[1] T.A. Guilliam, J.T.P. Yeeles, An updated perspective on the polymerase division of labor during eukaryotic DNA replication, Crit. Rev. Biochem Mol. Biol. 55 (2020) 469-481, https://doi.org/10.1080/10409238.2020.1811630. [2] L. Pellegrini, The pol α-primase complex, Subcell. Biochem. (2012) 157-169, https://doi.org/10.1007/978-94-007-4572-8_9. [3] K.J. Gerik, K.J. Gerik, A. Pautz, A. Pautz, Characterization of the two small subunits of Saccharomyces cerevisiae DNA polymerase δ, Mol. Biol. 273 (1998) 19747-19755, https://doi.org/10.1074/jbc.273.31.19747. [4] M. Simon, L. Giot, G. Faye, The 3' to 5' exonuclease activity located in the DNA polymerase δ subunit of Saccharomyces cerevisiae is required for accurate replication, EMBO J. 10 (1991) 2165-2170, https://doi.org/10.1002/j.1460- 2075.1991.tb07751.x. [5] O. Chilkova, B.-H. Jonsson, E. Johansson, The quaternary structure of DNA polymerase epsilon from Saccharomyces cerevisiae, J. Biol. Chem. 278 (2003) 14082-14086, https://doi.org/10.1074/jbc.M211818200. [6] A. Morrison, H. Araki, A.B. Clark, R.K. Hamatake, A. Sugino, A third essential DNA polymerase in S. cerevisiae, Cell 62 (1990) 1143-1151, https://doi.org/10.1016/ 0092-8674(90)90391-Q. [7] A. Morrison, J.B. Bell, T.A. Kunkel, A. Sugino, Eukaryotic DNA polymerase amino acid sequence required for 3'——5' exonuclease activity, Proc. Natl. Acad. Sci. USA 88 (1991) 9473-9477, https://doi.org/10.1073/pnas.88.21.9473. [8] M. Hogg, P. Osterman, G.O. Bylund, R.A. Ganai, E.B. Lundstr¨ om, A.E. Sauer- Eriksson, et al., Structural basis for processive DNA synthesis by yeast DNA polymerase E,´ Nat. Struct. Mol. Biol. 21 (2014) 49-55, https://doi.org/10.1038/ nsmb.2712. [9] T.H. Tahirov, K.S. Makarova, I.B. Rogozin, Y.I. Pavlov, E.V. Koonin, Evolution of DNA polymerases: an inactivated polymerase-exonuclease module in Pol ε and a chimeric origin of eukaryotic polymerases from two classes of archaeal ancestors, Biol. Direct 11 (2009) 1-11, https://doi.org/10.1186/1745-6150-4-11. [10] R. Dua, D.L. Levy, J.L. Campbell, Analysis of the essential functions of the C- terminal protein/protein interaction domain of Saccharomyces cerevisiae pol ε and its unexpected ability to support growth in the absence of the DNA polymerase domain, J. Biol. Chem. 274 (1999) 22283-22288, https://doi.org/10.1074/ jbc.274.32.22283. [11] W. Feng, G. D'Urso, Schizosaccharomyces pombe cells lacking the amino-terminal catalytic domains of DNA polymerase epsilon are viable but require the DNA damage checkpoint control, Mol. Cell Biol. 21 (2001) 4495-4504, https://doi.org/ 10.1128/MCB.21.14.4495. [12] L.D. Langston, D. Zhang, O. Yurieva, R.E. Georgescu, J. Finkelstein, N.Y. Yao, et al., CMG helicase and DNA polymerase ε form a functional 15-subunit holoenzyme for eukaryotic leading-strand DNA replication, Proc. Natl. Acad. Sci. USA 111 (2014) 15390-15395, https://doi.org/10.1073/pnas.1418334111. [13] J. Sun, Y. Shi, R.E. Georgescu, Z. Yuan, B.T. Chait, H. Li, et al., The architecture of a eukaryotic replisome, Nat. Struct. Mol. Biol. 22 (2015) 1-9, https://doi.org/ 10.1038/nsmb.3113. [14] Y. Takayama, Y. Kamimura, M. Okawa, S. Muramatsu, A. Sugino, H. Araki, GINS, a novel multiprotein complex required for chromosomal DNA replication in budding yeast, Genes Dev. 17 (2003) 1153-1165, https://doi.org/10.1101/gad.1065903. [15] P. Goswami, F. Abid Ali, M.E. Douglas, J. Locke, A. Purkiss, A. Janska, et al., Structure of DNA-CMG-Pol epsilon elucidates the roles of the non-catalytic polymerase modules in the eukaryotic replisome, Nat. Commun. 9 (2018) 5061, https://doi.org/10.1038/s41467-018-07417-1. [16] Z. Yuan, R. Georgescu, L. Bai, D. Zhang, H. Li, M.E. O'Donnell, DNA unwinding mechanism of a eukaryotic replicative CMG helicase, Nat. Commun. 11 (2020) 1-10, https://doi.org/10.1038/s41467-020-14577-6. [17] H. Araki, R.K. Hamatake, L.H. Johnston, A. Sugino, DPB2, the gene encoding DNA polymerase II subunit B, is required for chromosome replication in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA 88 (1991) 4601-4605, https://doi.org/ 10.1073/pnas.88.11.4601. [18] L. Aravind, E.V. Koonin, Phosphoesterase domains associated with DNA polymerases of diverse origins, Nucleic Acids Res 26 (1998) 3746-3752, https:// doi.org/10.1093/nar/26.16.3746. [19] E.V. Koonin, Y.I. Wolf, L. Aravind, Protein fold recognition using sequence profiles and its application in structural genomics, Adv. Protein Chem. 54 (2000) 245-275, https://doi.org/10.1016/s0065-3233(00)54008-x. [20] A.G. Baranovskiy, J. Gu, N.D. Babayeva, I. Kurinov, Y.I. Pavlov, T.H. Tahirov, Crystal structure of the human Polε B-subunit in complex with the C-terminal domain of the catalytic subunit, J. Biol. Chem. 292 (2017) 15717-15730, https:// doi.org/10.1074/jbc.M117.792705. [21] T. Nuutinen, H. Tossavainen, K. Fredriksson, P. Pirilä, P. Permi, H. Pospiech, et al., The solution structure of the amino-terminal domain of human DNA polymerase ε subunit B is homologous to C-domains of AAA+ proteins, Nucleic Acids Res. 36 (2008) 5102-5110, https://doi.org/10.1093/nar/gkn497. [22] Z. Yuan, R. Georgescu, G.D. Schauer, M.E. O'Donnell, H. Li, Structure of the polymerase ε holoenzyme and atomic model of the leading strand replisome, Nat. Commun. 11 (2020) 1-11, https://doi.org/10.1038/s41467-020-16910-5. [23] E. Grabowska, U. Wronska, M. Denkiewicz, M. Jaszczur, A. Respondek, M. Alabrudzinska, et al., Proper functioning of the GINS complex is important for the fidelity of DNA replication in yeast, Mol. Microbiol. 92 (2014) 659-680, https://doi.org/10.1111/mmi.12580. [24] S. Sengupta, F. Van Deursen, G. De Piccoli, K. Labib, Dpb2 integrates the leading strand DNA polymerase into the eukaryotic replisome, Curr. Biol. 23 (2013) 543-552, https://doi.org/10.1016/j.cub.2013.02.011. [25] M. Jaszczur, K. Flis, J. Rudzka, J. Kraszewska, M.E. Budd, P. Polaczek, et al., Dpb2p, a noncatalytic subunit of DNA polymerase ε, contributes to the fidelity of DNA replication in Saccharomyces cerevisiae, Genetics 178 (2008) 633-647, https://doi.org/10.1534/genetics.107.082818. [26] M. Jaszczur, J. Rudzka, J. Kraszewska, K. Flis, P. Polaczek, J.L. Campbell, et al., [49] M. Miyazawa-Onami, H. Araki, S. Tanaka, Pre-initiation complex assembly Defective interaction between Pol2p and Dpb2p, subunits of DNA polymerase epsilon, contributes to a mutator phenotype in Saccharomyces cerevisiae, Mutat. Res. 669 (2009) 27-35, https://doi.org/10.1016/j.mrfmmm.2009.04.012. [27] M. Dmowski, J. Rudzka, J.L. Campbell, P. Jonczyk, I.J. Fijałkowska, Mutations in the non-catalytic subunit Dpb2 of DNA polymerase epsilon affect the Nrm1 branch of the DNA replication checkpoint, PLOS Genet. 13 (2017), e1006572, https://doi. org/10.1371/journal.pgen.1006572. [28] V.P. Bermudez, A. Farina, V. Raghavan, I. Tappin, J. Hurwitz, Studies on human DNA polymerase epsilon and GINS complex and their role in DNA replication, J. Biol. Chem. 286 (2011) 28963-28977, https://doi.org/10.1074/jbc. M111.256289. [29] J.T.P. Yeeles, J. Poli, K.J. Marians, P. Pasero, Rescuing stalled or damaged replication forks, Cold Spring Harb. Perspect. Biol. 5 (2013) 1-16, https://doi.org/ [53] Y. Daigaku, A. Keszthelyi, C.A. Müller, I. Miyabe, T. Brooks, R. Retkute, et al., 10.1101/cshperspect.a012815. [30] K. Hizume, S. Endo, S. Muramatsu, T. Kobayashi, H. Araki, DNA polymerase ε-dependent modulation of the pausing property of the CMG helicase at the barrier, Genes Dev. 32 (2018) 1315-1320, https://doi.org/10.1101/gad.317073.118. [31] J.C. Zhou, A. Janska, P. Goswami, L. Renault, F. Abid Ali, A. Kotecha, et al., CMG-Pol epsilon dynamics suggests a mechanism for the establishment of leading strand synthesis in the eukaryotic replisome, Proc. Natl. Acad. Sci. 114 (2017), 201700530, https://doi.org/10.1073/pnas.1700530114. [32] H. Araki, R.K. Hamatake, A. Morrison, A.L. Johnson, L.H. Johnston, A. Sugino, Cloning DPB3, the gene encoding the third subunit of DNA polymerase II of Saccharomyces cerevisiae, Nucleic Acids Res. 19 (1991) 4867-4872, https://doi. org/10.1093/nar/19.18.4867. [33] T. Ohya, S. Maki, Y. Kawasaki, A. Sugino, Structure and function of the fourth subunit (Dpb4p) of DNA polymerase epsilon in Saccharomyces cerevisiae, Nucleic Acids Res. 28 (2000) 3846-3852 (Available), 〈http://www.pubmedcentral.nih.go v/articlerender.fcgi?artid=110797&tool=pmcentrez&rendertype=abstract〉. [34] T. Iida, H. Araki, Noncompetitive counteractions of DNA polymerase ε and ISW2/ yCHRAC for epigenetic inheritance of telomere position effect in saccharomyces cerevisiae, Mol. Cell. Biol. (2004) 217-227, https://doi.org/10.1128/ mcb.24.1.217-227.2004. [35] A.J. Tackett, D.J. Dilworth, M.J. Davey, M. O'Donnell, J.D. Aitchison, M.P. Rout, et al., Genome instability due to ribonucleotide incorporation into DNA, Nat. Chem. al., Proteomic and genomic characterization of chromatin complexes at a boundary, J. Cell Biol. 169 (2005) 35-47, https://doi.org/10.1083/ jcb.200502104. [36] M. Schmit, A.K. Bielinsky, Congenital diseases of DNA replication: clinical phenotypes and molecular mechanisms, Int J. Mol. Sci. 22 (2021) 1-38, https:// doi.org/10.3390/ijms22020911. [37] R. Bellelli, S.J. Boulton, Spotlight on the replisome: aetiology of DNA replication[61] J.T.P. Yeeles, T.D. Deegan, A. Janska, A. Early, J.F.X. Diffley, Regulated eukaryotic associated genetic diseases, Trends Genet 37 (2021) 317-336, https://doi.org/ 10.1016/j.tig.2020.09.008. [38] J. Cottineau, M.C. Kottemann, F.P. Lach, Y.H. Kang, F. V´ ely, E.K. Deenick, et al., [62] R.E. Georgescu, L. Langston, N.Y. Yao, O. Yurieva, D. Zhang, J. Finkelstein, et al., Inherited GINS1 deficiency underlies growth retardation along with neutropenia and NK cell deficiency, J. Clin. Invest 127 (2017) 1991-2006, https://doi.org/ 10.1172/JCI90727. [39] M. Garbacz, H. Araki, K. Flis, A. Bebenek, A.E. Zawada, P. Jonczyk, et al., Fidelity Reconstitution of a eukaryotic replisome reveals suppression mechanisms that consequences of the impaired interaction between DNA polymerase epsilon and the GINS complex, DNA Repair (Amst.) 29 (2015) 23-35, https://doi.org/10.1016/j. dnarep.2015.02.007. [40] J. Kraszewska, M. Garbacz, P. Jonczyk, I.J. Fijalkowska, M. Jaszczur, Defect of Dpb2p, a noncatalytic subunit of DNA polymerase ε, promotes error prone replication of undamaged chromosomal DNA in Saccharomyces cerevisiae, Mutat. Res. 737 (2012) 34-42, https://doi.org/10.1016/j.mrfmmm.2012.06.002. [41] A.A. Larrea, S.A. Lujan, S.A. Nick McElhinny, P.A. Mieczkowski, M.A. Resnick, D. A. Gordenin, et al., Genome-wide model for the normal eukaryotic DNA replication fork, Proc. Natl. Acad. Sci. USA 107 (2010) 17674-17679, https://doi.org/ 10.1073/pnas.1010178107. [42] S.A. Nick McElhinny, D.A. Gordenin, C.M. Stith, P.M.J. Burgers, T.A. Kunkel, Division of labor at the eukaryotic replication fork, Mol. Cell 30 (2008) 137-144, https://doi.org/10.1016/j.molcel.2008.02.022. [43] Z.F. Pursell, I. Isoz, E.-B. Lundström, E. Johansson, T.A. Kunkel, Yeast DNA polymerase ε participates in leading-strand DNA replication, Science 317 (2007) 127-130, https://doi.org/10.1126/science.1144067. [44] M. Dmowski, M. Jedrychowska, K. Makiela-Dzbenska, M. Denkiewicz-kruk, S. Sharma, A. Chabes, et al., Increased contribution of DNA polymerase delta to the achieves rapid and efficient DNA replication, Mol. Cell 65 (2017) 105-116, leading strand replication in yeast with an impaired CMG helicase complex, DNA Repair (Amst.) 110 (2022), 103272, https://doi.org/10.1016/j. dnarep.2022.103272. [45] S.A. Nick McElhinny, C.M. Stith, P.M.J. Burgers, T.A. Kunkel, Inefficient proofreading and biased error rates during inaccurate DNA synthesis by a mutant derivative of Saccharomyces cerevisiae DNA polymerase, J. Biol. Chem. 282 (2007) [46] M.A. Garbacz, P.B. Cox, S. Sharma, S.A. Lujan, A. Chabes, T.A. Kunkel, The absence of the catalytic domains of Saccharomyces cerevisiae DNA polymerase strongly reduces DNA replication fidelity, Nucleic Acids Res. 47 (2019) 3986-3995, https:// doi.org/10.1093/nar/gkz048. [47] S.A. Lujan, A.R. Clausen, A.B. Clark, H.K. MacAlpine, D.M. MacAlpine, E.P. Malc, et al., Heterogeneous polymerase fidelity and mismatch repair bias genome variation and composition, Genome Res. 24 (2014) 1751-1764, https://doi.org/ 10.1101/gr.178335.114. [48] R.E. Johnson, R. Klassen, L. Prakash, S. Prakash, A major role of DNA polymerase δ in replication of both the leading and lagging DNA strands, Mol. Cell 59 (2015) 163-175, https://doi.org/10.1016/j.molcel.2015.05.038. functions as a molecular switch that splits the Mcm2-7 double hexamer, EMBO Rep. 18 (2017) 1752-1761, https://doi.org/10.15252/embr.201744206. [50] M. Dmowski, K. Makiela-Dzbenska, M. Jedrychowska, M. Denkiewicz-Kruk, I. J. Fijalkowska, Mutation spectrum data for Saccharomyces cerevisiae psf1-1 pol2- M644G mutants, Data Br. 42 (2022), 108223, https://doi.org/10.1016/j. dib.2022.108223. [51] Y.I. Pavlov, C. Frahm, S.A.N. McElhinny, A. Niimi, M. Suzuki, T.A. Kunkel, Evidence that errors made by DNA polymerase α are corrected by DNA polymerase δ, Curr. Biol. 16 (2006) 202-207, https://doi.org/10.1016/j.cub.2005.12.002. [52] I. Miyabe, T. a Kunkel, A.M. Carr, The major roles of DNA polymerases epsilon and delta at the eukaryotic replication fork are evolutionarily conserved, PLoS Genet. 7 (2011) , e1002407, https://doi.org/10.1371/journal.pgen.1002407. A global profile of replicative polymerase usage, Nat. Struct. Mol. Biol. 22 (2015) 192-198, https://doi.org/10.1038/nsmb.2962. [54] S.A. Lujan, J.S. Williams, Z.F. Pursell, A.A. Abdulovic-Cui, A.B. Clark, S.A. Nick McElhinny, et al., Mismatch repair balances leading and lagging strand DNA replication fidelity, PLoS Genet. 8 (2012), https://doi.org/10.1371/journal. pgen.1003016. [55] S.A. Lujan, J.S. Williams, T.A. Kunkel, DNA polymerases divide the labor of genome replication, Trends Cell Biol. 26 (2016) 1-15, https://doi.org/10.1016/j. tcb.2016.04.012. [56] A.R. Clausen, S.A. Lujan, A.B. Burkholder, C.D. Orebaugh, J.S. Williams, M. F. Clausen, et al., Tracking replication enzymology in vivo by genome-wide mapping of ribonucleotide incorporation, Nat. Struct. Mol. Biol. 22 (2015) 185-191, https://doi.org/10.1038/nsmb.2957. [57] Z.X. Zhou, S.A. Lujan, A.B. Burkholder, M.A. Garbacz, T.A. Kunkel, Roles for DNA polymerase δ in initiating and terminating leading strand DNA replication, Nat. Commun. 10 (2019) 1-10, https://doi.org/10.1038/s41467-019-11995-z. [58] M.A.M. Reijns, H. Kemp, J. Ding, S.M. De Procé, A.P. Jackson, M.S. Taylor, Lagging-strand replication shapes the mutational landscape of the genome, Nature 518 (2015) 502-506, https://doi.org/10.1038/nature14183. [59] S.A. Nick McElhinny, D. Kumar, A.B. Clark, D.L. Watt, E. Brian, E. Lundstr¨ om, et Biol. 6 (2010) 774-781, https://doi.org/10.1038/nchembio.424. [60] O. Chilkova, P. Stenlund, I. Isoz, C.M. Stith, P. Grabowski, E.-B. Lundström, et al., The eukaryotic leading and lagging strand DNA polymerases are loaded onto primer-ends via separate mechanisms but have comparable processivity in the presence of PCNA, Nucleic Acids Res 35 (2007) 6588-6597, https://doi.org/ 10.1093/nar/gkm741. DNA replication origin firing with purified proteins, Nature 519 (2015) 431-435, https://doi.org/10.1038/nature14285. Mechanism of asymmetric polymerase assembly at the eukaryotic replication fork, Nat. Struct. Mol. Biol. 21 (2014) 664-670, https://doi.org/10.1038/nsmb.2851. [63] R.E. Georgescu, G.D. Schauer, N.Y. Yao, L.D. Langston, O. Yurieva, D. Zhang, et al., define leading/lagging strand operation, Elife 4 (2015), e04988, https://doi.org/ 10.7554/eLife.04988. [64] L. Bai, Z. Yuan, J. Sun, R. Georgescu, M.E. O'Donnell, H. Li, in: H. Masai, M. Foiani (Eds.) , Architecture of the Saccharomyces cerevisiae Replisome BT - DNA Replication: From Old Principles to New Discoveries, Springer Singapore, Singapore, 2017, pp. 207-228, https://doi.org/10.1007/978-981-10-6955-0_10. [65] Y.V. Fu, H. Yardimci, D.T. Long, T.V. Ho, A. Guainazzi, V.P. Bermudez, et al., Selective bypass of a lagging strand roadblock by the eukaryotic replicative DNA helicase, Cell 7 (2011) 931-941, https://doi.org/10.1016/j.cell.2011.07.045. [66] R. Georgescu, Z. Yuan, L. Bai, R. de Luna Almeida Santos, J. Sun, D. Zhang, et al., Structure of eukaryotic CMG helicase at a replication fork and implications to replisome architecture and origin initiation, Proc. Natl. Acad. Sci. (2017), 201620500, https://doi.org/10.1073/pnas.1620500114. [67] E. Johansson, P. Garg, P.M.J. Burgers, The Pol32 subunit of DNA polymerase δ contains separable domains for processive replication and proliferating cell nuclear antigen (PCNA) binding, J. Biol. Chem. 279 (2004) 1907-1915, https://doi.org/ 10.1074/JBC.M310362200. [68] J.T.P. Yeeles, A. Janska, A. Early, J.F.X. Diffley, How the eukaryotic replisome https://doi.org/10.1016/j.molcel.2016.11.017. [69] R.A. Donnianni, Z.X. Zhou, S.A. Lujan, A. Al-Zain, V. Garcia, E. Glancy, et al., DNA polymerase delta synthesizes both strands during break-induced replication, Mol. Cell 76 (2019) 371-381.e4, https://doi.org/10.1016/j.molcel.2019.07.033. [70] V. Aria, J.T.P. Yeeles, Mechanism of bidirectional leading-strand synthesis establishment at eukaryotic DNA replication origins, Mol. Cell 73 (2019) 199-211. [71] M.A. Garbacz, S.A. Lujan, A.B. Burkholder, P.B. Cox, Q. Wu, Z.X. Zhou, et al., Evidence that DNA polymerase δ contributes to initiating leading strand DNA replication in Saccharomyces cerevisiae, Nat. Commun. 9 (2018) 1-11, https://doi. org/10.1038/s41467-018-03270-4. [72] I. Miyabe, K. Mizuno, A. Keszthelyi, Y. Daigaku, M. Skouteri, S. Mohebi, et al., Polymerase δ replicates both strands after homologous recombination-dependent fork restart, Nat. Struct. Mol. Biol. (2015) 1-8, https://doi.org/10.1038/ nsmb.3100. [73] C.R. Bulock, X. Xing, P.V. Shcherbakova, DNA polymerase δ proofreads errors made by DNA polymerase ε, Proc. Natl. Acad. Sci. USA 117 (2020) 6035-6041, https://doi.org/10.1073/pnas.1917624117. [74] C.L. Flood, G.P. Rodriguez, G. Bao, A.H. Shockley, Y.W. Kow, G.F. Crouse, Replicative DNA polymerase δ but not ε proofreads errors in cis and in trans, PLOS Genet. 11 (2015), e1005049, https://doi.org/10.1371/journal.pgen.1005049. [75] A. Aksenova, K. Volkov, J. Maceluch, Z.F. Pursell, I.B. Rogozin, T. a Kunkel, et al., [87] F. Frugoni, K. Dobbs, K. Felgentreff, H. Aldhekri, B.K. Al Saud, R. Arnaout, et al., Mismatch repair-independent increase in spontaneous mutagenesis in yeast lacking non-essential subunits of DNA polymerase ε, PLoS Genet. 6 (2010), e1001209 https://doi.org/10.1371/journal.pgen.1001209. [76] M.J. Prindle, L.A. Loeb, DNA polymerase delta in dna replication and genome maintenance, Environ. Mol. Mutagen 53 (2012) 666-682, https://doi.org/ 10.1002/em.21745. [77] K. Shimizu, K. Hashimoto, J.M. Kirchner, W. Nakai, H. Nishikawa, M.A. Resnick, et al., Fidelity of DNA polymerase ε holoenzyme from budding yeast Saccharomyces cerevisiae, J. Biol. Chem. 277 (2002) 37422-37429, https://doi.org/10.1074/jbc. M204476200. [78] K. Hashimoto, K. Shimizu, N. Nakashima, A. Sugino, Fidelity of DNA polymerase δ holoenzyme from saccharomyces cerevisiae: the sliding clamp proliferating cell nuclear antigen decreases its fidelity, Vitro 42 (2003) 14207-14213, https://doi. org/10.1021/bi0348359. [79] J.M. Fortune, Y.I. Pavlov, C.M. Welch, E. Johansson, P.M.J. Burgers, T.A. Kunkel, Saccharomyces cerevisiae DNA Polymerase δ: High fidelity for base substitutions but lower fidelity for single-and multi-base deletions, J. Biol. Chem. 280 (2005) 29980-29987, https://doi.org/10.1074/jbc.M505236200. [80] P.V. Shcherbakova, Y.I. Pavlov, O. Chilkova, I.B. Rogozin, E. Johansson, T. A. Kunkel, Unique error signature of the four-subunit yeast DNA polymerase ε, J. Biol. Chem. 278 (2003) 43770-43780, https://doi.org/10.1074/jbc. M306893200. [81] L.M. Dieckman, R.E. Johnson, S. Prakash, M.T. Washington, Pre-steady state kinetic studies of the fidelity of nucleotide incorporation by yeast DNA polymerase https://doi.org/10.1016/S0580-9517(08)70325-8. ?? Biochemistry 49 (2010) 7344-7350, https://doi.org/10.1021/bi100556m. [82] K.A. Johnson, The kinetic and chemical mechanism of high-fidelity DNA polymerases, Biochim Biophys. Acta - Proteins Proteom. 1804 (2010) 1041-1048, https://doi.org/10.1016/j.bbapap.2010.01.006. [83] K. Zhang, Y. Sui, W.L. Li, G. Chen, X.C. Wu, R.J. Kokoska, et al., Global genomic instability caused by reduced expression of DNA polymerase ε in yeast, Proc. Natl. Acad. Sci. USA (2022), https://doi.org/10.1073/pnas.2119588119. [84] D.-Q. Zheng, T. Petes, D.-Q. Zheng, T.D. Petes, Genome instability induced by low levels of replicative DNA polymerases in yeast, Genes (Basel) 9 (2018) 539, https://doi.org/10.3390/genes9110539. [85] Y. Sui, L. Qi, K. Zhang, N. Saini, L.J. Klimczak, C.J. Sakofsky, et al., Analysis of APOBEC-induced mutations in yeast strains with low levels of replicative DNA polymerases, Proc. Natl. Acad. Sci. USA 117 (2020) 9440-9450, https://doi.org/ 10.1073/pnas.1922472117. [86] J. Pachlopnik Schmid, R. Lemoine, N. Nehme, V. Cormier-Daire, P. Revy, F. Debeurme, et al., Polymerase ε1 mutation in a human syndrome with facial dysmorphism, immunodeficiency, livedo, and short stature (“FILS syndrome”), J. Exp. Med 209 (2012) 2323-2330, https://doi.org/10.1084/jem.20121303. A novel mutation in the POLE2 gene causing combined immunodeficiency, J. Allergy Clin. Immunol. 137 (2016) 635-638.e1, https://doi.org/10.1016/j. jaci.2015.06.049. [88] P. Zhang, X. Chen, L.Y. Zhang, D. Cao, Y. Chen, Z.Q. Guo, et al., POLE2 facilitates the malignant phenotypes of glioblastoma through promoting AURKA-mediated stabilization of FOXM1, Cell Death Dis. 13 (2022) 1-10, https://doi.org/10.1038/ s41419-021-04498-7. [89] C.V. Logan, J.E. Murray, D.A. Parry, A. Robertson, R. Bellelli, Z. ˇ Tarnauskaite, ˙ et al., DNA polymerase epsilon deficiency causes IMAGe syndrome with variable immunodeficiency, Am. J. Hum. Genet 103 (2018) 1038-1044, https://doi.org/ 10.1016/j.ajhg.2018.10.024. [90] S.A. Nick McElhinny, G.E. Kissling, T.A. Kunkel, Differential correction of lagging strand replication errors made by DNA polymerases α and δ, Proc. Natl. Acad. Sci. USA 107 (2010) 21070-21075, https://doi.org/10.1073/pnas.1013048107. [91] A.L. Goldstein, J.H. McCusker, Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae, Yeast 15 (1999) 1541-1553, https:// doi.org/10.1002/(SICI)1097-0061(199910)15:14<1541::AID-YEA476>3.0.CO;2- K. [92] J.D. Boeke, F. LaCroute, G.R. Fink, A positive selection for mutants lacking 5' phosphate decarboxylase activity in yeast: 5 fluoro-orotic acid resistance, Mol. Gen. Genet 197 (1984) 345-346. [93] R.D. Gietz, R.A. Woods, Transformation of yeast by the lithium acetate/single stranded carrier DNA/PEG method. Methods in Microbiology, Elsevier,, 1998, [94] J.W. Drake, A constant rate of spontaneous mutation in DNA-based microbes, Proc. Natl. Acad. Sci. 88 (1991) 7160-7164, https://doi.org/10.1073/pnas.88.16.7160. [95] D.L. Watt, R.J. Buckland, S.A. Lujan, T.A. Kunkel, A. Chabes, Genome-wide analysis of the specificity and mechanisms of replication infidelity driven by imbalanced dNTP pools, Nucleic Acids Res 44 (2015) 1669-1680, https://doi.org/