SUPPLEMENTARY MATERIAL

Table S1. Mutation rates calculated for specific mutation types in the URA3 sequence in the rev3Δ msh6Δ background. Mutation spectra for strains OR1,

OR2, pol3-L612M OR1, pol3-L612M OR2, pol2-M644G OR1, and pol2-M644G OR2 were presented previously in [44] and [50].

	OF	R1	OF	R2	dpb2 Ol	2 <i>-100</i> R1	dpb2 Ol	2-100 R2	pol3-l O	L612M R1	pol3-l O	L612M R2	dpb2 pol3-l Ol	2-100 L612M R1	dpt pol3 C	02-100 -L612M 0R2	pol2-l Ol	//644G R1	pol2-l O	//644G R2	dpb2 pol2-l O	2-100 M644G R1	dpb2 pol2-l O	2-100 M644G R2
Transitions	103ª	1.10 [⊳]	37	0.53	80	9.49	67	7.54	161	35.42	112	22.76	119	59.73	96	76.03	83	28.09	68	26.12	98	52.30	84	62.61
T→C	23	0.25	5	0.07	11	1.31	18	2.03	53	11.66	2	0.41	27	13.55	6	4.75	6	2.03	17	6.53	13	6.94	18	13.42
<i>T</i> →C at 97 °	7	0.07	1	0.01	1	0.12	2	0.23	24	5.28	0	0.00	8	4.02	2	1.58	2	0.68	5	1.92	5	2.67	5	3.73
<i>T</i> →C at OS ^d	16	0.17	4	0.06	10	1.19	16	1.80	29	6.38	2	0.41	19	9.54	4	3.17	4	1.35	12	4.61	8	4.27	13	9.69
A→G	2	0.02	6	0.09	2	0.24	4	0.45	0	0.00	18	3.66	0	0.00	13	10.30	2	0.68	3	1.15	3	1.60	6	4.47
C→T	13	0.14	18	0.26	16	1.90	27	3.04	1	0.22	85	17.27	17	8.53	55	43.56	20	6.77	17	6.53	19	10.14	25	18.63
C→T at 310	4	0.04	11	0.16	5	0.59	11	1.24	1	0.22	43	8.74	5	2.51	40	31.68	6	2.03	9	3.46	4	2.13	15	11.18
C→T at OS	9	0.10	7	0.10	11	1.31	16	1.80	0	0.00	42	8.54	12	6.02	15	11.88	14	4.74	8	3.07	15	8.00	10	7.45
G→A	65	0.70	8	0.11	51	6.05	18	2.03	107	23.54	7	1.42	75	37.64	22	17.42	55	18.61	31	11.91	63	33.62	35	26.09
<i>G</i> →A at 764	18	0.19	2	0.03	8	0.95	2	0.23	45	9.90	2	0.41	15	7.53	3	2.38	10	3.38	9	3.46	12	6.40	4	2.98
$G \rightarrow A at OS$	47	0.50	6	0.09	43	5.10	16	1.80	62	13.64	5	1.02	60	30.11	19	15.05	45	15.23	22	8.45	51	27.22	31	23.11
Transversions	54	0.58	87	1.24	37	4.39	55	6.19	8	1.76	54	10.97	17	8.53	33	26.14	69	23.35	35	13.44	57	30.42	49	36.52
G→T	25	0.27	70	0.99	20	2.37	50	5.63	2	0.44	47	9.55	8	4.02	22	17.42	37	12.52	23	8.83	26	13.87	24	17.89
G→T at 679/706	8	0.09	44	0.63	6	0.71	13	1.46	0	0.00	9	1.83	3	1.51	5	3.96	8	2.71	16	6.15	15	8.00	11	8.20
$G \rightarrow T$ at OS	17	0.18	26	0.37	14	1.66	37	4.16	2	0.44	38	7.72	5	2.51	17	13.46	29	9.81	7	2.69	11	5.87	13	9.69
C→A	14	0.15	9	0.13	8	0.95	0	0.00	4	0.88	0	0.00	4	2.01	2	1.58	2	0.68	2	0.77	11	5.87	11	8.20
T→G	9	0.10	4	0.06	2	0.24	2	0.23	1	0.22	0	0.00	2	1.00	0	0.00	2	0.68	3	1.15	1	0.53	4	2.98
A→C	2	0.02	1	0.01	1	0.12	1	0.11	0	0.00	3	0.61	0	0.00	1	0.79	0	0.00	0	0.00	3	1.60	0	0.00
A→T	2	0.02	0	0.00	1	0.12	1	0.11	1	0.22	0	0.00	1	0.50	3	2.38	25	8.46	0	0.00	14	7.47	0	0.00
<i>A</i> → <i>T</i> at 686	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	1	0.50	1	0.79	6	2.03	0	0.00	8	4.27	0	0.00
$A \rightarrow T$ at OS	2	0.02	0	0.00	1	0.12	1	0.11	1	0.22	0	0.00	0	0.00	2	1.58	19	6.43	0	0.00	6	3.20	0	0.00
T→A	1	0.01	3	0.04	4	0.47	0	0.00	0	0.00	4	0.81	2	1.00	4	3.17	3	1.02	7	2.69	2	1.07	6	4.47
G→C	1	0.01	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	1	0.79	0	0.00	0	0.00	0	0.00	4	2.98
C→G	0	0.00	0	0.00	1	0.12	1	0.11	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00
Indels	9	0.10	8	0.11	8	0.95	4	0.45	7	1.54	6	1.22	4	2.01	2	1.58	2	0.68	0	0.00	11	5.87	5	3.73
ΔΑ	3	0.03	2	0.03	3	0.36	1	0.11	1	0.22	2	0.41	0	0.00	2	1.58	1	0.34	0	0.00	1	0.53	0	0.00
∆A at 174-178	0	0.00	0	0.00	2	0.24	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00
ΔA at OS	3	0.03	2	0.03	1	0.12	1	0.11	1	0.22	2	0.41	0	0.00	2	1.58	1	0.34	0	0.00	1	0.53	0	0.00
ΔΤ	1	0.01	2	0.03	2	0.24	0	0.00	5	1.10	1	0.20	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	1	0.75
ΔT at 201-205	0	0.00	0	0.00	1	0.12	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00
ΔT at 255-260	0	0.00	1	0.01	1	0.12	0	0.00	2	0.44	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	1	0.75
∆T at OS	1	0.01	1	0.01	0	0.00	0	0.00	3	0.66	1	0.20	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00
other single deletions	0	0.00	0	0.00	0	0.00	0	0.00	1	0.22	1	0.20	3	1.51	0	0.00	0	0.00	0	0.00	2	1.07	3	2.24
≥2 deletions	2	0.02	3	0.04	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00
single insertions	3	0.03	1	0.01	3	0.36	3	0.34	0	0.00	2	0.41	1	0.50	0	0.00	1	0.34	0	0.00	8	4.27	1	0.75
≥2 insertions	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00	0	0.00
TOTAL	166	1.78	132	1.88	125	14.83	126	14.31	176	38.71	172	34.96	140	70.26	131	103.75	154	52.11	103	39.56	166	88.58	138	102.86
95% CI		1.10 2.29		1.32 2.87		12.95 18.73		10.72 21.90		30.22 48.90		26.92 52.80		55.28 168.82		90.97 158.86		37.51 69.88		15.67 61.67		13.70 257.65		62.25 173.87

^a Number of events identified for given classes.

^b Mutation rates [5-FOA^R×10⁻⁶] for specific mutation types are shown in boldface. ^c Specific hotspot positions in the *URA3* coding sequence are indicated.

^d OS – Other Sites.

Table S2. The analysis of statistical significance for the mutation spectra is presented in Fig. 3. *p* values were calculated using Fisher's exact test.

T→C vs A→G G→A vs C→T G→T vs C→A	DPB2 POL3 OR2	dpb2-100 POL3 OR1	DPB2 pol3-L612M OR1	dpb2-100 pol3-L612M OR2
	0.0007	0.3776	0.0005	NDª
DPB2 POL3 OR1	<0.0001	0.1733	<0.0001	ND
	0.0017	0.3702	0.0005	ND
	0.0012	0.5869	ND	ND
dpb2-100 POL3 OR2	0.2286	<0.0001	ND	ND
	<0.0001	<0.0001	ND	ND
	0.0008	ND	<0.0001	<0.0001
DPB2 pol3-L612M OR2	<0.0001	ND	<0.0001	<0.0001
	<0.0001	ND	<0.0001	<0.0001
	ND	ND	>0.9999	<0.0001
dpb2-100 pol3-L612M OR1	ND	ND	<0.0001	<0.0001
	ND	ND	<0.0001	<0.0001

^a ND – not determined

Table S3. The analysis of statistical significance for data showing the contribution of substitutions at specific hotspots to the total mutagenesis is presented in Fig. 4. *p* values were calculated using Fisher's exact test.

T→C at 97 ^a C→T at 310 G→A at 764 G→T at 679/706	DPB2 POL3 OR2	dpb2-100 POL3 OR1	DPB2 pol3-L612M OR1	dpb2-100 pol3-L612M OR2
	0.0175 [1] ^b	0.0006 ↓ ^c	0.0002 ↑	ND ^d
	0.0169 [2]	0.3048	0.0253 ↓	ND
DF BZ F OES OKT	<0.0001 [1]	0.0407 ↓	<0.0001 ↑	ND
	<0.0001 [2]	0.8534	<0.0001 ↓	ND
	0.3489	0.0600	ND	ND
dab2 100 BOL 2 082	0.8899	<0.0001 [2]	ND	ND
apbz-100 POL3 OR2	0.7597	<0.0001 [1]	ND	ND
	<0.0001 ↓	<0.0001 [2]	ND	ND
	0.0508	ND	<0.0001 [1]	<0.0001 ↑
	<0.0001 ↑	ND	<0.0001 [2]	<0.0001 ↑
DPB2 pois-Lo 1210 OR2	>0.9999	ND	<0.0001 [1]	<0.0001 ↑
	<0.0001 ↓	ND	<0.0001 [2]	0.0004 👃
	ND	ND	<0.0001 ↓	<0.0001 [1]
dab2 100 ac12 / 612M OB1	ND	ND	<0.0001 ↑	<0.0001 [2]
upbz-100 p013-L012M OR I	ND	ND	<0.0001 ↓	<0.0001 [1]
	ND	ND	<0.0001 ↑	<0.0001 [2]

^a Substitutions at specific hotspots are color-coded.

^b The URA3 orientation with a higher contribution of substitutions at specific hotspots is shown in brackets: [1] – OR1. [2] – OR2.

^c For *dpb2-100* and *pol3-L612M* mutants. an increase ↑ or decrease ↓ of substitutions at specific hotspots compared with the *DPB2 POL3* strain. is shown; for *dpb2-100 pol3-L612M* mutants. an increase ↑ or decrease ↓ of substitutions at specific hotspots compared with the *pol3-L612M* strain. is shown.

^d ND – not determined

Table S4. The analysis of statistical significance for data showing the contribution of specific substitutions to the total mutagenesis is presented in Fig. 4. *p* values were calculated using Fisher's exact test.

T→Cª C→T G→A G→T	DPB2 POL3 OR2	dpb2-100 POL3 OR1	DPB2 pol3-L612M OR1	dpb2-100 pol3-L612M OR2
	0.0006 [1] ^b	0.0294 ↓ ^c	<0.0001 ↑	ND ^d
	0.0928	0.0688	<0.0001 ↓	ND
DFB2 F0L3 OKT	<0.0001 [1]	0.7469	<0.0001 ↑	ND
	<0.0001 [2]	0.8290	<0.0001 ↓	ND
	<0.0001 ↑	<0.0001 [2]	ND	ND
dab2-100 BOL 2 082	0.0160 ↑	<0.0001 [2]	ND	ND
upb2-100 P 013 UR2	0.0008 ↑	<0.0001 [1]	ND	ND
	0.0007 ↓	<0.0001 [2]	ND	ND
	0.0098 ↓	ND	<0.0001 [1]	<0.0001 ↑
DPP2 pol2 / 612M OP2	<0.0001 ↑	ND	<0.0001 [2]	<0.0001 ↓
	0.2544	ND	<0.0001 [1]	<0.0001 ↑
	<0.0001 ↓	ND	<0.0001 [2]	<0.0001 ↓
	ND	ND	<0.0001 ↓	<0.0001 [1]
dph2 100 pol2 / 612M OP1	ND	ND	<0.0001 ↑	<0.0001 [2]
ap52-100 p013-201210 OR1	ND	ND	<0.0001 ↓	<0.0001 [1]
	ND	ND	<0.0001 ↑	<0.0001 [2]

^a Specific substitution types are color-coded.

^b The URA3 orientation with a higher contribution of specific substitutions is shown in brackets: [1] – OR1. [2] – OR2.

^c For *dpb2-100* and *pol3-L612M* mutants. an increase ↑ or decrease ↓ of specific substitutions compared with the *DPB2 POL3* strain. is shown; for *dpb2-100 pol3-L612M* mutants. an increase ↑ or decrease ↓ of specific substitutions compared with the *pol3-L612M* strain is shown.

^d ND – not determined

Table S5. The analysis of statistical significance for the mutation spectra is presented in Fig. 6. p values						
were calculated using Fisher's e	exact test.					
	DPB2	dpb2-100	DPB2	dpb2-100		

T→A vs A→T	DPB2 POL2 OR2	dpb2-100 POL2 OR1	DPB2 pol2- M644G OR1	dpb2-100 pol2-M644G OR2
DPB2 POL2 OR1	0.1429	0.1251	0.2913	NDª
dpb2-100 POL2 OR2	0.0007	<0.0001	ND	ND
DPB2 pol2-M644G OR2	>0.9999	ND	<0.0001	>0.9999
dpb2-100 pol2-M644G OR1	ND	ND	0.2691	<0.0001
^a ND – not determined				

Table S6. Yeast strains used in this work.

Strain	Relevant genotype	Source
YTAK001	agp1::URA3-OR1	[43]
Y485-3	agp1::URA3-OR1 rev3∆ DPB2 msh6∆	[44]
Y485-4	agp1::URA3-OR1 rev3∆ DPB2 msh6∆	[44]
Y773	agp1::URA3-OR1 rev3∆ dpb2-100 msh6∆	This work
Y774	agp1::URA3-OR1 rev3∆ dpb2-100 msh6∆	This work
Y771	agp1::URA3-OR1 rev3∆ dpb2-100 msh6∆	This work
Y772	agp1::URA3-OR1 rev3∆ dpb2-100 msh6∆	This work
YTAK002	agp1::URA3-OR2	[43]
Y486-2	agp1::URA3-OR2 rev3∆ DPB2 msh6∆	[44]
Y486-5	agp1::URA3-OR2 rev3∆ DPB2 msh6∆	[44]
Y776	agp1::URA3-OR2 rev3∆ dpb2-100 msh6∆	This work
Y777	agp1::URA3-OR2 rev3∆ dpb2-100 msh6∆	This work
Y778	agp1::URA3-OR2 rev3∆ dpb2-100 msh6∆	This work
Y775	agp1::URA3-OR2 rev3∆ dpb2-100 msh6∆	This work
Y779	agp1::URA3-OR2 rev3∆ dpb2-100 msh6∆	This work
SNM12	pol3L612M agp1::URA3-OR1	[90]
Y491-3	pol3L612M agp1::URA3-OR1 rev3Δ DPB2 msh6Δ	[44]
Y492-1	pol3L612M agp1::URA3-OR1 rev3Δ DPB2 msh6Δ	[44]
Y783	pol3L612M agp1::URA3-OR1 rev3∆ dpb2-100 msh6∆	This work
Y780	pol3L612M agp1::URA3-OR1 rev3∆ dpb2-100 msh6∆	This work
Y781	pol3L612M agp1::URA3-OR1 rev3∆ dpb2-100 msh6∆	This work
Y782	pol3L612M agp1::URA3-OR1 rev3∆ dpb2-100 msh6∆	This work
SNM24	pol3L612M agp1::URA3-OR2	[90]
Y493-1	pol3L612M agp1::URA3-OR2 rev3Δ DPB2 msh6Δ	[44]
Y494-1	pol3L612M agp1::URA3-OR2 rev3Δ DPB2 msh6Δ	[44]
Y786	pol3L612M agp1::URA3-OR2 rev3∆ dpb2-100 msh6∆	This work
Y787	pol3L612M agp1::URA3-OR2 rev3∆ dpb2-100 msh6∆	This work
Y785	pol3L612M agp1::URA3-OR2 rev3Δ dpb2-100 msh6Δ	This work
Y784	pol3L612M agp1::URA3-OR2 rev3Δ dpb2-100 msh6Δ	This work
Y788	pol3L612M agp1::URA3-OR2 rev3Δ dpb2-100 msh6Δ	This work
SNM70	pol2M644G agp1::URA3-OR1	[59]
Y487-2	pol2M644G agp1::URA3-OR1 rev3Δ DPB2 msh6Δ	[50]
Y488-1	pol2M644G agp1::URA3-OR1 rev3A DPB2 msh6A	[50]
Y804	pol2M644G agp1::URA3-OR1 rev3Δ dpb2-100 msh6Δ	This work
Y805	pol2M644G agp1::URA3-OR1 rev3Δ dpb2-100 msn6Δ	
Y806	po/2M644G agp1::URA3-OR1 rev3Δ dpb2-100 msh6Δ	This work
1807	pol2M044G agp1::URA3-UR1 rev3Δ apb2-100 msrioΔ	
1000	poi2M644G agp1::URA3-URT rev3d apb2-100 msn6d	
1809	pol2M644G agp1::URA3-URT rev3d apb2-100 msn6d	This work
1010 SNM70	poi2M644G agp1URAS-ORT 16V5D 0pb2-100 115116D	
V180-2	p0/2/1/044G dyp1URA3-UR2 po/2/1/644G orp1://IPA2.OP2.rev24.DPR2.msh64	[59]
1409-2 V400-1	pol2M644G agp1URA3-OR2 16V3D DFD2 Institud	[50]
V701	pol2N644G agp 1 ORAS OR 2 revise DF D2 make A	
V702	pol2M644G agp1URAS-OR2 IEVSD upb2-100 INSN0D	This work
V703	pol2M644G agp1:.URA3-OR2 rev3A dpb2-100 msh6A	This work
Y794	poi2iniorred agp10145-012 rev3d apb2-100 msh6A	This work
Y795	poi2M644G agp1::01043 012 rovod upb2 rov manod	
SC228	MATa CAN1 his7-2 leu2-A"kanMX4 ura3-A tro1-289 ade2-1 lvs2-AGG2899-2900 DPR2	[25 39]
SC234	MATa CAN1 his7-2 leu2-Δ::kanMX4 ura3-Δ trp1-289 ade2-1 lys2-ΔGG2899-2900 dpb2-100	[25,39]

Table S7. Primers used in this study.

Primer	Sequence 5'-3'
Rev3_UPTEF	CAATACAAAACTACAAGTTGTGGCGAAATAAAATGTTTGGAAATGAGATCTGTTTAGCTTGCC
Rev3_DNTEF	ATAACTACTCATCATTTTGCGAGACATATCTGTGTCTAGATTATTCGAGCTCGTTTTCGACAC
msh6UTEF	CAGATAAGATTTTTAATTGGAGCAACTAGTTAATTTTGACAAAGCCAATTTGAACTCCAAAAGATCTGTTTAGCTTGCC
msh6DTEF	CAACGACCAAAACTTTAAAAAAAAAAAAAAAAAAAAAATCTTACATACATCGTAAATGAAAAATATTCGAGCTCGTTTTCGACAC
Rev3-R4	TGACCACTCACATGGCGCTTTG
Rev3A	AATTCTGCCAATCTATTTGATCTTG
nat1UO	ACCGGTAAGCCGTGTCGTCAAG
Rev3-F4	AAAGGGCGAGCACAACTACTAC
Rev3D	CACCAGATAGAGTTTTGAACGAAAT
nat1DO	GCTTCGTGGTCGTCTCGTACTC
MSH6-UO	TAAAGTCGCTGGAGTAGG
msh6up2	GAATCCTTGGAGGAAGAC
HPH-UO	ACAGACGTCGCGGTGAGTTCAG
MSH6-DO	TCAAGCACCATCCTCAAG
msh6dw2	CCCATTCTTGCCCAAGATGC
HPH-DO	TCGCCGATAGTGGAAACCGACG
URA3F393	AACGAAGGAAGGAGCACAGAC
URA3R412	CCGAAATTCCTGGGTAATAAC
LEUBamF	AGTGGATCCACATACCTAATATTATTGCC
LEUMvaR	AAGGAGCATTCTGACAGAGTAAAATTCTTGAGGG

Impairment of the non-catalytic subunit Dpb2 of DNA Pol ϵ results in increased involvement of Pol δ on the leading strand Dmowski et al., https://doi.org/10.1016/j.dnarep.2023.103541 SUPPLEMENTARY MATERIAL Mva1269 Mva1269 LEU2 LEU2 Hind III. **BamHI** HindIII. ´BamHI ~BET2 -BET2 BspEl BspEl pLD2 pLD2-100 8810 bps 8810 bps DPB2 dpb2-100 ori pMB1 ori pMB1 ola YPR1740 PR1740 <mark>Pstl</mark> Xhol stl Xhol Scal Scal HindIII HindIII pAG29 pMJDPB2 pKF107 pJK1 PCR-amplified fragment

Figure S1. Maps of plasmid pLD2 and pLD2-100. For their construction. plasmids pAG29 [91]. pMJDPB2 [26]. pKF107 [25] and pJK1 [25] were used. The PCR fragment containing the *LEU2* gene was amplified using primers LEUBamF and LEUMvaR (Table 7). Restriction sites used to generate the gene cassette for yeast transformation are indicated by yellow backlight.

- [25] Jaszczur M, Flis K, Rudzka J, Kraszewska J, Budd ME, Polaczek P, et al. Dpb2p, a noncatalytic subunit of DNA polymerase ε, contributes to the fidelity of DNA replication in Saccharomyces cerevisiae. Genetics. 178 (2008) 633–647. doi:10.1534/genetics.107.082818
- [26] Jaszczur M, Rudzka J, Kraszewska J, Flis K, Polaczek P, Campbell JL, et al. Defective interaction between Pol2p and Dpb2p, subunits of DNA polymerase epsilon, contributes to a mutator phenotype in Saccharomyces cerevisiae. Mutat Res. 669 (2009) 27–35. doi:10.1016/j.mrfmmm.2009.04.012
- [39] Garbacz M, Araki H, Flis K, Bebenek A, Zawada AE, Jonczyk P, et al. Fidelity consequences of the impaired interaction between DNA polymerase epsilon and the GINS complex. DNA Repair (Amst). 29 (2015) 23–35. doi:10.1016/j.dnarep.2015.02.007
- [43] Pursell ZF, Isoz I, Lundström E-B, Johansson E, Kunkel TA. Yeast DNA polymerase ε participates in leading-strand DNA replication. Science. 317 (2007) 127–130. doi:10.1126/science.1144067
- [44] Dmowski M, Jedrychowska M, Makiela-Dzbenska K, Denkiewicz-kruk M, Sharma S, Chabes A, et al. Increased contribution of DNA polymerase delta to the leading strand replication in yeast with an impaired CMG helicase complex. DNA Repair (Amst). 110 (2022) 103272. doi:10.1016/j.dnarep.2022.103272
- [50] Dmowski M, Makiela-Dzbenska K, Jedrychowska M, Denkiewicz-Kruk M, Fijalkowska IJ. Mutation spectrum data for Saccharomyces cerevisiae psf1-1 pol2-M644G mutants. Data Br. 42 (2022) 108223. doi:10.1016/j.dib.2022.108223
- [59] Nick McElhinny SA, Kumar D, Clark AB, Watt DL, Brian E, Lundström E, et al. Genome instability due to ribonucleotide incorporation into DNA. Nat Chem Biol. 6 (2010) 774–781. doi:10.1038/nchembio.424.
- [90] Nick McElhinny SA, Kissling GE, Kunkel TA. Differential correction of lagging-strand replication errors made by DNA polymerases α and δ. Proc Natl Acad Sci U S A. 107 (2010) 21070–21075. doi:10.1073/pnas.1013048107
- [91] Goldstein AL, McCusker JH. Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast. 15 (1999) 1541–1553. doi:10.1002/(SICI)1097-0061(199910)15:14<1541::AID-YEA476>3.0.CO;2-K