helicase translocation rate depends on τ

binding (Kim et al. 1996 , Graham et al. 2017 ). Ne wl y obtained bio- 
chemical data suggest that a single copy of the τ subunit partici- 
pates in the DnaB binding (Monachino et al. 2020 ). The strength of 
this inter action incr eases when DnaG is also bound to the helicase 
(Monachino et al. 2020 ). A textbook view of this interaction was 
that it remains stable for extended periods of time during replica- 
tion extension; ho w e v er, single-molecule studies suggest that this 
is not the case (discussed later) (Lewis et al. 2017 ). 

The τ subunit Domains I–III participate in the k e y CLC acti vity,
which is loading the β2 clamp onto DNA (Fig. 1 A). In particular,
Domains I and II form an AAA + interface and exhibit ATPase ac- 
tivity, whereas Domain III is the collar domain that comes into 
contact with the ψ subunit (Simonetta et al. 2009 ). Domains I–III 
are common for τ , δ, and δ′ , although δ and δ′ do not provide the 
ATPase activity and do not interact with ψ . Together, they form a 
pentameric structure in which Domain I create a C-shaped pas- 
sage for DNA and contact with the clamp, while Domain III form 

a ring-like collar that sits atop the other domains (Simonetta et 
al. 2009 ). 

The subunits are ordered as follows: δ, γ / τ 1 , γ / τ 2 , γ / τ 3 , and δ′ 

(Kazmirski et al. 2004 ). Recentl y, a series of Cryo-EM structur es of 
the CLC in various conformational states and quaternary com- 
plexes with the β2 clamp and/or DNA have been published, of- 
fering insight into the clamp loading cycle (Xu et al. 2023 ). The 
first step is binding three ATP molecules at the interfaces con- 
necting γ / τ subunits, as well as between γ / τ and δ′ . ATP binding 
induces conformational changes, leading to the r eor ganization of 
the AAA + domains (Hingorani and O’Donnell 1998 , Ason et al.
2003 ). This makes the CLC competent in binding the β2 clamp,
which is the next step of the cycle. Biochemical analysis of the 
β2 mutants with a destabilized dimer interface as well as flu- 
or escence pr oximity sensing assay suggest that the ATP-bound 

CLC activ el y opens closed clamps rather than simply capturing 
and stabilizing open clamps from the cytosol (Paschall et al. 2011 ,
Douma et al. 2017 ). β2 binds first via the δ subunit. The gap be- 
tween δ and δ′ Domains I then expands through a crab claw-like 
movement, leading to the opening of β2 (Xu et al. 2023 ). 

As the next step, a primer–template DNA duplex passes 
through the open channel formed between δ and δ′ subunits of the 
pentameric ring (Tondnevis et al. 2016 ). Interestingly, the crystal 
structure of the CLC in complex with DNA suggests that virtually 
only the template strand is in contact with the CLC (Simonetta 
et al. 2009 ). The downstream part of the template strand exits 
thr ough the ga p between Domains I, II, and III of the δ subunit,
wher e the highl y conserv ed loop at positions 276–283 on the ex- 
terior surface of the δ collar domain establishes an interaction 
ith the template strand (Chen et al. 2008 ). The exterior surface
s positiv el y c har ged and seems to be inter acting not onl y with the
emplate DNA but also with the downstream part of the gapped
r nicked nascent strand, providing a structural basis for how the
LC loads the β2 clamps on such duplexes (Xu et al. 2023 ). Al-

hough the structures do not show the position of the highly flex-
ble C-terminal part of the τ subunit, it is known that Domain IV
 eakly binds ssDN A and dsDN A (J ergic et al. 2007 ), and thus , it

annot be excluded that this interaction might further stabilize 
NA around the CLC. 
DNA binding prompts a conformational change with the tight- 

ning of the AAA + interface, bringing the arginine fingers close to
he ATP molecules and facilitating their concerted hydr ol ysis (Xu
t al. 2023 ). This triggers the release of the clamp-encircled DNA
rom the CLC. 

The τ / γ subunit is also in contact with the ψχ tail of the CLC.
he two homologs χ and ψ are the products of holC and holD genes,
 espectiv el y. They form a dimer with a highly conserved interac-
ion interface, and neither contacts DNA dir ectl y (Gulbis et al.
004 ). A SAXS structure of the seven-subunit CLC suggests that
he ψχ dimer is located close to γ / τ 3 (Tondnevis et al. 2015 ). The N-
erminal part of the ψ subunit penetrates the collar domain, inter-
cting with the three τ / γ subunits (Simonetta et al. 2009 ). This not
nl y incr eases the str ength of inter actions within the pentamer
omplex (Olson et al. 1995 ), but also helps the CLC to assume the
onformation favored during DNA binding, increasing the affin- 
ty by 20-fold (Simonetta et al. 2009 ). The χ subunit interacts with
he SSB proteins coating the exposed single-stranded regions of 
he template DNA strand (Marceau et al. 2011 ) and participates in
heir remodeling, as suggested based on in vitro FRET assays (New-
omb et al. 2022 ). The interaction of the CLC with SSB stabilizes
he complex on primer–template DNA (Newcomb et al. 2022 , Xu
t al. 2023 ) and is also important for pr ocessiv e Okazaki fr a gment
ynthesis (Fig. 1 A) (Glover and McHenry 1998 ). The multiple roles
f SSB in the replication fork will be discussed later. 

he β2 clamp 

he β2 clamp is a ring-shaped homodimer encircling the primer–
emplate duplex. The clamp is a homodimer consisting of two 41-
Da proteins encoded by the dnaN gene (Burgers et al. 1981 ). The
rimary purpose of the β2 clamp in the replication fork is to in-
rease the speed and the processivity of DNA replication. This is
est illustrated by the in vitro biochemical activity of the Pol III
or e, whic h alone replicates ∼20 nt s –1 and 10–20 nt per binding
 v ent (Fay et al. 1981 , Maki and Kornberg 1985 ). These numbers
ump to ∼350–500 nt s –1 and up to ∼2000 nts per binding e v ent
hen bound to the β2 clamp (Tanner et al. 2008 ), and to ∼700–
000 nt s –1 and ∼150 000 nts per binding e v ent in the context of
he replisome (Mok and Marians 1987 , Yao et al. 2009 , Tanner et
l. 2011 ). All E. coli DNA pol ymer ases wer e shown to increase their
rocessivities 25–400 times upon β2 binding. 

The clamp has a clear pseudo 6-fold symmetry, with the outer
ircle composed of β-sheets and the ∼30–35 Å inner circle com-
osed of α-helices . T he helices contain many positively charged
esidues that form electrostatic interactions with DNA that facil- 
tate sliding (Georgescu et al. 2008 ). Both subunits have canoni-
al protein-binding sites in the form of hydrophobic pockets com-
osed partially of DnaN C-terminal residues . T hese pockets bind
 variety of DNA-interacting proteins possessing specific clamp- 
inding motifs (CBMs). As pr e viousl y mentioned, during clamp
oading, one pr otein-binding poc ket inter acts with the δ subunit
f the CLC. During pr ocessiv e r eplication, both ar e normall y oc-
upied by the re plicati ve polymerase and the exonuclease, the α



6 | FEMS Microbiology Reviews , 2024, Vol. 48, No. 4 

Figure 2. Structure of the Pol III re plicati ve core bound to the β2 clamp. The N-terminal parts of the α polymerizing subunit and the ε proofreading 
subunit occupy the two canonical protein-binding sites in the dimeric β clamp. The C-terminal part of the ε subunit is located close to the α subunit 
PHP domain, and the two fr a gments of ε are connected via a flexible glutamine-rich linker. The θ subunit of the core is nested in-between ε and α. The 
C-terminal fr a gment of the CLC τ subunit is also shown. The PDB structur es 5FKV and 5M1S wer e used. Modeller was used to model the possible 
position of the missing ε internal linker. 
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nd ε subunits, r espectiv el y (Figs 1 A and 2 ) (Jergic et al. 2013 , Toste
êgo et al. 2013 , Fernandez-Leiro et al. 2015 ), although biochemi-
al evidence suggests that a single binding pocket is sufficient to
upport clamp loading and DNA synthesis in vitro (Scouten Pon-
icelli et al. 2009 ). The sliding clamp interacts with many other
artners, namely, all DNA polymerases, mismatch repair (MMR)
roteins MutS and MutL, and DNA ligase (López de Saro and
’Donnell 2001 , Sutton et al. 2001 , López De Saro et al. 2006 , Maul
t al. 2007 , Pluciennik et al. 2009 , Sikand et al. 2021 ). 

The network of interactions of the β2 clamp with its part-
ers is more complicated than singular DNA-binding and protein-
inding sites. For example, the protein-binding pocket also inter-
cts with the single-stranded portion of the primed template, with
 possible role during clamp loading (Georgescu et al. 2008 ). More-
ver, some clamp-binding proteins, such as DNA polymerase IV,
ave additional points of contact outside of the hydrophobic cleft

Bunting et al. 2003 , Maul et al. 2007 , Heltzel et al. 2009 , Wagner
t al. 2009 , Kath et al. 2014 ). A possibility has been raised that
hese alternative binding sites might facilitate the r a pid exc hange
f DNA pol ymer ases during r eplication. Inter estingl y, β2 m utants
arrying mutations within the DNA-binding region have been iso-
ated and shown to somehow affect interactions with Pol III or Pol
I and Pol IV (Heltzel et al. 2009 , Homiski et al. 2021 , Berger and Cis-
eros 2023 ) and even impair the ability of E. coli to tolerate DNA
ama ge (Nanfar a et al. 2016 ). 

Apart from increasing the processivity of DNA synthesis, the
liding clamp can also modulate other activities of DNA poly-
erases, as binding of the β2 clamp inhibits Pol I strand-

isplacement (SD) activity and promotes 5 ′ → 3 ′ exonucleolysis in
itro , possibly to avoid excessive DNA resynthesis during Okazaki
r a gment matur ation (Bhar dw aj et al. 2018 ). As the β2 clamp also
nteracts with the ligase, sliding clamps left behind the replica-
ion fork might be used by repair enzymes (López de Saro and
’Donnell 2001 , Moolman et al. 2014 ). 
Given that around 2000 Okazaki fragments are synthesized in

ac h r eplication cycle, the demand for the β2 clamps far exceeds
heir cellular le v els (Bur gers et al. 1981 ). As the closed clamp con-
ormation is rather stable (Binder et al. 2014 ), the leftover clamps
eed to be activ el y unloaded from the dsDNA. Current evidence
oints in the direction of the δ subunit of the CLC being the un-

oader, as addition of δ to an in vitro reaction decreases the slid-
ng clamp half-life on DNA from ∼2 hours to around 2 minutes
Yao et al. 1996 , Leu et al. 2000 ). These early results are supported
y a more recent single-molecule fluorescence microscopy study
here it has been shown that shortly after initiation the number
f the DNA-bound β2 clamps increases to eventually reach a con-
tant le v el ( ∼46, whic h is ∼50% of the cellular le v el), maintained
ntil termination, and the half-life of the DNA-bound β2 clamp
as over 3 minutes (Moolman et al. 2014 ). 

 he r eplicative cor e 
nlike eukary otes, ar c haea, and man y other bacteria, E. coli Pol

II’s polymerizing and exonucleolytic proofreading activities are
rovided b y tw o separate subunits of the re plicati ve core ( α and ε,
 espectiv el y, encoded by dnaE and dnaQ genes). The third subunit
n the core, θ (encoded by the holE gene), plays a stabilizing role
Fig. 2 ) (Taft-Benz and Sc haa per 2004 ). The last decade has signif-
cantly expanded our kno wledge regar ding the structure and in-
eractions within Pol III HE. As pr e viousl y mentioned, during DNA
ynthesis, α and ε subunits are both bound to the hydrophobic
ockets of the β2 clamp. Much insight into the structural arrange-
ent of the α–ε–β2 trio came from Cryo-EM studies (Fernandez-

eiro et al. 2015 ). 
T he P ol III α subunit (Pol III α) has se v er al domains (Fig. 3 A).

t the N terminus, there is the pol ymer ase and histidinol phos-
hatase (PHP) domain, which in some bacteria (that lack the ε
ubunit) provides the exon uclease acti vity, although, in E. coli , it
as been inactivated during evolution. For this reason, it was be-

ie v ed that PHP mostly plays a structural role, although bioinfor-
atic analysis based on sequence alignments suggested that PHP
ight be a putative pyrophosphatase (Lamers et al. 2006 , Barros
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Figure 3. Structure of the α polymerizing subunit of E. coli Pol III. Compared to Fig. 2 , the structures have been rotated clockwise by 90 ◦. The primary 
(A) and the ternary (B) structures are shown along with the close-up view of the active site (C); the positions of DNA and other core subunits are visible 
(see Fig. 3 ). The three aspartic acids essential for catalysis, as well as the steric gate residue (His760) located in the vicinity of the 2 ′ carbon of the sugar 
moiety (star sign), are shown. Major intermolecular contact sites are also marked in (A). The PDB structure 5FKV was used. In (C), the nascent DNA 

duplex and the incoming nucleotide (dTTP) were modeled based on the PDB structure 3E0D of Taq Pol III. 
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et al. 2013 ). This has been confirmed in subsequent studies, where 
it was shown that pyrophosphate hydrolysis regulates DNA syn- 
thesis rate in vitro and is important for viability and genome sta- 
bility (Lapenta et al. 2016 ). In the central part of Pol III α are located 

the palm, the thumb, and the fingers domains (Fig. 3 A). Palm and 

fingers together participate in creating the active site . T he active 
site fold of Pol III α, which is a C-family DNA polymerase, is unlike 
that of eukaryotic B-famil y r eplicases but mor e akin to that of X- 
famil y pol ymer ases suc h as human Pols β and λ (P ar asur am et al.
2018 ). Se v er al amino acids within the active site are essential for 
nucleotide selection and catalysis, including the catalytic aspartic 
acids at positions 401, 403, and 555 in the palm domain and histi- 
dine at position 760 in the fingers domain, but also others, includ- 
ing some more distant, residues responsible for correct position- 
ing of amino acids, electrostatic interactions, and proper closing 
of the active site (Fig. 3 A–C) (Parasuram et al. 2018 ). The nascent 
DNA duplex is gripped between the thumb domain (which in the 
primary structure is nested within the palm domain) and the fin- 
gers domain (Lamers et al. 2006 , Fernandez-Leiro et al. 2015 ). The 
fingers domain is longer than in other pol ymer ases but binds DNA 

loosely, allowing for an unprecedented speed of DNA elongation 
f ∼700–1000 nt s –1 when bound to the β2 processivity factor (for
omparison, the rate of eukaryotic replication fork pr ogr ession is
25–30 nt s –1 ) (Fig. 3 B) (Conti et al. 2007 , Sekedat et al. 2010 ). At

he C terminus of the fingers domain, there is the β-binding site,
nd next to it, there is the oligonucleotide binding (OB) domain,
nd then the τ -binding region and the very C terminus of Pol III α
Fernandez-Leiro et al. 2015 ). 

T he P ol III ε subunit (P ol III ε) can be divided into the big N-
erminal catalytic domain ( εNTD) and the small C-terminal seg-

ent ( εCTS). The catalytic domain contains three conserved Exo 
otifs (I, II, and IIIe). These motifs contain essential residues D12,

14, D103, and D167 that form a DEDD motif, common for many
ucleases (DeRose et al. 2002 ). A fr a gment between Exo I and Exo

I interacts with the θ subunit, while Exo III interacts with the
humb domain of Pol III α. At the end of the εNTD, there is the CBM,
nd the εCTS contains a PHP-inter acting fr a gment connected to
he εNTD via a flexible glutamate-rich linker (Fernandez-Leiro 
t al. 2015 ). Ther efor e, Pol III ε makes two points of contact with
ol III α, which is important for DNA transactions during replica-
ion as it allows for partial dissociation of Pol III ε (discussed later,
ig. 2 ). 
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The plethora of interactions makes the core a tightly bound
omplex and increases its affinity to the β2 clamp, especially when
lso bound to DNA. The Cryo-EM structure revealed that upon
NA binding, the core undergoes a significant conformational
hange with a major shift of the oligonucleotide (OB) domain that
orms another point of contact with the sliding clamp between
he pol ymer ase and the exonuclease (Fernandez-Leiro et al. 2015 ).
ccordingl y, the cor e–β2 –DNA complex is m uc h mor e stable than

he core with the clamp alone (Naktinis et al. 1996 ). But the core
ubunits also stimulate each other as the core is in vitro more pro-
cient in both synthesis and exonucleolysis than α and ε alone

described in more detail in Lewis et al. 2016 ). 

he ssDNA-binding protein 

he SSB protein coats single-stranded fragments of DNA pro-
uced by the helicase, thereby protecting them from degrada-
ion and pr e v enting formation of DNA secondary structures that
ould interfere with replication (Fig. 1 A). SSB is a homomeric com-
lex composed of four subunits encoded by the ssb gene . T he N-
erminal OB domain of the SSB subunit participates in DNA bind-
ng, whereas the C-terminal part contains a long, disordered in-
erdomain linker (IDL) that is important for cooperativity, and the
onserved 9-amino-acid-long tail (SSB-Ct) that enables interac-
ions with many different partners (in binding many of which IDL
lso plays a role; reviewed in Oakley 2019 , Bianco 2021 ). 

Depending on salt concentration and r elativ e SSB and DNA
oncentr ations, thr ee SSB binding modes to DNA have been ob-
erved that differ in the number of nucleotides per tetramer:
SB 35 , SSB 56 , and SSB 65 (Lohman et al. 1986 , Bujalowski and
ohman 1989 , Ferrari et al. 1994 ). SSB 35 displays high nearest-
eighbor binding cooperativity mediated by the interaction be-
ween the IDL and the OB domain of the neighboring SSB 35 , and
he SSB–DNA complexes form large clusters observed in electron

icroscopy (Griffith et al. 1984 , K ozlo v et al. 2015 ). On av er a ge, two
B sites ar e involv ed in complex formation. A r ecent study r e v eals

he presence of a conserved surface close to the DNA-binding site
hat interacts with a DNA fragment that “bridges” two tetramers.
his interface is important for linking SSB tetramers and thus
orming higher-order complexes in SSB 35 binding mode (Dubiel et
l. 2019 ). In contrast, the crystal structure of SSB65 shows DNA
r a pped ar ound four SSB subunits and thus occupying all avail-
ble OB sites in a manner described as a “basketball seam” (Raghu-
athan et al. 2000 ). These complexes seem to form octamers vi-
ualized as beads on DNA in electr on micr oscopy and ar e c har ac-
erized by low binding cooperativity. 

Recent investigations utilizing single-molecule force and fluo-
 escence spectr oscopy and optical tweezer methods r e v ealed the
echanisms of DNA wrapping and unwrapping. Binding seems to

ccur through intermediate states where initially eight and then
7 nt are wrapped, likely mediated by an initial DNA interaction
ith the W54–R56 cluster (Suksombat et al. 2015 , Naufer et al.
021 ). Wr a pping is linear and goes through SSB 8 , SSB 17 , SSB 35 , and
SB 56 to finall y r eac h the SSB 65 sta ge, while unwr a pping occurs
n the opposite direction (Suksombat et al. 2015 ). Notably, single-

olecule studies show that SSB is dynamic on ssDNA and able
o not only switch binding modes but also change its position
translocate) (Roy et al. 2007 , 2009 , Zhou et al. 2011 ). Transloca-
ion, which is a fast process, occurs via a mechanism called rep-
ation, a snak e-lik e movement that is typical of long polymers:
SB r emains mostl y bound to DNA, while short 2–5-nt fr a gments
r e unwr a pped and quic kl y r eplaced by another fr a gment of ss-
NA. In the process, a small bulge of unwrapped DNA travels
round the SSB tetramer, effectively leading to SSB transloca-
ion with respect to DNA (see the Supplementary video in Zhou
t al. 2011 ). Other observations suggest that SSBs are initially
eposited on ssDNA (e.g. produced by the helicase) and swiftly
r a pped ar ound 65-mers subject to ssDNA availability, but when
SB starts to build up, the binding mode changes to SSB 35, which
s a m uc h slo w er pr ocess and pr obabl y mediated by high bind-
ng cooperativity (Naufer et al. 2021 ). Based on these observa-
ions, a model of SSB dynamics during DNA replication has been
r oposed. When fr ee ssDNA shortens , e .g. due to ongoing DNA
ynthesis or RecA filamentation, SSBs are first pushed together
due to r a pid tr anslocation), ov ercr owded, and finall y ejected fr om
NA, after which they might quickly reassociate with newly pro-
uced ssDNA (Naufer et al. 2021 ). The ov ersatur ation might stim-
late the rates of unwr a pping and dissociation, whic h ar e nor-
all y quite low. SSB tr anslocation might be assisted by the move-
ent of the r eplication mac hinery, although an alternativ e expla-

ation is that the replicase activ el y dislocates the SSB (Cerrón et
l. 2019 ). 

SSB’s interactome is extensive and comprises primase; DNA
ols II, III, IV, and V; nucleases such as ExoI, Exo IX, and RNase
I; helicases such as DinG , RecG , or RecQ; primosome proteins
riABC; topoisomerase III; and other DNA repair proteins such
s AlkB, RadD, RecO , RecJ , and Ung (Ar ad et al. 2008 ; r e vie wed in
ianco 2021 ). Most of these proteins have an OB-fold that medi-
tes SSB interactions . T hus , SSB can be viewed as an important
ub that orc hestr ates r eplisome tr ansactions and facilitates DNA
aintenance (Shereda et al. 2008 ). This perspective has been ex-

anded using more recent discoveries in another section of this
anuscript. 

 he auxiliar y DNA polymerases 
NA pol ymer ase I (Pol I) encoded by the polA gene is not an inte-
ral part of the replisome but activ el y participates in DNA replica-
ion. The C-terminal segment of Pol I (Klenow fr a gment) contains
he pol ymer ase and the 3 ′ → 5 ′ exonuclease, while the N-terminal
egment connected via a flexible linker provides the 5 ′ → 3 ′ exonu-
lease and the endonuclease activities (see , e .g. Lewis et al. 2016
or more details). Pol I synthesizes patches of DNA to replace RNA
rimers in a process called Okazaki fragment maturation (Fig. 1 A).
his allows for the subsequent ligation of Okazaki fr a gments by
he DNA ligase . P ol I is also a v ersatile r epair pol ymer ase partici-
ating in short-patch repair pathways such as nucleotide excision
epair (NER), base excision repair, very short patch repair, and ri-
onucleotide excision repair (RER) (McDonald et al. 2012 , Robert-
on and Matson 2012 ). Indeed, Pol I is well-equipped to accomplish
hese tasks as it is proficient in 3 ′ → 5 ′ exonucleolytic, 5 ′ → 3 ′ ex-
n ucleolytic, endon ucleolytic, and SD acti vities and can perform
ic k-tr anslation, ga p-filling, and SD synthesis. On the other hand,
he processivity of Pol I is low (15–20 nt synthesized per binding
 v ent; Bambar a et al. 1978 ) unless bound to the β2 clamp (López
e Saro and O’Donnell 2001 ), which in turn inhibits its SD activity
nd pr omotes nic k-tr anslation and earl y ligation in vitro (Bhard-
aj et al. 2018 ). This might explain why Pol I is not belie v ed to be

he major contributor to the MutSLH-dependent MMR pathway. 
An insight into the mechanism of Pol I-mediated Okazaki

atur ation was pr ovided in r ecent studies that utilize single-
olecule microscopy, in vitro biochemistry, and structural biology
 ppr oac hes (Cr a ggs et al. 2019 , P auszek et al. 2021 , Botto et al.
023 ). The first step is the handover of the primer terminus from
ol III to Pol I. How Pol I is recruited to the substrate and whether
ol I binds to a nick or a gap is not clear. In vitro experiments sug-
est that it might be a nick based on pr ocessiv e Pol III-mediated
eplication (Botto et al. 2023 ), but the alternative model implies



Łazowski et al. | 9 

 

 

 

 

 

 

 

 

 

 

n  

s  

a  

d  

o  

a  

s  

s  

c  

t  

(  

r  

m  

l
w  

d  

i  

a  

f  

e  

f  

(  

r  

c  

1  

a  

s  

c  

l
 

a  

h  

c  

s
G  

u
s  

U  

t  

a  

t  

r
a  

U  

U  

a  

P  

a  

P  

p  

w  

S  

e  

U  

C  

m  

e  

t  

n  

d  

o  

p  

t  

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

sre/article/48/4/fuae018/7710107 by C
om

m
issioning staff in C

ornw
all user on 18 July 2024
that Pol III might abandon the Okazaki fr a gment befor e it is repli- 
cated up to the next primer, thus leaving a gap for Pol I to fill; 
in vivo experiments are consistent with this idea (Graham et al.
2017 ). Another question is whether Pol I utilizes the β2 clamp dur- 
ing Okazaki fr a gment matur ation. This seems likel y as the clamp 

w as sho wn to pr e v ent excessiv e Pol I SD acti vity in vitro (Bhard waj
et al. 2018 ), and live-cell imaging revealed that dozens of clamps 
are bound to DNA in acti vely di viding cells, each for over 3 min- 
utes (Moolman et al. 2014 ). The stead y-state n umber of clamps 
is r eac hed in less than 10 minutes and r emains so for ov er 60 
minutes . T hese clamps are likely left behind by the lagging-strand 

(and less fr equentl y the leading-str and) pol ymer ase subassembl y 
at a perfect place to be utilized by Pol I (and also other repair pro- 
teins). Ho w e v er, the β2 clamp does not seem to stimulate Okazaki 
fr a gment matur ation in vitro (Botto et al. 2023 ). 

A structure of Pol I in complex with the template, upstream,
and downstr eam str ands sho ws the template is bent b y ∼120 ◦ at 
the Pol I fingers domain, which leads to partial (1–2 nt) fraying 
of the RNA substrate, with the unpaired bases interacting with 

Arg781 and Phe771. This substrate is displaced by the fingers dur- 
ing the Pol I tr anslocation (Cr a ggs et al. 2019 , Botto et al. 2023 ).
As Pol I replicates up to the end of the primer, it simultaneously 
cleav es the fla p. It has been shown using FRET microscopy that the 
fla p can spontaneousl y tr ansfer between the pol ymer ase and the 
endonuclease (Pauszek et al. 2021 ), which likely facilitates primer 
nucleolysis. Ho w ever, an in vitro assay that utilized an RNA-primed 

DN A substrate sho w ed that Pol I is a v ery pr oficient junction nu- 
clease , clea ving on the 3 ′ side of the last ribonucleotide with high 

specificity (Botto et al. 2023 ). How this specificity is ac hie v ed is 
not clear, but it stands to reason that Pol I recognizes some kind 

of additional signal that triggers endonucleol ysis. Inter estingl y, as 
the endonuclease reaction in (Botto et al. 2023 ) was carried out 
in the absence of dNTPs, meaning that the pol ymer ase could not 
translocate, it seems likely that during Okazaki fragment matura- 
tion, the cut is introduced before Pol I reaches the end of the flap.
T hus , a plausible scenario is that Pol I nicks the RN A–DN A junc- 
tion at the beginning or during extension of the upstream DNA 

str and, whic h is accompanied by flap clea vage , and then termi- 
nates at the nic k, whic h is subsequentl y ligated by the LigA ligase 
(Botto et al. 2023 ). 

Pols II, IV, and V (encoded by polB , dinB , and umuDC , respec- 
tiv el y) ar e the thr ee E. coli DNA pol ymer ases that ar e involv ed
in TLS (Fig. 4 A) (see Maslowska et al. 2019 , Fujii and Fuchs 2020 
for r e vie w). Pol II is a B-famil y pol ymer ase that can bypass abasic 
sites and acetylaminofluorene adducts (AAF-dG). Y-family Pol IV 

and Pol V are specialized in dealing with minor groove and major 
gr oov e lesions, r espectiv el y. For example, Pol IV can bypass alkyl 
adducts , whereas P ol V performs TLS on UV lesions (Tessman and 

K ennedy 1994 , Na politano et al. 2000 , Fujii and Fuchs 2007 , Robin- 
son et al. 2015 , Wang et al. 2021 ). Unlike P ol V, P ols II and IV are nor-
mall y pr esent in the cell at detectable concentrations . T hese levels 
ar e fiv e times higher for Pol IV ( ∼50 versus ∼250 molecules/cell),
but Pol II has a higher affinity for the β2 clamp (Bonner et al. 1992 ,
Wagner et al. 2000 , Sutton 2010 ). Given that Pol II is a high-fidelity,
exonuclease-pr oficient DNA pol ymer ase , while P ols IV and V are 
not, it is possible that one of the cellular roles of Pol II is to limit 
Pol IV’s mutator potential. Additionally, genetic evidence indicates 
that P ol II ma y serve as a backup replicase when Pol III has trou- 
ble continuing the r eplication (Banac h-Orlowska et al. 2005 , Fi- 
jalkowska et al. 2012 ). 

Upon DNA damage, the cellular levels of Pols II, IV, and V can 

be further ele v ated due to the activ ation of the so-called “SOS”
r esponse, whic h r esults in the upr egulation of specific genes (Fer- 
ández de Henestrosa et al. 2000 , Courcelle et al. 2001 ). Other con-
equences of SOS induction are, for example, activation of NER
nd HR (r e vie wed in Bell and Ko w alczyko wski 2016 ). The slo w-
own of fork pr ogr ession upon DNA damage allows for the binding
f RecA protein to DNA. RecA has several cellular functions: it is
 pr otein involv ed in HR, but it is also a mediator of the SOS re-
ponse and SOS-dependent m uta genesis. RecA m ust compete for
sDNA with SSB, which normally coats exposed DNA regions. Be-
ause of SSB’s high affinity to ssDNA, binding of RecA to DNA is a
imel y pr ocess unless aided by other complexes suc h as RecFOR
Morimatsu and Ko w alczyko wski 2003 ). RecFOR can target DN A
 epair to ssDNA ga ps, and r ecent studies suggest that this activity
ight be mediated by RecF interaction with the β2 clamp, particu-

arly with ones associated at abandoned replication intermediates 
hen the replicase stalls , dissociates , and continues replication
ownstr eam dama ge (Henry et al. 2023 ). In line with these find-

ngs, RecF fr equentl y colocalizes with the replisome (Henrikus et
l. 2019 ). Other important factors in SSB displacement are the dif-
usion of SSB, which leads to exposure of uncoated fr a gments (Roy
t al. 2009 ), and SSB–RecA inter action, whic h modulates filament
ormation (Wu et al. 2017 ). Creation of the nucleoprotein filament
often denoted as RecA 

∗) promotes proteolysis of LexA, which is a
 epr essor of the SOS system that governs the transcription of spe-
ific genes such as the umuDC operon encoding Pol V (Shibata et al.
981 , Shinagawa et al. 1988 , Patel et al. 2010 , Cory et al. 2024 ). lexA
nd recA genes ar e LexA–r egulated and RecA–der egulated them-
elv es suc h that SOS induction is suppr essed quic kl y when r epli-
ation fork pr ogr ession is r estor ed, and RecA 

∗ filaments are no
onger forming. 

Pol V is a heterotrimeric protein composed of the UmuC cat-
lytic subunit and two noncatalytic UmuD 

′ subunits . P ol V ex-
ibits a strong mutator potential and is subject to an astonishingly
omplex system of control comprising transcriptional, temporal,
patial, and biochemical elements of the regulation (reviewed in 

oodman et al. 2016 , Jaszczur et al. 2016 ). Firstly, Pol V is normally
ndetectable in the cell. After LexA– and RecA–dependent tran- 
cription starts, which happens ∼15 minutes after SOS activation,
m uC and Um uD 2 pr oteins ar e quic kl y degr aded by the Lon pr o-

ease , dela ying pr otein accum ulation to ∼45 minutes after SOS
ctivation when the rate of translation overcomes the rate of pro-
eolysis (Gonzalez et al. 1998 ). Secondly, as revealed by the more
 ecent single-cell micr oscopy studies, when Um uC and Um uD 2 

ccum ulate, Um uC is sequester ed at the cell membr ane awaiting
m uD 2 autopr oteol ytic activ ation (the activated dimer is denoted
muD 

′ 
2 ), allowing for the assembly of Pol V (UmuD 

′ 
2 C) ∼1 hour

fter SOS induction (Robinson et al. 2015 ). Ho w e v er, activ ation of
ol V additionall y r equir es the binding of RecA and ATP, and this
ctive complex is called the Pol V mutasome (Pol V mut). Thirdly,
ol V mut is the slo w est DN A pol ymer ase ( ∼0.29 nt s –1 ), and its
r ocessivity str ongl y depends on SSB ( ∼25 nt per binding e v ent
hen bound to the β2 clamp; ∼200 nt per binding e v ent when
SB is also present) (Tang et al. 2000 , Pham et al. 2001 , Karata
t al. 2012 ). Fourthly, as the SOS signal subsides, UmuD binds to
muD 

′ , forming a heterodimer, and then UmuD 

′ is degraded by
lpXP, while Um uD and Um uC ar e degr aded by Lon, as already
entioned (Frank et al. 1996 , Gonzalez et al. 2000 ). These elements

nsure that Pol V expression and action, and therefore its muta-
or effect, are k e pt to a minim um. Inter estingl y, in the recA730 ge-
etic bac kgr ound, wher e RecA_E38K exists in a constitutiv el y in-
uced state due to the more efficient competition with SSB, most
f the regulation is circumvented such that Pol V is constantly ex-
r essed without an y DNA dama ge, pr omoting high le v els of spon-
aneous m uta genesis, especiall y when combined with a LexA defi-
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Figur e 4. T he fate of lesions and mismatches at the replication fork. (A) When the replicase encounters a DNA lesion, specialized TLS DNA 

pol ymer ases ar e r ecruited to help r eplicate past the dama ge . T his might ha ppen either at the r eplication fork via pol ymer ase switc hing, or behind the 
replication fork after polymerase dissociation and subsequent repriming downstream the lesion. (B) Mismatches introduced by the replicase might be 
r emov ed by the intrinsic pr oofr eading activity provided by Pol III ε. Alternativ el y, partial dissociation of Pol III allows for recruitment of auxiliary DNA 

pol ymer ases, with the outcome (excision or extension of the mismatch) depending on the associated polymerase (high- or low-fidelity). 
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iency (e.g. lexA51 ) (Watanabe-Akanuma et al. 1997 , Niccum et al.
020 ). 

ther activities near the replisome 
eplisomes fr equentl y encounter differ ent insults that block or
lo w do wn their pr ogr ession and hav e the potential to affect repli-
ation fidelity and genome stability. DNA lesions can be dealt with
n the fly using TLS pol ymer ases or by activating the SOS system,
hich is mediated by the RecA protein. T hese ha ve been described

n the pr e vious section. Ho w e v er, an equall y important source of
eplication obstacles is the never-ending DNA metabolism and

aintenance . Replisomes ma y clash with proteins associated in
ront of the fork or undissociated transcripts, forming structures
nown as R-loops . T he primary enzymes responsible for the re-
ov al of pr otein or RNA adducts fr om DNA ar e Rep helicase and
Nase HI, r espectiv el y. Importantl y, both might be viewed as tran-
ient, auxiliary components of the replication machinery, as inter-
ctions with replisome subunits enrich them at the sites of ongo-
ng replication. 

The monomeric Rep helicase translocates 3 ′ → 5 ′ on the leading-
trand template, in contrast to the re plicati ve helicase DnaB (Ko-
 ole v et al. 1997 ). Rep is proficient at displacing DNA-bound pro-
eins such as the RNA polymerase (RNAP) but does not unwind
sDNA (Brüning et al. 2018 , Hawkins et al. 2019 ). Another E. coli
elicase with partially redundant activity is UvrD, a component of
MR and the NER machinery, as loss of both is lethal under fast

ro wth conditions. Ho w ever, only Rep w as sho wn to physically in-
eract with the replisome (Atkinson et al. 2011 ), and unlike in the
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case of other auxiliary helicases, loss of Rep significantly affects 
cell growth, for which this interaction is crucial (Atkinson et al.
2011 ). In a recent live cell imaging study, it has been proposed that 
Rep monomers might occupy all six DnaB subunits, and the inter- 
action is stochastic and dynamic (Syeda et al. 2019 ). Other stud- 
ies suggest a lo w er occupanc y (Whinn et al. 2023 ). This implies 
that DnaB may serve as a launching pad for Rep probes, where 
Rep constantl y surv eils DNA for pr otein r oadbloc ks and performs 
quick displacement (Fig. 1 A) (Syeda et al. 2019 , Whinn et al. 2023 ).
We note in passing that UvrD also colocalizes with the replisome 
to aid protein displacement, but no specific recruitment factors in 

this context have been identified (Wollman et al. 2024 ). 
RNase HI, which will be discussed in detail in the section dedi- 

cated to ribonucleotide repair in DNA, is an endoribonuclease that 
cleav es RNA tr anscripts in R-loops. It has been shown that RNase 
HI interacts with the C-terminus of SSB, which is important for the 
stimulation of its activity (Petzold et al. 2015 ). Ho w e v er, mor e r e- 
cent studies r e v ealed that this interaction is responsible for RNase 
HI colocalization with the replisome (Wolak et al. 2020 ). A mutant 
strain in which this interaction is eliminated is characterized by 
slo w ed gro wth and activation of the DN A dama ge r esponse when 

combined with a Rep deficiency, and this phenotype is dependent 
on the le v el of ongoing tr anscription, indicating that RNase HI en- 
richment near the replication fork is important for R-loop r emov al 
in front of replication fork (Fig. 1 A) (Wolak et al. 2020 ). Impor- 
tantl y, ther e ar e other enzymes capable of R-loop repair, including 
DinG helicase which was shown to unwind R-loops (Voloshin and 

Camerini-Otero 2007 ). DinG is also stimulated by the interaction 

with SSB (Cheng et al. 2012 ), but whether this protein is deposited 

at the replisome similar to RNase HI is currently unknown. 
Re plisome acti vity leads to the accumulation of topological 

stress that is relieved by type II topoisomerases acting both in 

front of and behind the replication fork (Bush et al. 2015 ). Posi- 
tive supercoiling due to DNA unwinding by the helicase in front 
of the fork is relaxed by gyrase. Topoisomerase IV (topo IV) may 
also play a role in this process, but it is essential behind the fork 
for disentangling daughter c hr omosomes that become catenated 

due to migration of positive supercoils from the front (Sissi and 

Palumbo 2010 , Ashley et al. 2017 ). 
Topo IV, a tetramer composed of P arC 2 (r esponsible for DNA 

binding and catalysis) and ParE 2 (ATPase), can work on a vari- 
ety of substrates, including positive and negative supercoils as 
well as catenates (Bush et al. 2015 ). Topo IV has been shown us- 
ing liv e ima ging to colocalize with the structur al maintenance of 
the c hr omosome (SMC) complex MukBEF that is indispensable for 
proper positioning and segregation of sister chromosomes (Nico- 
las et al. 2014 , Zawadzki et al. 2015 ). Topo IV–MukBEF interaction 

is pr obabl y important for decatenation near oriC s in pr epar ation 

for their subsequent separation. Ho w ever, Topo IV also interacts 
with the SeqA protein that trails behind the fork where it binds 
hemimethylated GATC sequences (Fig. 1 A) (Kang et al. 2003 ). SeqA 

plays multiple roles: it limits overinitiation of DNA replication 

(Pedersen et al. 2017 ), pr e v ents pr ematur e methylation of DN A b y 
the Dam methylase, enabling the activity of MMR (Fig. 1 C) (Kang et 
al. 1999 ), pr omotes earl y cohesion of sister c hr omosomes, whic h 

is important for proper segregation (Joshi et al. 2013 ), and orches- 
trates Topo IV action along the replicated DNA (Helgesen et al.
2021 ). The exact mechanism is not clear, but it is possible that 
Topo IV binds SeqA clusters on the replisome-distal side, where it 
catal yzes c hr omosome disentanglement. 

Gyrase is composed of a single GyrA (DNA binding) and two 
GyrB (ATP ase) subunits. Gyr ase is not efficient at decatenation,
and is thus belie v ed to be primarily responsible for the intro- 
uction of negative supercoils in front of the fork, at which it is
ore efficient than Topo IV (Fig. 1 B) (Bush et al. 2015 , Ashley et

l. 2017 ). A single-molecule study of gyrase distribution in the cell
uggests that besides the many gyrase molecules bound across 
he c hr omosome likel y to maintain steady-state le v els of super-
oiling, there is also an enrichment near the replication fork with
ncreased dwell time, suggesting processive action in front of the
ork (Stracy et al. 2019 ). Intriguingly, the combined rate of relax-
tion by gyrase and Topo IV, as observed in these studies, is not
ufficient to k ee p up with the rate of DNA replication (Stracy et
l. 2019 ), and additional regulatory elements called Replication 

isk Sequences have been identified recently. During replication,
hese GC-rich sequences promote formation of single-stranded 

aps on the lagging strand to control supercoil formation (Pham et
l. 2024 ). Mor eov er, no specific factors that would recruit gyrase to
he r eplisomes hav e been identified, nor is it known whether suc h
actors exist; it is possible that the already bound gyrase units are
ngaged for processive relaxation of topological stress in front of
he fork. 

he dynamics of the replisome 

ultiple lines of evidence suggest that the E. coli replication fork
s a dynamic entity that under goes man y tr ansactions involving

ost of its components . T his includes the dynamic nature of the
SB protein on DNA, the cycles of primer synthesis and clamp
oading, and also the exchange of different DNA polymerases at
he replication fork and of the replicase holoenzymes themselves.
hese will be discussed in the following par a gr a phs. 

 he helicase–primase–r eplicase axis 
naB helicase is the central protein of the replisome that links

he activities of the DnaG primase and the Pol III holoenzyme.
o w e v er, the timing of DNA unwinding, priming, and synthesis
eed to be tightly coordinated to avoid uncoupling and replica-
ion failure. An important layer of regulation of DnaB 6 relies on its
 ycling betw een the tw o conformational states, dilated and con-
tricted, that vary in properties. For instance, in the dilated con-
ormation, the rate of unwinding is lo w er than in the constricted
orm (Strycharska et al. 2013 ). Ad ditionally, priming acti vity is
timulated by DnaB 6 in the dilated form when unwinding is also
lo w er; constricted DnaB 6 does not support priming (Strycharska 
t al. 2013 , Monachino et al. 2020 ). Likewise, the Pol III τ subunit
nter acts str ongl y with the dilated DnaB 6 , significantl y incr easing
he rate of unwinding (Monachino et al. 2020 ). 

Another layer is primase binding itself. During translocation,
naG binding sites are constantly disrupted are reformed, sug- 
esting that the primase does not bind the helicase for the whole
eriod or primer synthesis (Manosas et al. 2009 , Itsathitphais-
rn et al. 2012 ), consistent with the fact that during catalysis,
oth move in opposite directions. Notably, while analysis of the
trength of the DnaB–τ interaction in solution suggests that the 
ree helicase exists predominantly in a state between constricted 

nd dilated, binding of DnaG markedly increases the strength of
his interaction, indicating that DnaG binding to the helicase in-
uces a switch to the dilated conformation, which promotes its in-
eraction with the holoenzyme (Monachino et al. 2020 ). As DnaG
s likely to be forcibly ejected from the helicase during translo-
ation (Manosas et al. 2009 , Itsathitphaisarn et al. 2012 ), and the
ate of unwinding is lo w er when there is no CLC (Strycharska et
l. 2013 ), it is possible that the pace at which DnaB 6 produces ss-
NA is dynamically adjusted depending on the presence and/or 

trength of interaction with τ . Indeed, the helicase slows down by
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0% in response to leading-str and–r eplicase pausing (Gr aham et
l. 2017 ), and conformational transactions are a plausible expla-
ation for this phenomenon. Ho w e v er, the binding of DnaG does
ot lead to helicase pausing (Monachino et al. 2020 ), and thus, the
xact mechanism of how lagging-strand synthesis is coordinated
ith priming and unwinding remains to be uncovered. 

eplicase exchange at the replication fork 

ol III HE is v ery pr ocessiv e, ca pable of synthesizing thousands of
ilobases of DNA per binding e v ent at a very high speed in vitro and
eplicating ∼2.3 Mb (i.e. half of the chromosome per replisome) of
NA in around 40 minutes in vivo . Accordingly, the textbook view
f DNA replication has been that the replicase remains steadily
ound at the replication fork for the period of DNA replication.
o w e v er, a body of e vidence gather ed fr om liv e cell ima ging sug-
ests that the DnaB 6 helicase is the only stable element of the
 eplisome, r emaining bound at the replication fork for ∼30 min-
tes (Beattie et al. 2017 , Spinks et al. 2021 ). In contrast, P ol III ∗ (i.e .
ol III HE sans the β2 clamp) at the r eplication fork fr equentl y ex-
hanges with free subassemblies from the cytosol every several
kazaki fr a gments both in vitro and in vivo (Beattie et al. 2017 ,
ewis et al. 2017 ). As Pol III goes through cycles when it binds
he helicase either str ongl y or weakl y (Monac hino et al. 2020 ), and
 eplisome pausing e v ery fe w seconds was observed in vitro (Gra-
am et al. 2017 ), it is possible that it is during that conformational
witch that Pol III ∗ exchange takes place. 

This observ ation r aises se v er al questions. First, is the leading
tr and r eplication trul y discontinuous? An answer to this pr ob-
em was provided in a study where replication intermediates from
ctiv el y dividing cells were separated at high resolution using su-
r ose gr adients (Cr onan et al. 2019 ). These intermediates wer e a p-
r oximatel y ∼80 kb long on the leading strand and ∼1.2 kb long
n the lagging strand. T hus , the leading strand is seemingly repli-
ated in a c hemicall y continuous manner, with the possible ex-
eption of encounters with different insults that lead to either
epriming below the block or replication fork collapse and sub-
equent r eassembl y, depending on whether the helicase can ac-
ommodate them. Ho w e v er, Pol III ∗ is no w kno wn to pause and
issociate from the 3 ′ terminus, which is then picked up by an-
ther re plicati ve complex, and therefore the leading-strand repli-
ation is also kinetically discontinuous (Graham et al. 2017 ). 

Another interesting question is to what extent leading- and
a gging-str and r eplication ar e coordinated. A certain le v el of co-
rdination seems necessary as replication forks need to con-
 er ge timel y, and all ga ps need to be filled as under conditions of
ast growth, these nascent DNAs are also templates for the next
dvancing forks . T his pr oblem pr edominantl y concerns la gging-
tr and r eplication, whic h r equir es m ultiple cycles of dissociation,
riming, clamp loading, and reassociation. One might expect that
he replisome would be regulated in response to these challenges,
nd yet, no specific signals have been discov er ed, and it seems
hat the lagging strand has no trouble k ee ping up with the lead-
ng str and e v en when priming fr equency is artificiall y alter ed, at
east in vitro (Graham et al. 2017 ). This led to the proposal that
he leading- and la gging-str and r eplicase subassemblies work in-
ependentl y of eac h other. In principle , one ma y hypothesize that
he leading-strand pausing and replicase exchange could be the

echanisms that ensure the temporal coordination of both DNA
trands . For example , if the la gging-str and cor e had tr ouble com-
leting Okazaki fr a gment synthesis , P ol III ∗ dissociation from the
elicase w ould allo w for the replication of the la gging-str and ga p
o be completed by this Pol III complex, while another copy of the
oloenzyme associates to the helicase and resumes replication
Fig. 5 ). Indeed, according to more recent calculations, the rate
t which Pol III ∗ exchanges correlates with the time required for
eplication of a single Okazaki fr a gment (see the section “Discus-
ion” in Monachino et al. 2020 ). It is also possible that the third
ore in the holoenzyme participates in la gging-str and r eplication,
acilitating a quick switch or even simultaneous replication of two
kazaki fr a gments (Montón Silv a et al. 2015 , Beattie et al. 2017 , Xu
nd Dixon 2018 ). Any of these could contribute to diminishing the
upposed bottleneck resulting from the lagging-strand replicase
ycling. 

It is worth noting that in vivo data regarding the ssDNA gap ra-
io between the leading- and la gging DNA str ands ar e conflicting.
n one WGS-based study, in which E. coli cells expressed the CTD of
he APOBEC3G deaminase that specifically converts dC to dU in a
sDNA substr ate, a 2-fold str and bias to w ar d the C in the lagging-
trand template was observed upon ung deletion (the gene en-
oding Ung glycosylase that repairs such lesions), suggesting that
his strand is more accessible to APOBEC3G (Bhagwat et al. 2016 ).
n another investigation, isolated gDN A w as treated with bisul-
te, which also deaminates deoxycytidine on ssDNA; here, the se-
uencing data sho w ed no bias (Pham et al. 2022 ). More studies are
eeded to determine whether the la gging-str and mac hinery has
n y tr ouble k ee ping up with the leading-str and r eplication. 

 olymerase switc hing at the r eplication f ork 

part from the exchange of identical Pol III ∗ complexes, repli-
omes may also occasionally switc h fr om Pol III-dependent to
ccessory-pol ymer ase-dependent DNA r eplication (Pols II, IV, and
). K ey e vidence for this phenomenon came from genetic assays
howing that that Pol II, IV, and V mutational signatures can be
bserved in vivo when an exonuclease-deficient mutant of Pol II
s expressed, Pol IV is ov er pr oduced, or Pol V is constitutiv el y ac-
iv ated (Malisze wska-Tkaczyk et al. 2000 , Kuban et al. 2004 , 2005 ,
anach-Orlowska et al. 2005 , Curti et al. 2009 ). Mor eov er, a sim ul-
aneous defect in pr oofr eading by Pol III and Pol II has a synergis-
ic effect on mutation rates, indicating that Pol II normally repairs
rr ors intr oduced by the r eplicase (Banac h-Orlowska et al. 2005 ).
he effect of the accessory pol ymer ases is exacerbated in strains
xpr essing m utant Pol III with an incr eased pr opensity to disso-
iate from the primer terminus (Makiela-Dzbenska et al. 2019 ).
hese data corr obor ate bioc hemical observ ations (1) that all ac-
essory DNA pol ymer ases inter act with the β2 clamp (Sutton 2010 ,
ijalkowska et al. 2012 , Yang and Gao 2018 , Fujii and Fuchs 2020 ),
2) that Pol II can utilize the CLC for DNA synthesis (Bonner et al.
992 , Kath et al. 2015 ), and (3) that Pols III and IV can be simulta-
eously bound to the clamp (Indiani et al. 2005 ). 

The unique structure of the Pol III core might facilitate the poly-
er ase exc hange . T he β2 clamp has two canonical binding sites,

ne on each subunit, typically occupied by the α and ε subunits
Fig. 2 ) (Jergic et al. 2013 ). Ho w ever, the β–ε interaction is relatively
eak, and the exonuclease can fr equentl y dissociate from the

lamp while still being bound to the α subunit via its C-terminal
art (Toste Rêgo et al. 2013 , Whatley and Kreuzer 2015 ). The partial
issociation is possible due to a flexible linker that connects the
 and C termini (Fig. 2 ). Increasing the strength of the β–ε interac-

ion, i.e . making P ol III ε less susceptible to dissociation resulted in
OS induction and a defect in TLS, suggesting problems with the
fficient repair of lesions and replication fork stalling, because the
LS pol ymer ases hav e tr ouble to effectiv el y substitute for Pol III
t the fork (Whatley and Kreuzer 2015 ). Conversely, weakening the
nter action incr eases TLS (Chang et al. 2019 ). Ther efor e, the ε sub-
nit serves as a gatek ee per that regulates the access of Pols II, IV,
nd V to the replication fork (Fig. 4 A and B) (Jonczyk et al. 1988 ,
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Figure 5. A theoretical model of replisome dynamics during leading- and la gging-str and r eplication. (A): Pol III ∗ is tightly bound to the helicase, 
allowing for fast and pr ocessiv e sim ultaneous unwinding and r eplication of both DNA str ands. (B): When DnaG primase is r eady, it disembarks fr om 

the helicase and proceeds to synthesize a primer, guided by the interaction with SSB. The loss of DnaB–DnaG interaction induces conformational 
changes in the helicase that destabilize the interaction with Pol III ∗. Pol III core subassembly on the leading strand pauses, and the helicase slows 
down. (C): A new DnaG subunit binds to DnaB 6, and a new Pol III ∗ is recruited. On the lagging strand, the CLC of the new Pol III ∗ displaces the primase, 
loads the β2 clamp, and the synthesis of the next Okazaki fr a gment begins. On the leading strand, the second core binds to the β2 clamp left behind by 
the pr e vious Pol III ∗ and r esumes r eplication. If necessary, the pr e vious P ol III ∗ ma y quic kl y finish the r eplication of the pr e vious Okazaki fr a gment. 
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Kath et al. 2014 , 2015 , Thrall et al. 2017 , Chang et al. 2019 , Tuan 

et al. 2022 ). Inter estingl y, it has been shown that the inter action 

with SSB might enrich Pol IV near the replication fork, facilitating 
quick TLS when Pol III stalls (Chang et al. 2022 , Thrall et al. 2022 ).
On the other hand, single-cell imaging revealed that Pol V foci do 
not colocalize str ongl y with the replisome upon UV irradiation,
suggesting that TLS occurs behind the replication fork (Robinson 

et al. 2015 ). Similar observ ations wer e made with Pol IV when a 
different type of DNA lesion was induced (Henrikus et al. 2018 ).
Under this scenario, r eplication pr ogr esses after repriming down- 
stream the damage . Hence , repriming with TLS behind the fork 
and Pol IV-mediated TLS at the fork seem to be two competing 
mechanisms, with the outcome likely governed by the type of le- 
sion and the strength of the β–ε interaction (Fig. 4 A) (Marians 2018 ,
Chang et al. 2019 , Sale 2022 ), and perhaps also simple stochastic 
competition. Importantly, when the SOS system is constitutively 
activated, Pol V foci colocalize with the replisome (Robinson et al.
2015 ), but it is unknown whether pol ymer ase switc hing, in this 
case, is also mediated by Pol III ε dissociation or some other mech- 
anism, especiall y giv en that Pol V activ ation r equir es m utasome 
ssembl y. An alternativ e model of pol ymer ase exc hange that in-
olves a complete dissociation of the Pol III core from the β2 clamp
nd the subsequent association of an auxiliary pol ymer ase has
een proposed (Zhao et al. 2017 ). 

 he r ole of SSB in organizing r eplisome transactions 
hIP-seq anal ysis r e v eals that SSB is ubiquitous on the la gging
NA strand (Pham et al. 2023 ). Such an abundance has several
onsequences. First, as argued in the pr e vious sections, SSB needs
o be fr equentl y r earr anged and/or displaced during r eplication.
or example, it is known that SSB-Ct interacts with the χ sub-
nit of the CLC, which is important for its remodeling and for
timulation of its β2 loading activity (Newcomb et al. 2022 ) that
n turn involves a handover of the primed DNA from the DnaG
rimase, whic h also inter acts with SSB during primer synthesis

Yuzhakov et al. 1999 ). Ho w ever, additional interactions of SSB
ith P ol III α ha ve been identified (Bianco 2021 , McIsaac 2022 ), and

t is tempting to speculate that one of their roles might be to facil-
tate the displacement of SSB during Okazaki fr a gment synthesis
Sokoloski et al. 2016 ). Additionally, the formation of the RecA nu-
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leoprotein filament, necessary for SOS activation, also requires
SB displacement, which is usually facilitated by other protein
omplexes such as RecFOR. Both RecA and RecO interact with SSB
Hobbs et al. 2007 , Wu et al. 2017 ). 

SSB mediates pr otein–pr otein inter actions via its indispensable
-terminal region as well as the IDL, and besides the ones men-

ioned abo ve , its interactome encompasses at least another 15
roteins, including SSB itself (Bianco et al. 2017 , Bianco 2021 ). How
hese pr oteins ar e important for DNA r e plication and how the y
re affected by the interaction with SSB has been extensively re-
ie wed (Sher eda et al. 2008 ). Her e, instead, we will focus on our
nderstanding of SSB dynamics, which was enabled by novel re-
earc h. In r elation to that, another crucial role of SSB stems from
ts chemical properties, namely, the propensity to aggregate. It has
een shown that SSB tends to form condensates in vitro via a pro-
ess called liquid–liquid phase separation (LLPS) that is driven by
ts IDL and SSB-Ct that form multiple weak contacts with neigh-
oring SSB tetramers (Harami et al. 2020 ). These condensates can
tore a significant amount of proteins, concentrating them at the
ites of DNA replication. 

A r ecentl y de v eloped super-r esolution ima ging system opti-
ized for use with prokaryotic cells offers a glimpse into SSB dy-

amics in a living E. coli (Zhao et al. 2019 ). Under unperturbed
onditions, SSB forms multiple foci within the cell with particu-
ar enrichment at the inner cell membrane, where it binds phos-
holipids. Ho w e v er, the situation changes upon DNA damage as
nder these conditions, SSB tends to form distinct spots along the
enome, distall y fr om the membr ane (Zhao et al. 2019 ). Formation
f the aforementioned liquid condensates in these spots is a likely
xplanation for this observation (see the section “Discussion” in
arami et al. 2020 ). Accordingly, it stands to reason that SSB would
e attracted, for example, to the stalled replication forks by the ex-
osed ssDNA, where these re plisome-pro ximal SSB condensates
ould deliver different proteins to the sites of DNA damage, fa-

ilitating quick damage repair and/or tolerance. Indeed, in recent
iv e-cell ima ging studies, under conditions of r eplication str ess,
NA Pol IV, RecG, and PriA w ere sho wn to be enriched near the

eplication fork, and at least in the case of Pol IV, it is dependent
n the interaction with SSB (Chang et al. 2022 , Thrall et al. 2022 ).
ence, it can be said that SSB plays a role in the regulation of the
NA dama ge r esponse, not onl y by contr olling access of RecA to
N A, but also b y mobilizing DN A r epair and dama ge toler ance

actors that facilitate , e .g. HR, r eplication r estart after fork col-
a pse, dir ect dama ge r epair, TLS (Sher eda et al. 2008 ), and possibl y
ypass of leading-strand–template DNA gaps (Stanage et al. 2017 ).
hese factors might be deliv er ed not onl y to the sites of ongoing
eplication but also others, as the damage may occur r andoml y
cross the genome. 

Although LLPS is inhibited by ssDNA, some SSB condensates
ight also form at the replication fork under physiological con-

itions (Harami et al. 2020 ). T hus , normally, SSB probably still
lays a role in enriching certain factors near the fork, for exam-
le, RNase HI (Fig. 1 A) (Petzold et al. 2015 , Wolak et al. 2020 ). It is
lso worth mentioning that SSB sequestration at the cell mem-
r ane is r eminiscent of the mec hanism of Um uC activ ation delay
uring SOS induction (Robinson et al. 2015 ). T hus , one can specu-

ate that SSB might also play a role in preventing access of certain
NA r epair/dama ge toler ance pr oteins under normal conditions
y k ee ping them a wa y fr om the fork. If this wer e true, it might be

nteresting in the future to understand how the compartmenta-
ion of specific proteins is ac hie v ed, as for example, in untreated
ells, there is a strong enrichment of RNase HI at the fork (Wolak
t al. 2020 ), but m uc h less so in case of P ol IV (T hrall et al. 2017 ).
T he ca v eat her e is that RNase HI colocalization with the β2 clamp,
ut Pol IV with SSB, was assayed in the r espectiv e studies). 

actors influencing the fidelity of DNA 

eplication 

lthough the three major factors influencing the base fidelity of
NA r eplication hav e been known since the 1990s, the de v elop-
ent of novel methods such as Cryo-EM and live cell imaging,

s well as the popularization of deep sequencing techniques, en-
bled a better insight into their behavior in living cells as well as
he structural intricacies involved. Subsequently, some models of
ow they are triggered, how they act, and what their specificity is
ad to be r e vised. Ne w players in the ov er all DNA r eplication fi-
elity were also identified, with the most prominent example be-

ng the abundance of ribonucleotides in DNA. 

ase fidelity 

ucleotide selection 

he spatial considerations involved in the selection of nucleotides
ith the correct base are well-understood; they are common

or all DNA pol ymer ases and hav e been well-described (Kunkel
nd Bebenek 2000 , Ludmann and Marx 2016 ). In brief, DNA poly-
erases select nucleotides according to the rules of Watson–Crick

airing, whic h ar e enfor ced b y the sha pe of the activ e site. Cor-
ect pairing ensures that the size of the pair, dictated by the size
f the bases and the length of hydrogen bonds, falls within the
patial constraints of the active site. Other important factors are
inor gr oov e scanning, i.e. hydr ogen bond formation between the

itrogenous bases and the active site residues, as well as base
tacking (Ludmann and Marx 2016 ). Ho w ever, genetic studies re-
eal that Pol III mutations leading to a mutator phenotype are
ometimes located in amino acids that do not make direct con-
act with DNA or the incoming nucleotide. For example, muta-
ions in Pol III Serine 759 are thought to cause impaired closing of
he fingers domain over the palm domain during catalysis, which

ight contribute to incr eased m uta genesis observ ed in vivo for ex-
mple due to improper geometry of the active site in the closed
onformation (P ar asur am et al. 2018 , Vaisman et al. 2021 ). Apart
rom that, the propensity of DNA polymerases to mispair deoxyri-
onucleotides also depends on the sequence context and their
apability to extend the mismatch. For example, in strains defi-
ient in both pr oofr eading and MMR, tr ansitions ar e m uc h mor e
requent than transversions, and they are more likely to occur
t the 5 ′ N A/G C3 ′ + 5 ′ G T/C N3 ′ sites (Lee et al. 2012 , Niccum et al.
018 ). Additionally, template or primer misalignment are common
ources of insertions and deletions (Kunkel and Bebenek 2000 ,
iccum et al. 2018 ). 

ntrinsic pr oofr eading 

he textbook view of the transition from DNA synthesis to proof-
 eading upon mismatc h cr eation is that the mispaired nucleotide
nduces structur al c hanges that lead to the primer terminus be-
ng passed from the polymerase to the exonuclease . T hese were
hought to be mediated by the movement of Pol III ε due to the
resence of the flexible linker. Ho w e v er, m ultiple lines of evidence
upport the hypothesis that, at least in the case of Pol III, the ex-
n ucleolytic acti vity is regulated thermodynamically. First, using
he single-molecule optical tweezers a ppr oac h, it has been shown
hat the pol ymer ase and the exonuclease activities are indepen-
ent. The pol ymer ase pr efer entiall y binds the primer–template

unction, whereas the exonuclease preferentially binds ssDNA



Łazowski et al. | 15 

 

 

 

 

t
a  

n  

C
d  

P  

s  

l  

D  

l  

r  

g  

t  

s

M
T  

M  

M  

a  

o
i  

f
r
e
M  

A  

d  

t  

i  

d  

s  

r  

M  

p  

d  

M  

r  

t
 

w  

m  

e  

l  

f  

m  

e
s  

e  

a  

T  

s  

t  

m

i  

s  

I  

w  

t  

C
f
i  

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

sre/article/48/4/fuae018/7710107 by C
om

m
issioning staff in C

ornw
all user on 18 July 2024
and can similarly cleave mismatched primers as well as free ss- 
DNA. While the rate of initiation by the pol ymer ase does not de- 
pend on force, the rate of initiation by the exonuclease is force- 
dependent (Naufer et al. 2017 ). These results indicated that it is 
the instability of the mismatched primer rather than duplex dis- 
tortion that initiates pr oofr eading because the pol ymer ase pr efer- 
ably binds a stable primer. Second, although the distance between 

the pol ymer ase and the exon uclease acti v e site is gr eater than 

7 nm (Ozawa et al. 2013 ), a Cryo-EM structure of the Pol III core in 

pr oofr eading mode r e v ealed that when Pol III switches to proof- 
r eading, the cor e under goes v ery little structur al c hanges, with a 
small movement of the thumb domain away from DNA, a shift of 
the exonuclease to w ar d DN A, and DN A itself anc hor ed to the in- 
ternal surface of the β2 (Fernandez-Leiro et al. 2017 ). Using FRET, it 
has been shown that the time r equir ed to switc h fr om pol ymeriza- 
tion to exonucleolysis does not depend on the strength of the β–ε 

interaction, suggesting that it is not broken during switch (Park et 
al. 2018 ). Taken together, these data corr obor ate the model that 
the primer instability drives proofreading, and molecular dynam- 
ics simulations supported by in vitro biochemistry offer a glimpse 
into how its journey to the exonuclease is guided by the fine mo- 
tions of the Pol III core (Dodd et al. 2020 ). Interestingly, the mis- 
matches leading to transversion mutations are repaired by proof- 
r eading mor e efficientl y than those r esulting in tr ansitions (for 
r e vie w, see B ębenek and Ziuzia-Graczyk 2018 ). 

P olymerase exc hange and extrinsic pr oofr eading: differ ential 
fidelity of the leading and lagging DNA strands 
DNA pol ymer ase exc hange at the r eplication fork might hav e a 
profound impact on the fidelity of DNA replication. It is known 

that in wild-type E. coli , the lagging DNA strand is replicated with 

a higher fidelity than the leading strand (Fijalkowska et al. 1998 ,
Lee et al. 2012 ). T he differences ha ve been ascribed to the frequent 
dissociation of the r eplicase fr om the terminal mismatch during 
DNA synthesis (Fig. 4 B). As the lagging DNA strand is replicated 

discontinuousl y, the dissociation e v ents ar e assumed to be mor e 
frequent on this strand. Upon dissociation, reassociation of an 

exonuclease-pr oficient DNA pol ymer ase via its exonuclease ac- 
tivity (i.e. a pr oofr eader suc h as Pol III ε or Pol II exo) would likely 
r esult in r emoving the mismatc h (Banac h-Orlowska et al. 2005 ),
contributing to the high fidelity of la gging-str and synthesis. Con- 
v ersel y, the binding of a low-fidelity, pr oofr eading-deficient DNA 

pol ymer ase suc h as P ol IV or P ol V would result in the extension 

of the mismatch (Fig. 4 B), leading to strand-bias reversion and the 
la gging str and being mor e m uta genic (Malisze wska-Tkaczyk et al.
2000 , Kuban et al. 2004 , 2005 ). The latter phenomenon has been 

called “spontaneous mutator activity” or “untargeted SOS muta- 
genesis” to distinguish it from the DNA damage-induced mutator 
activity, which is not strand-biased as it is dependent on the pres- 
ence of DNA dama ge, whic h can occur on both template strands 
(Gawel et al. 2002 ). 

The model has been confirmed in further experiments utiliz- 
ing the Pol III α “antimutator” alleles (such as dnaE915 ) with an 

incr eased r ate of dissociation from DN A (Maslo wska et al. 2018 ,
Makiela-Dzbenska et al. 2019 ). One might expect that an increased 

c hance of r eplicase dissociation should hav e little effect on the 
la gging-str and r eplication fidelity as this strand is normall y r epli- 
cated in a discontinuous manner. Ho w e v er, it could influence the 
m utation r ates on the leading strand because pol ymer ase ex- 
change now becomes an important replication fidelity factor on 

this strand as well. T hus , in strains expressing the “antimutator”
alleles, due to the more frequent dissociation of Pol III from the 
mispair, an antimutator effect has been observed compared to 
he wild-type strain because the proofreading-proficient Pol III ε 
nd Pol II can now more efficiently remove terminal mismatches
ot only from the lagging but also from the leading DNA strand.
onsistent with the increased access of low-fidelity proofreading- 
eficient DNA pol ymer ases to DNA r eplication, ov er pr oduction of
ol IV or constitutive activation of Pol V in dnaE915 strains re-
ulted in a mutator phenotype, which was then observed for both
eading and la gging DNA str ands (Maslowska et al. 2018 , Makiela-
zbenska et al. 2019 ). These findings wer e r eca pitulated by other

abor atories: pr efer ential access of Pol IV to the la gging-str and
eplication has been observed in vitro (Yuan et al. 2016 ), and whole-
enome sequencing a ppr oac hes hav e shown that Pol V pr efer en-
iall y r eplicates the la gging str and in constitutiv el y SOS-induced
trains (Niccum et al. 2018 , Faraz et al. 2021 ). 

MR system 

he last line of defense against mismatched nucleotides is the
MR system. The crude model of E. coli MMR comprising MutS,
utL, MutH, UvrD, SSB, an exonuclease, a DNA pol ymer ase, and
 ligase is well-established, but has been expanded and r e vised
wing to more recent single-molecule and Cryo-EM studies. MMR 

s initiated by MutS 2 , which forms a circular dimer responsible
or scanning the DNA for mismatch-induced conformation dis- 
uptions (or indel-producing looped-out nucleotides). The pres- 
nce of a mismatch induces conformational changes that make 
utS 2 competent for binding MutL (Fernandez-Leiro et al. 2017 ).
TP binding allows it to act as a clamp loader and recruit the
imeric MutL 2 clamp (Yang et al. 2022 ). Both can move bidirec-
ionally on the DNA (Hasan and Leac h 2015 ). The curr ent model
s that the MutS 2 clamp does not stay at the mismatch site but
iffuses , and thus , multiple MutS 2 dimers can be engaged by a
ingle mismatch (Hao et al. 2020 ). Ad ditionally, li ve-cell imaging
 e v ealed that MutL 2 is more abundant at the mismatch site than
utS 2 , suggesting that multiple MutL 2 dimers are loaded per re-

air e v ent (Elez et al. 2012 ). This finding is in line with r ecent e vi-
ence showing that MutS 2 –MutL 2 interaction is dynamic and that
utS 2 is not r equir ed for MutH activity, suggesting that its primary

ole is to load MutL 2 and arguing against the general consensus
hat MutS 2 and MutL 2 form a stable complex (Yang et al. 2022 ). 

MutL 2 does, ho w e v er, r ecruit and form a searching complex
ith the MutH restriction endonuclease , which clea ves the un-
ethylated strand at the 5 ′ side of the recognized GATC sites (Liu

t al. 2016 ). Near the cleav a ge site, MutL 2 ca ptur es the UvrD he-
icase that unwinds DNA 3 ′ → 5 ′ , and thus exposes the template
or resynthesis . T he general consensus was that the ssDNA fr a g-

ent displaced by the helicase is cleaved by one of the cellular
xonucleases, but the recent single-molecule biochemical study 
uggests that this is not necessarily the case (Liu et al. 2019 ). The
xposed ga pped fr a gment of the c hr omosome is cov er ed by SSB,
nd then DNA Pol III is engaged to resynthesize the DNA patch.
he size of the patch is governed by the distance between GATC
ites and can be as big as 1 kb. An additional role of MutL 2 is pro-
ecting the 3 ′ end of the resected daughter strand from the pre-

ature activity of Pol III (Borsellini et al. 2022 ). 
Despite these advances, the model of methyl-directed MMR 

s far from complete, and important questions remain to be an-
wered. First, it is not entirely clear how MMR is recruited to DNA.
t is known that both MutL 2 and MutS 2 interact with the β2 clamp,
ith MutS containing two clamp-binding sites in its N- and C-

erminal domains (López De Saro et al. 2006 ). Disruption of the
-terminal motif, which confers strong interaction, does not af- 

ect repair, but mutations in the weaker N-terminal-binding site 
mpair MMR activity. Based upon these observations, it has been
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nitiall y pr oposed that when Pol III dissociates from the clamp,
utS 2 binds and scans for mismatches directly behind the fork

López De Saro et al. 2006 ). Ho w ever, as β2 clamps are more abun-
ant on the la gging str and, this model would imply that MMR
ight be more efficient on one strand than on the other, for what

here is no supporting genetic evidence (Niccum et al. 2018 ). Ad-
itionall y, further bioc hemical studies suggested that mutations

n the N-terminal motif result in less stable pr otein, whic h is
he likely cause of the hypermutator phenotype (Pluciennik et
l. 2009 ). For the same reason, an alternative model suggesting
hat replisome-bound clamps serve as launching pads for MutS 2 
lso seems unlikely (Hasan and Leach 2015 ). One explanation is
hat there are no specific recruiters but given that MMR activity
inges on MutH cleaving a mismatc h-pr oximal GATC site before

t is methylated by Dam, and Dam action is normally delayed by
eqA, one might entertain the idea that Dam and/or SeqA could
ontribute to MMR deposition. Indeed, there are some data from
acterial 2-hybrid system suggesting that Dam and MMR proteins

nteract in vivo (Tsai 2019 ). Another important problem is how the
irectionality of DNA unwinding is ac hie v ed, assuming that UvrD
an only translocate 3 ′ → 5 ′ , but MutH moves bidirectionally after
eing loaded by MutS 2 . It stands to reason that there must be a
ignal that precludes UvrD translocation when it is bound 5 ′ to
he mismatch, as in this case, DN A w ould be unpr oductiv el y un-
 ound aw ay from the mismatch. At last, it is unknown how the

ubstrate is handed over to the DNA polymerase for resynthesis.
s the gap might be quite big, it is gener all y thought that the poly-
erase is assisted by the processivity clamp. T hus , β2 could be a

ikely suspect as it interacts with both Pol III and MutS and MutL.
o w e v er, as ar gued befor e, MutS 2 inter action with β2 is not impor-

ant for this activity, and disrupting the MutL 2 –β2 interaction re-
ults in only a mild mutator phenotype, suggesting that β2 clamp
s not important for substrate handover (Pillon et al. 2015 ). 

In contrast to proofreading, E. coli MMR mainly repairs transi-
ions rather than transversions. Correct base pairing, proofread-
ng, and MMR ensure the high fidelity of DNA replication at one

utation per ∼10 10 paired bases or per ∼2 × 10 3 replication cy-
les (Sc haa per 1993 , Lee et al. 2012 ). It is worth mentioning that
MR’s capacity to repair replication errors is limited, and when

ol III’s pr oofr eading activity is se v er el y impair ed, MMR might eas-
ly become overwhelmed (Fijalkowska and Schaaper 1996 , Niccum
t al. 2018 ). 

NA damage 
NA damage is an important source of genetic instability. The
our ces of DN A damage can be grouped into endogenous (such
s o xidati v e str ess) and exogenous (e.g. UV irr adiation, exposur e
o alkylating agents or antibiotics). Genetic studies utilizing mu-
ation accumulation (MA) assays in strains lacking major DNA re-
air or damage tolerance pathways reveal that when cells are not
xposed to exogenous str ess, the onl y major source of mutations
s o xidati v e str ess, leading to the formation of 8-oxo-G (Foster et
l. 2015 , Bhawsinghka et al. 2023 ), with a minor effect of sponta-
eous cytosine deamination (Bhagwat et al. 2016 ). 

Exogeneous damage is frequently mutagenic as it might lead to
ctivation of the TLS polymerases (Robinson et al. 2015 , Henrikus
t al. 2018 ). TLS is not a r epair mec hanism but r ather a toler ance
echanism, as the lesion is not removed but bypassed at the cost

f fidelity. T hus , instead, cells usuall y attempt to suppr ess TLS by
ngaging other pathways that are normally error-free (e.g. NER or
R) (Naiman et al. 2016 ). In contrast to the spontaneous mutator
henotype, dama ge-induced m uta genesis is not str and-biased, as

esions might occur on both DNA strands (Gawel et al. 2002 ). Re-
entl y, a mec hanism of how cells tr ansientl y ele v ate their m uta-
ion rates to facilitate the emergence of antibiotic resistance in
. coli has been described (Gutierrez et al. 2013 , Pribis et al. 2019 ,
hai et al. 2023 ). Exposure to a subinhibitory concentration of
ipr ofloxacin, a DSB-inducing a gent, launc hes a cascade of signal-
ng that leads to the consecuti ve acti vation of the RecA-dependent
OS response, the ppGpp-dependent stringent response, and the
poS-dependent gener al str ess r esponse. Inter estingl y, this elab-
rate network of signaling is induced only in a subset ( ∼20%) of
ells that show ele v ated le v els of r eactiv e oxygen species (ROS)
fter SOS induction, and this subpopulation of cells exhibits a hy-
ermutator phenotype (400 times over the remaining cells) (Pribis
t al. 2019 , Zhai et al. 2023 ). T hus , while other cells remain sta-
le, these “gambler” cells undertake the risk of the stress phe-
otype to help de v elop antibiotic r esistance . T he role of ROS in
his process is in line with the previously described mutator effect
f inactivation of oxidative damage repair (Foster et al. 2015 ) and
as been lately receiving more appreciation (Qi et al. 2023 ). Impor-
antly, as other work shows that ppGpp binding to the RNAP might
r omote its bac ktr ac king (Kamartha pu et al. 2016 ), the pr oposed
odel suggests that m uta genic r epair might be concentrated at

he sites of heavy tr anscription, possibl y driving the evolution
f str ongl y expr essed genes (see the section “Discussion” in Zhai
t al. 2023 ). 

he randomness and the nonrandomness of genomic
utations 
 he abo v e-described model of how cells risk a m utator phenotype

o adapt to harsh environmental conditions raises the question of
hether the m uta genesis observ ed in living cells is trul y r andom.
her e ar e man y facets to this pr oblem, and m uc h insight was pr o-
ided from MA assays together with WGS analyses, as those stud-
es look at mutations in living cells at a genome-wide scale. From
he analysis of the rates of mutations in coding versus noncoding
 egions, synon ymous v ersus nonsynon ymous m utations, codon
sa ge, the r ate of terminating mutations, and the rate of deleteri-
us mutations, it has been concluded there is little selective pres-
ur e a part fr om slight bias to w ar d noncoding regions in the DN A
f wild-type E. coli (Lee et al. 2012 ). Ho w e v er, the data gather ed
rom MMR- or exo-strains hinted at the possibility of there being
 selectiv e pr essur e to acquir e m utator phenotype suppr essors
Niccum et al. 2018 ). Whether this might be evidence for nonran-
omness of mutations depends on the definition of randomness in
his context, as one might not necessarily expect that mutations
n MMR- or exo-strains would be concentrated at the genomic re-
ions containing genes where such suppressors are more likely to
ccur. This is hard to investigate, but mutations were 20% more
ikely to occur in coding genes in MMR- or exo-strains (Niccum
t al. 2018 ). 

It is worth mentioning that MA assays r e v eal significant differ-
nces in mutation rates across different sequence contexts, which
ight r eflect differ ential pr opensities of particular DNA pol y-
erases to create and extend mismatches and/or indels, which
ere documented in the past in various in vitro studies, but also
ossibl y pr efer ences of the r epair mec hanisms as well (Lee et al.
012 , Niccum et al. 2018 , 2020 ). There is also a growing body of ev-
dence that in certain bacteria, r eplication–tr anscription conflicts

ight be a significant source of genome instability (Lang and Mer-
ikh 2018 ). The studies performed in E. coli ar gue a gainst this, as
here was little correlation between mutation rates and the level
f transcription, gene orientation with respect to replication, or
he transcribed and the nontranscribed strand (Lee et al. 2012 ,
oster et al. 2021 ). T hus , it seems that unlike in many pathogenic
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bacteria, TC repair is not a major source of genome instability in 

E. coli (Foster et al. 2021 ). 
T here is , ho w ever, an interesting observation that in E. coli and 

some other pr okaryotes, m utation r ates acr oss the c hr omosome 
form a wave-like pattern symmetrical around the origin of repli- 
cation (Niccum et al. 2019 ). One important cause of this pattern is 
fluctuations of the dNTP pools during DNA synthesis, as changes 
in dNTP concentrations are known to affect the rate of synthe- 
sis and, thus, the chance for error correction. Indeed, there is a 
body of evidence showing that perturbances in dNTP pools have a 
significant impact on replication fidelity (Ahluwalia and Sc haa per 
2013 , Sc haa per and Mathe ws 2013 , Gawel et al. 2014 , Maslowska 
et al. 2015 , Tse et al. 2016 ). Mutation rate distribution was also 
changed upon loss of nucleoid-binding proteins HU and Fis, indi- 
cating that the fidelity is compromised when the c hr omosome is 
highl y structur ed. Another source of genome instability seems to 
be replication fork pausing or stalling, as Rep deficiency disrupted 

the pattern (Niccum et al. 2019 ). 

Sugar fidelity 

Ribonucleotide incorporation into DNA by the replicase 
Apart from correctly pairing the nitrogenous bases, during DNA 

synthesis, DNA pol ymer ases face the equally important task of 
selecting nucleotides with the right sugar (Joyce 1997 , Brown and 

Suo 2011 ), complicated by the fact that the cellular concentrations 
of the ribonucleotides can exceed those of the corresponding de- 
o xyribon ucleotides over a 100-fold (Bennett et al. 2009 , Ferr ar o et 
al. 2009 , Nic k McElhinn y et al. 2010 , Cerritelli and Cr ouc h 2016 ).
It was only in the 2010s that the extent of ribonucleotide incor- 
poration during DN A replication w as fully appreciated. It is now 

known that ribonucleotides are the most common noncanonical 
nucleotides in DNA and are three orders of magnitude more fre- 
quent than mismatches (Nick McElhinny et al. 2010 , Yao et al.
2013 , Vaisman and Woodgate 2015 ). In E. coli, an ywher e between 

200 and 600 ribonucleotides are incorporated during a single repli- 
cation cycle (Cronan et al. 2019 , Zatopek et al. 2019 ). 

In most DNA pol ymer ases, sugar selection relies on a single 
amino acid residue termed the “steric gate”. The steric gate is a 
bulky amino acid whose side chain localizes in the vicinity of the 
2 ′ carbon of the nucleotide’s sugar moiety, creating a steric hin- 
dr ance whene v er a ribon ucleotide positions itself at the acti ve 
site (Joyce 1997 , Brown and Suo 2011 ). For example, in E. coli Pol 
III, the steric gate is His760 (Fig. 3 C) (P ar asur am et al. 2018 ). Other 
bulky amino acids such as tyrosine , phenylalanine , and glutamic 
acid are frequently used as steric gates (Joyce 1997 , Brown and 

Suo 2011 ). Mutating the steric gate of a r eplicase usuall y r esults 
in a catal yticall y dead v ariant, wher eas the steric gate mutants 
of other pol ymer ases, suc h as the TLS pol ymer ases, exhibit sig- 
nificantl y incr eased ribonucleotide incor por ation r ates due to the 
very low sugar selectivity. Some DNA pol ymer ases, but seemingl y 
not in E. coli , r el y on a “steric fence” formed by the protein back- 
bone for ribose discrimination (Brown et al. 2010 , Cavanaugh et 
al. 2010 , 2011 ). Additionally, it has been shown that a part fr om the 
steric gate, E. coli Pol IV also has a polar filter residue that draws 
the 2 ′ -OH of the ribonucleotide close to the protein surface, cre- 
ating a clash (Johnson et al. 2019 ). Ribonucleotide incor por ation 

r ates v ary significantl y among DNA pol ymer ases, with the r epli- 
cases usually exhibiting higher sugar discrimination. E. coli Pol III 
incor por ates r oughl y one rNMP per 2300 nucleotides in vitro (Yao 
et al. 2013 , Sc hr oeder et al. 2015 ). DNA Pol IV has a rather high 

sugar selectivity, comparable to that of Pol III, while Pol V shows 
poor sugar discrimination (Vaisman et al. 2012 ). 
Another significant source of ribonucleotides in DNA, although 

r ansientl y, is primer synthesis by primases. Primers constitute
 oughl y ∼1% of the lagging strand and, in E. coli , ar e r emov ed via
 Pol I- and RNase HI-dependent pathway(s) described earlier. 

Notabl y, RNA tr anscripts may occasionall y inv ade DNA behind
he RNAP, and if not r emov ed, they can prime the DNA synthe-
is (Pomerantz and O’Donnell 2008 ). This is especially true in
acteria where replication and transcription are not temporally 
epar ated, and r eplisomes ar e likel y to encounter transcription
ac hinery. As alr eady mentioned, in some bacteria, such as Bacil-

us subtilis or Salmonella typhimurium , but not in E. coli , replication–
r anscription conflicts ar e r esponsible for the hyperm utator phe-
otype and contribute to the de v elopment of antibiotic resistance

Lang and Merrikh 2018 ). Ho w e v er, sometimes, after tr anscription,
he RNA transcripts do not disengage from DNA, forming so-called
-loops. R-loops are naturally used for the initiation of replica-
ion of ColE1-type plasmids (Naito and Uchida 1986 , Subia and
ogoma 1986 ), but ov er all, their pr esence in genomic DNA has
eleterious consequences. In bacteria, they can initiate replica- 
ion from noncanonical origin sites, leading to constitutive sta- 
le DNA replication (cSDR) (Asai and Kogoma 1994 , Kogoma 1997 ).
SDR is initiated at the heavil y tr anscribed r egions of DNA suc h
s rrn (encoding rRNAs) and significantl y c hanges the r eplication
rofile in E. coli (Maduike et al. 2014 , Dimude et al. 2015 ). cSDR

s oriC -independent and strong enough to maintain DNA synthe-
is in the absence of DnaA. Uncontrolled replication in both di-
ections would lead to frequent fork collapse, potentially creating 
 ultiple single-str anded r egions pr one to DSBs. Another source

f DSBs is the creation of R-tracts when R-loops are incorporated
nto DNA as primers (K ouzmino v a et al. 2017 ). Additionall y, R-
oops may cause replication fork stalling and, if not displaced, re-
uir e r eplication r estart abov e dama ge in bacteria (K ouzmino va
nd Kuzminov 2021 ). Many proteins are involved in R-loop repair,
ost notably RNase HI. The repair and significance of R-loops in

acteria and eukaryotes were extensively reviewed in Brickner et 
l. ( 2022 ) and McLean et al. ( 2022 ). 

Nase HI 
ybrid ribonucleases (RNases H) are nonsequence-specific en- 
oribonucleases that recognize and cleave RNA parts in the 
N A:DN A hybrids (Cerritelli and Cr ouc h 2009 , Tadok or o et al.
009 , Hyjek et al. 2019 ). They belong to the RNase H-like su-
erfamily that also comprises HIV-1 reverse transcriptase, trans- 
osases, HJ r esolv ases, and other nucleases (Majorek et al. 2014 ).
Nase HI encoded by the rnhA gene is responsible for cleaving
NA strands in the RNA:DNA hybrids (or hybrids of a DNA strand
nd a chimeric strand that contains DN A and RN A fr a gments). It
s a single-subunit protein with a catalytic domain that pr efer en-
ially binds the RN A:DN A hybrids, and this pr efer ence is ac hie v ed
hanks to (a) the interactions of four 2 ′ -OH groups of the RNA
trand with the protein chain and (b) a forced conformational 
hange of the DNA strand sugar puckers to a B form, unfavor-
ble for RNA (Hyjek et al. 2019 ). Because of this binding mode,
t has been proposed that RNase HI r equir es at least four consec-
ti ve ribon ucleotides in the RNA fr a gment; howe v er, cleav a ge of a
 himeric DNA str and containing a patc h of thr ee ribonucleotides
as been reported (Haruki et al. 2002 , Reijns et al. 2012 ). There-

ore, it seems that at least two ribonucleotides are required at
he 5 ′ side and at least one at the 3 ′ side of the cleav a ge site for
ydr ol ysis to occur (5 ′ -rN-rN-/-rN-3 ′ , Fig. 6 A) (Reijns et al. 2012 ,
azowski et al. 2023 ). Unlike the eukaryotic counterparts, E. coli
Nase HI (as in most other bacteria) cleav es RNA distributiv el y.
dditionally, it has been proposed that on a substrate mimicking
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Figure 6. Ribonucleotide excision repair (RER) in E. coli . (A) Substrate specificity of RNases HI and HII. RNase HI recognizes polyribonucleotide (3 + nt) 
tr acts, or RNA str ands hybridized to DNA. T he clea v a ge site is at least two ribonucleotides from the 5 ′ end of the tract. RNase HI cleaves the RNA patch 
distributiv el y, pr oducing a wide range of products of differing lengths. Additionally, E. coli RNase HI was shown to work as a pr ocessiv e exoribonuclease 
in the presence of a 3 ′ overhang in the opposite strand, i.e. on a substrate mimicking an Okazaki primer. In contrast, RNase HII recognizes single 
ribonucleotides in a DNA strand. This enzyme is a junction endoribonuclease that pr efer entiall y cleav es at the 5 ′ side of the RN A–DN A junction. (B) 
Model of E. coli transcription-coupled RER. RNase HII rides in front of the RNAP, scanning the transcribed strand for ribonucleotides . Clea vage of the 
template strand at the 5 ′ side of the ribonucleotide probably leads to transcription termination and RNAP dissociation, upon which DNA polymerase I 
resynthesizes a fragment of DNA. The flap is removed by Pol I’s innate flap endonuclease (FEN) activity . Lastly , DNA ligase I r emov es the remaining 
nic k. (C) Str and specificity of RER in E. coli . RNase HII-de pendent RER is the primary pathway of ribon ucleotide r emov al with a particularl y important 
role on the leading strand. In contrast, on the lagging strand, it cooperates with other RER pathways that are dependent on the activities of RNase HI 
and NER. Additionally, RNase HI stim ulates the r e pair of single ribon ucleotides on the la gging str and, and the possible mec hanism involv es RNase HI 
participation in Okazaki fr a gment matur ation (mor e details in text). Notabl y, under certain conditions RER may stimulate the repair of mismatched 
deo xyribon ucleotides, contributing to the high fidelity of DNA replication. 
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n Okazaki primer (RNA patch with a 3 ′ overhang on the opposite
NA strand), E. coli RNase HI can work as a pr ocessiv e exoribonu-
lease (Fig. 6 A) (Lee et al. 2022 ). 

As already mentioned, the primary function of RNase HI is the
 emov al of R-loops. As R-loops were likely used to initiate DNA
eplication in ancient life , RNase HI pla yed a crucial role in this
rocess, and examples can be seen today. Replication of bacterial
lasmids possessing ColE1-type ori is initiated from a transcript
rocessed by RNase HI (Naito and Uchida 1986 , Subia and Kogoma
986 ). RNase HI was also reported to be r equir ed for the com-
letion of replication of E. coli DN A b y processing over-replicated
enome fr a gments near the termination site (Wendel et al. 2021 ).
sc heric hia coli RNase HI interacts with SSB and colocalizes with
he r eplisome, possibl y to r emov e R-loops in fr ont of the r epli-
ase (Petzold et al. 2015 , Wolak et al. 2020 ). RNase HI activity may
lso provide a secondary pathway for primer r emov al during the
kazaki fr a gment pr ocessing (Ogawa and Okazaki 1984 , Balakr-

shnan and Bambara 2013 , Randall et al. 2019 , McLean et al. 2022 ).

Nase HII 
Nase HII is specialized in identifying single ribonucleotides

Fig. 6 A). The specificity of the enzyme is lar gel y dictated by the
resence of an absolutely conserved tyrosine residue in the ac-
ive site . T his tyrosine , on the one hand, inter acts (along with pr o-
ein bac kbone r esidues) with the 2 ′ -OH of ribose and, on the other
and, positions itself such that the nucleotide located on the 3 ′ 

ide of the ribonucleotide in the chimeric strand cannot contain
 2 ′ -hydroxyl group due to an imminent steric clash (Hyjek et al.
019 ). Hence, RNase HII is a junction ribonuclease that cleaves
t the 5 ′ side of the RN A–DN A junction in the substrate (5 ′ -/-rN-
N-3 ′ , Fig. 6 A). Bacterial RNase HII is a monomer (encoded by the
nhB gene) and gener all y r equir es RN A–DN A junction unless its
r eferr ed metal ion Mg 2 + is swapped with Mn 

2 + , in which case
Nase HII can cleave distributi vely lik e RNase HI (Rychlik et al.
010 ). 

Bacterial RNase HII does not participate to a great extent in R-
oop repair; ho w ever, it has been shown in E. coli that loss of RNase
II exacerbates gr owth r etardation caused by the lack of RNase
I activity, suggesting some, perha ps secondary, r ole in this pro-
ess (K ouzmino v a et al. 2017 ). In an y case, the primary function of
Nase HII is the r emov al of single ribonucleotides incor por ated by
NA pol ymer ases during r eplication (Sc hr oeder et al. 2015 , Vais-
an and Woodgate 2015 ). Loss or impairment of ribonucleotide

 emov al has no phenotypical manifestation in E. coli , unlike in eu-
aryotes (Williams and Kunkel 2022 ). 
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RER 

The term “ribonucleotide excision repair” can be used in a broader 
sense to describe any pathway engaged in removing single or 
m ultiple ribonucleotides fr om DNA, as e vidence shows that mor e 
than one exists in both bacteria and eukaryotes (Vaisman and 

Woodgate 2015 , Williams and Kunkel 2022 ). In general, ribonu- 
cleotide repair requires four stages: (a) nucleic acid incision 5 ′ 

from the ribonucleotide, (b) resynthesis of DNA, (c) removal of the 
r edundant r esynthesized ribonucleotide-containing fr a gment of 
the nucleic acid, and (d) ligation of DNA. The canonical RER path- 
way depends on the activity of RNase HII and was first described 

in yeast (Sparks et al. 2012 ). According to the current model of 
RER in E. coli , an incision is follo w ed b y SD synthesis by Pol I (Vais- 
man and Woodgate 2015 ) (Fig. 6 B). T hen, P ol I’s innate flap en- 
don uclease acti vity r emov es the r emaining fla p. Alternativ el y, Pol 
I has been shown to use its 5 ′ → 3 ′ exonuclease to perform nick- 
translation synthesis in vitro as an alternative mechanism of RER 

(Vaisman and Woodgate 2015 ). Ho w e v er, E. coli str ains expr essing 
Pol I mutants deficient in different activities are proficient in RER,
suggesting that Pol III and other cellular exonucleases can replace 
Pol I during resynthesis and excision ste ps, respecti vely (Vaisman 

et al. 2014 ). 
Unlike in eukaryotic cells, RNase HII does not interact with the 

β2 clamp, and thus, it has been initially assumed that RER oc- 
curs passiv el y via diffusion and r andom binding of RNase HII to 
DNA. Unexpectedly, it has been shown that E. coli RNase HII in- 
teracts with the RNAP, making RER a transcription-coupled (TC) 
r epair mec hanism similar to NER (Hao et al. 2023 ). Based on Cryo- 
EM structures, RNase HII seems to sit in front of the RNAP, ac- 
tiv el y scanning the transcribed template DNA strand for ribonu- 
cleotides, while the pol ymer ase acts as a motor in this context 
(Fig. 6 B). Key to this mechanism is the observation that both sense 
and antisense strands are actively transcribed in E. coli (Hao et al.
2023 , Tjaden 2023 ). Manipulating the le v el of tr anscription and 

disrupting the RNAP–RNase HII interaction interface gr eatl y di- 
minishes RER, although it does not eliminate it, showing that most 
ribon ucleotide re pair in vivo occurs via TC-RER (Hao et al. 2023 ). 

Perhaps one of the most surprising discoveries in the field was 
that RER activity might influence the final replication fidelity (in 

terms of base selection) in E. coli . Strains expressing the steric 
gate mutant of the low fidelity Pol V (Pol V_Y11A) or its ortho- 
logue subcloned from an integr ativ e–conjugativ e element R391 
(Pol V R391 _Y13A) exhibit lo w er m utation r ates than the isogenic 
strains with wild-type polymerases (Vaisman et al. 2012 , Walsh 

et al. 2019 ). Inactivating RNase HII-dependent RER partially re- 
stored the Pol V-dependent mutator phenotype (McDonald et al.
2012 , Walsh et al. 2019 ). This led to the hypothesis that exces- 
si ve ribon ucleotide incorporation and the subsequent enhanced 

RER activity can lead to the r emov al of not onl y ribonucleotides 
but also adjacent mismatched deo xyribon ucleotides during RER- 
patc h r esynthesis (McDonald et al. 2012 , Vaisman et al. 2012 , 2013 ,
2014 , Walsh et al. 2019 ). Ther efor e, RER seems to be an impor- 
tant player influencing genetic stability not only by pr e v enting 
c hr omosome instability but also by contributing to low mutation 

rates. 

NER as the alternative RER pathway 

As RNase HII deletion in E. coli led to only a partial r estor ation of 
the Pol V-dependent m uta genesis in SOS-induced strains express- 
ing Pol V_Y11A, it was theorized that in its absence, backup RER 

pathways could partially compensate for the lack of RNase HII- 
ER. This led to the identification of two backup RER pathways
n E. coli dependent on the activities of RNase HI and NER pro-
eins (McDonald et al. 2012 , Vaisman et al. 2013 ). The role of RNase
I was anticipated as Pol V_Y11A can in vitro incor por ate pol yri-
onucleotide str etc hes, a known substr ate for RNase HI. How-
 v er, the involv ement of NER was mor e sur prising because the
ibonucleotide-induced helix distortion was not expected to be 
ufficient for UvrAB (DeRose et al. 2012 ). Based upon the structural
nalyses and molecular dynamics simulations, it was suggested 

hat the change in electrostatic interactions between the addi- 
ional 2 ′ hydroxyl group of the ribose ring and the surface residues
f UvrB might contribute to the rifbonucleotide being recognized 

s a lesion (Cai et al. 2014 ). Additionally, in vitro studies suggest
hat lesion recognition might be affected by the ribonucleotide be-
ng mismatched or by the presence of more ribonucleotides in the
icinity (Vaisman et al. 2013 ). In contr ast, pr oofr eading of ribonu-
leotides by the replicase, suggested by in vitro studies in yeast,
eems to make a limited contribution to ov er all RER in E. coli (Ła-
owski et al. 2023 ). This is consistent with other observations sug-
esting that pr oofr eading by Pol III ε is mostly driven by primer
nstability, which is probably not the case if the terminal ribonu-
leotide is corr ectl y pair ed (see section Intrinsic proofreading ). 

trand specificity of RER 

ecentl y, activ e site m utants of DNA pol ymer ases c har acterized
y increased ribonucleotide incorporation rates were used to- 
ether with mutational spectra analyses and WGS-based Hy- 
r ol ytic Ends sequencing method to study RER efficiency on both
N A strands (Łazo wski et al. 2023 ). Surprisingly, it has been shown

hat RNase HII activity during RER is more important during
eading-str and RER, wher eas on the la gging str and, it cooper ates
ith backup RER pathwa ys . T his division of labor between the

w o DN A str ands is conserv ed fr om normal r eplication to SOS-
nduced m uta genesis (Łazowski et al. 2023 ). One possible expla-
ation for these observations is related to RNase HII involvement

n TC-RER. Most heavily transcribed genes are co-oriented with 

eplication, meaning that RNAP is biased toward moving along the
eading-strand template (Goehring et al. 2023 ). Indeed, it seems
hat the ov er all tr anscription le v el of the leading-str and tem-
late is slightly higher than that of the lagging-strand template 

personal observations based on the analysis of RNA-seq data in
jaden ( 2023 )]. Another possibility stems from the more puzzling
iscovery that RNase HI stimulates the repair of single ribonu-
leotides on the lagging strand during normal replication despite 
he lack of such activity in vitro (Łazowski et al. 2023 ). To explain
hese findings, it has been proposed that RNase HI might be in-
ir ectl y involv ed in the r epair of primer-pr o ximal single ribon u-
leotides by virtue of its participation in Okazaki fr a gment matu-
ation. Although RNase HI is not required for the removal of RNA
rimers, ther e is e vidence that on a substr ate mimic king primed
NA duplex, it might act as a pr ocessiv e exoribonuclease (Lee et
l. 2022 ). As Pol I was shown to resynthesize primers by making an
nitial nick at the RN A–DN A junction and then replicating up to
he nick (Botto et al. 2023 ), it is possible that shortening the primer
isables this mechanism, and thus allows Pol I to resynthesize big-
er chunks of DNA, accidentally repairing some ribonucleotides in 

he process (see the section “Discussion” in Łazowski et al. 2023 ).
hat would make Okazaki fr a gment matur ation-associated RER
he first, although not the major, mechanism of ribonucleotide 
 epair stim ulated by the action of RNase HI, specificall y on the
a gging str and. 



20 | FEMS Microbiology Reviews , 2024, Vol. 48, No. 4 

C
F  

g  

h  

o  

t  

u  

c  

s  

p  

G  

t  

b  

i  

o  

t  

c  

T  

m  

a  

c  

n  

r  

t  

a  

f  

s  

n  

c  

e
 

o  

i  

h  

e  

a  

l  

t  

i  

t  

u  

s  

r
 

d  

a  

t  

s  

s  

a  

t  

o  

t  

b  

t  

e  

p  

p  

a  

o

A
W  

n

C

F
T  

(  

I

R
A  

 

A  

 

A  

 

A  

 

A  

 

A  

 

 

A  

A  

 

B  

B  

 

B  

 

B  

B  

 

B  

 

B  

B  

B  

 

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

sre/article/48/4/fuae018/7710107 by C
om

m
issioning staff in C

ornw
all user on 18 July 2024
oncluding remarks 

or many years, E. coli has proven to be an excellent model or-
anism for studying bacterial physiology, and the results obtained
ave often become a starting point for the investigations of anal-
gous processes in other bacterial families or eukaryotes. In par-
icular, the mechanisms determining the fidelity of replication, so
niversal for all organisms , ha ve been extensively studied using E.
oli as a r epr esentativ e example . T his is possible due to the r elativ e
implicity of the E. coli re plicati ve apparatus, emphasized by the
resence of the single re plicati ve polymerase. For instance, unlike
r am-positiv e bacteria or eukaryotic cells, where differences in

he fidelity of the leading- and la gging-str and r eplication might
e related to the presence of multiple replicases, with E. coli , one

s able to dismiss this problem and focus on the determinants
f replication fidelity (in terms of both base and sugar selection)
hat stem from the basic principles of DNA r eplication, suc h as
ontinuous versus interrupted synthesis of the two DNA strands.
his simplicity that we describe is also portrayed in the emerging
odel of the stochastic nature of the E. coli replisome , where , o ver-

ll, v ery little contr ol is imposed ov er its elements . T hese elements
an fr equentl y and fr eel y exc hange in the cytosol; mor eov er, the
 umber of re plicati ve cores or even the active polymerase at the
eplication fork may change, and some data indicate that replica-
ion of the tw o DN A strands might not be coordinated, in principle
llowing for engagement of two separ ate r e plicati ve complexes
or DN A replication. P erhaps the most striking example is the ob-
erved loss of one daughter c hr omosome when its r eplication can-
ot be finalized due to the presence of a gap in the template, as E.
oli cells were shown to k ee p di viding regardless of the gap (Laureti
t al. 2015 ). 

At the same time, in certain ar eas, ther e is a surprising level
f complexity, for example, in the tight regulation of the activ-
ty of the most err or-pr one E. coli DNA pol ymer ase , P ol V, and in
ow differ ent pr oteins (suc h as SSB, RNAP, or the helicase) are
xploited as either sensors , motors , or mobilizers of DNA repair
nd damage tolerance factors. Indeed, in this particular prob-
em, it seems that E. coli leaves very little to chance, putting
o rest the long-standing dispute about macromolecular crowd-
ng in the cellular space . T he elaborate network of signaling
hat ultimately leads to the emergence of antibiotic resistance
pon DNA damage is a remarkable example of how our under-
tanding of these processes has practical relevance to clinical
 esearc h. 

Despite many years of work, we are still searching for new
ata that would enable a thorough understanding of the mech-
nism of DNA replication and the factors determining replica-
ion fidelity or controlling the stability of genetic material, and
ome identified players r equir e mor e in-depth anal ysis. Among
uc h issues, ther e is , for example , the question of how cells
c hie v e timel y conv er gence of the forks if there really is so lit-
le coor dination betw een leading- and la gging-str and synthesis,
r if, and how, the number of r eplicativ e cor es at the r eplica-
ion fork is r egulated. Ther e ar e also some open questions that
r oadl y concern the factors ensuring genome stability: the in-
ricacies of MMR recruitment and action remain to be uncov-
red, as do the mechanisms ensuring timely delivery of the re-
air and tolerance factors upon DNA damage. If anything, the
r ogr ess of the last decade, not onl y r egarding r esearc h itself but
lso the availability of novel high-resolution methods, lets one be
ptimistic. 
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