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CD19 CAR-T cells have established a new standard for relapsed/refractory B-cell malignancies. However, the treatment fails in 50%
of patients, often due to CD19 antigen loss. Alternative immunotherapies targeting other antigens are being tested but show
limited efficacy, especially in cases of lineage switching or loss of B-cell phenotype, highlighting the need for novel targets. Herein,
we identified leukocyte-immunoglobulin-like-receptor-B1 (LILRB1, CD85j) as a novel target for CAR-T cells through cell surface
proteomics on patient-derived samples of high-risk B-cell acute lymphoblastic leukemia (B-ALL). LILRB1, an immune inhibitory
receptor, is normally expressed only on monocytes and B-cells. We observed stable LILRB1 expression in B-ALL and B-cell non-
Hodgkin lymphoma (B-NHL), even after CD20/CD19-based immunotherapies. LILRB1 CAR-T cells showed antigen-specific antitumor
activity in vitro against B-ALL/B-NHL cells, including those resistant to CD19 CAR-T-cells, and in vivo in B-ALL xenografts.
Additionally, we identified LILRB1 in monocytic acute myeloid leukemia (AML) and demonstrated LILRB1 CAR-T cell cytotoxicity
against AML cell lines in vitro and in vivo. These findings establish LILRB1 as a novel target for cancer immunotherapy and show
evidence for the preclinical efficacy of LILRB1 CAR-T cells against haematological malignancies, including cases resistant to previous
lines of immunotherapy, thus holding promise for further clinical development.

Leukemia; https://doi.org/10.1038/s41375-025-02580-z

INTRODUCTION
CD19-targeting chimeric antigen receptor-modified T cells (CD19
CAR-T cells) have emerged as a breakthrough therapy for
relapsed/refractory (r/r) B-cell malignancies, establishing a new
standard of care. However, CD19 loss, a well-described mechan-
ism occurring in 30–70% of B-cell acute lymphoblastic leukemia
(B-ALL) [1–3] and in 20–30% of B-cell non-Hodgkin lymphoma (B-
NHL) cases [4–6] following CD19 CAR-T cell therapy, contributes
to relapse and treatment failure. Alternative options are being
developed for such patients, and several B-cell-specific antigens
are already under investigation in preclinical studies as CAR-T
targets [7, 8], including CD22 and CD20 emerging as the most
advanced ones. Strategies addressing CD19 antigen escape

comprise CAR-T cell approaches simultaneously targeting CD19
along with CD20 and CD22. However, they are effective only
when both antigens are sufficiently expressed [9, 10]. Accord-
ingly, in cases where CD22 and CD20 expression is low or
downregulated/lost together with CD19 [2, 6, 9, 11, 12], these
antigens may no longer be viable, underscoring the need for
identification of novel therapeutic strategies and targets. More-
over, targeting B-cell-specific antigens is not effective when
resistance to CD19 CAR-T therapy is caused by a transition of
tumor cells from a lymphoid to a myeloid phenotype [13, 14]. In
that case, targeting antigens present on cells of myeloid origin
becomes more attractive. Several such targets have been already
identified, including CD33, CD123, Lewis (Le)-Y, and FLT3 [15–17],
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and CAR-T cells directed against these targets have been
designed to recognize tumor cells of strictly myeloid origin.
These CAR-T therapies demonstrated efficacy in eliminating acute

myeloid leukemia (AML) cells in both in vitro and in vivo models,
with some undergoing patient testing [18], but none have yet
received clinical approval. Most myeloid cell-specific CARs
currently under development target pan-myeloid markers, also
expressed in hematopoietic stem/progenitor cells (HSPC) [19],
leading to severe myelosuppression and significant toxicity [20].
Consequently, the need for suitable myeloid targets remains
unmet. Particularly pressing is the need for novel markers that
can serve as alternatives following lineage switching and loss of
the B-cell phenotype.
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Fig. 1 Cell surface proteomics of B-ALL PDX and bioinformatic analyses identify LILRB1 as a candidate target for CAR-T cell
immunotherapy. A Proteomics workflow for quantifying cell surfaceomes of B-ALL1 PDX2. B A scheme illustrating the selection process of cell
surface membrane proteins to identify suitable candidates for CAR3-T cell therapy in B-ALL. C A graph illustrating 18 surface proteins selected
with MS4-based method that can serve as targets for CAR-T cell therapy. Already being exploited targets are grouped on the right side of the
cell. D A table showing the numbers of identified specific peptides derived from the LILRB1 protein across six PDX samples, including all
replicates. The data is presented for both non-biotinylated control samples (nb) and biotinylated samples (biot). E Flow cytometry histograms
showing LILRB1 protein surface levels on the B-ALL PDX samples used for the MS analysis presented in panel D. MFI5 for anti-LILRB1 Ab6

(clone HP-F1) is shown next to the histograms.
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Identifying new targets for CAR-T cell therapy presents a
multifaceted challenge. Ideal CAR-T target should be homoge-
nously expressed on malignant cells but not on normal tissues to
avoid on-target off-tumor toxicity. However, such antigens are
limited, and even clinically validated targets such as CD19 or
BCMA do not meet these stringent criteria. Also, methodology is a
limitation. Recent advances in proteomic methods combining

mass spectrometry (MS) and bioinformatics tools led to the
identification of some novel targets that were employed for the
generation of novel CAR-T cell therapies in B-ALL, AML, multiple
myeloma, and even solid tumors [8, 21, 22]. However, in B-ALL and
AML studies, the surfaceome characterization was performed on
cell lines, limiting the identification of targets that are not
accurately represented by these models.
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In this study, we developed a strategy for CAR-T target
discovery using B-ALL patient-derived xenograft (PDX) cells as a
model. Employing cell surface proteomics combined with MS
identification of surface proteins in histone-lysine N-methyltrans-
ferase 2 A (KMT2A)-rearranged B-ALL PDX samples, followed by
extensive tissue-specificity analyses, we identified LILRB1 (also
known as CD85j) as a potential novel CAR target. Extensive
validation of LILRB1 expression revealed its specific occurrence in
B-cell-derived malignancies, including B-ALL and B-NHL. LILRB1
was present even in cases where malignant cells had lost CD19
expression post-CD19 CAR-T cell treatment, as well as in
monocytic AML. We generated LILRB1-targeting CAR-T cells and
confirmed their antitumor efficacy and safety in pre-clinical
settings. Thus, LILRB1 represents an attractive target antigen for
cell-based immunotherapy to treat different hematological
malignancies, including challenging cases previously treated with
other lines of treatment.

RESULTS
Cell surface proteomics of B-ALL PDX identifies LILRB1 as a
putative immunotherapy target
To identify novel targets, we first optimized a method for
surfaceome identification using cell surface biotinylation of B-ALL
PDX cells, followed by enrichment of biotinylated proteins and
quantitative MS (Fig. 1A). This proteomic approach was chosen over
transcriptomic methods, as it provides direct evidence of surface
protein expression, reducing the likelihood of false positive results
from RNA data. We profiled six PDX samples from B-ALL patients
with KMT2A rearrangements (KMT2A-r PDX) (Supplementary Table 1),
a high-risk subtype often showing lineage switch or CD19 loss
following CD19-targeted immunotherapy. PDX samples were
analyzed in quadruplicate, alongside nonbiotinylated controls.
Utilizing label-free quantification in MaxQuant followed by Perseus
analysis and filtering for membrane-associated proteins in Uniprot,
we identified 1409 membrane proteins (Fig. 1B). Of these, 945
proteins detected in at least three PDX samples were examined for
tissue specificity using the Human Protein Atlas and the Genotype-
Tissue Expression databases, revealing 93 lymphoid tissue-specific
proteins. Following manual curation, we identified 18 potential CAR
therapy targets (Fig. 1B, Supplementary Table 2). In particular, we
discovered previously unexplored surface proteins as potential CAR
targets, such as CD48, IL7R, ITGB7, LAIR1, LILRB1 (Fig. 1C). Notably,
this set also included known CAR targets, such as CD19, CD22, CD38,

CD70, CD72, CD79A, CD79B, and LILRB4 (Fig. 1C), thus validating our
approach. Further literature review of the potential CAR targets
excluded proteins expressed in granulocytes and T cells, notably
selecting LILRB1, which expression is restricted to monocytes and B
cells. LILRB1 was present in 5/6 PDX used for proteomic analysis
(Fig. 1D), which was further confirmed by flow cytometry (Fig. 1E). In
conclusion, our method identified LILRB1 as a new CAR-T target.

LILRB1 expression in normal tissues
To validate safety of LILRB1 as a CAR-T target, we first analyzed its
expression in normal tissues and across multiple organs using a
single-cell human cell atlas from the Tabula Sapiens Consortium [23].
Consistent with previous analyses in the Human Protein Atlas and
the Genotype-Tissue Expression databases, LILRB1 expression was
detected by single-cell RNA-sequencing (RNA-seq) in lymphoid
tissues such as bone marrow, spleen, blood, and additionally in
lungs and liver (Fig. 2A, left panel). However, the detailed analysis
revealed LILRB1 expression exclusively in the immune cell compart-
ment (Fig. 2A, middle panel), primarily in various subpopulations of
monocytes, macrophages, and B cells, and the lack of expression in
major subpopulations of T cells or hematopoietic stem cells (HSC)
(Fig. 2A, right panel, Supplementary Fig. 1). Notably, the LILRB1
expression in the lungs and liver exclusively stemmed from tissue-
resident macrophages and monocytes (Supplementary Table 3). We
subsequently confirmed LILRB1 protein presence on healthy donors’
peripheral blood leukocytes, demonstrating the highest expression
levels in monocytes and B cells, with much lower expression in NK
cells and T cells (Fig. 2B left panel, Supplementary Fig. 2), similarly to
already available data [24]. Primary macrophages differentiated
in vitro from human peripheral blood monocytes displayed high
LILRB1 surface levels (Fig. 2B, right panel). Following transcriptomic
data, low LILRB1 protein levels were observed in HSC
(CD19−CD33−CD34+CD38−) and lineage-restricted progenitors
(CD19−CD33−CD34+CD38+) from two different sources, namely
normal regenerating bone marrow and stem cell apheresis. On
average, not more than 10% of HSC and lineage-restricted
progenitors expressed LILRB1 (Fig. 2C), suggesting that LILRB1
CAR-T cells and LILRB1-targeted therapy will not ablate normal
human hematopoiesis. Given that LILRB1 surface expression in
T cells potentially poses a risk of fratricide killing in CAR-T cell
manufacturing, we evaluated LILRB1 levels in human T cells
activated by CD3/CD28 stimulation. LILRB1 expression was higher
in CD8+ than in CD4+ T cells, decreasing upon stimulation (Fig. 2D).
Furthermore, LILRB1 expression remained low and roughly
unchanged in CD19 CAR-T cells upon their contact with CD19-
positive target cells (Fig. 2E). The pattern of LILRB1 expression was
consistent across various CD8+ CAR-T cell subsets (naïve, central
memory, effector memory, and terminally differentiated T cells,
Supplementary Fig. 3). In summary, these analyses indicate that
targeting LILRB1 with CAR-T cells is likely to eliminate B-cell and
monocyte compartments only and suggest the feasibility of LILRB1
CAR-T manufacturing.

Fig. 2 LILRB1 expression is primarily restricted to the lymphoid compartment. A LILRB1 mRNA levels were assessed using the Tabula
Sapiens database, containing single-cell transcriptomic data from healthy donors, across different organs (left panel), compartments (middle
panel), and immune cell types (right panel). Dot size represents the percentage of cells expressing LILRB1, while purple color intensity
indicates expression levels. B LILRB1 protein levels on various WBC7 isolated from two healthy donors were analyzed by flow cytometry using
anti-LILRB1 Ab (left panel). LILRB1 surface levels on primary macrophages differentiated from CD14+ monocytes of three healthy donors were
analyzed by flow cytometry using anti-LILRB1 Ab (right panel). C The percentage of LILRB1+ cells among defined subpopulations was
determined by flow cytometry on normal regenerating BM8 samples (n= 4) and on apheresis-derived samples collected from individuals who
underwent HSC9 mobilization with G-CSF10 (n= 2). Singlets were selected on FSC-H/FSC-A11 and mononuclear cells were selected on FSC-A/
SSC-A12 (not shown). After CD33+ and CD19+cells exclusion, a population of CD34+ cells was gated. Progenitor cells were further divided
based on CD38 expression. The level of LILRB1 expression was assessed compared to the appropriate isotypic control (BM), or FMO13 control
(apheresis blood). D Primary human T cells from two healthy donors were stimulated with Dynabeads™ Human T-Activator CD3/CD28 for
2 days. LILRB1 surface levels on unstimulated and stimulated CD4+ and CD8+ T cells were analyzed by flow cytometry using anti-LILRB1 Ab.
E CD19 CAR-T cells were co-cultured with Raji target cells for 24, 48, and 72 h. LILRB1 surface levels on CD4+ and CD8+ CAR-T cells were
assessed by flow cytometry using anti-LILRB1 Ab. In (B–E), clone HP-F1 of the anti-LILRB1 Ab was used.
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LILRB1 is expressed in B-cell-derived malignancies
To explore the utility of LILRB1 for the elimination of tumor cells,
we further analyzed its mRNA expression in various pediatric B-cell
malignancies from the St. Jude’s B-ALL RNA-seq dataset and
lymphoma patients' microarrays data deposited in the Gene

Expression Omnibus (GSE31312, GSE93291, GSE93261). In all B-
cell-derived malignancies, LILRB1 expression was lower than that
of other B-cell-specific markers such as CD19 and CD22 but higher
than CD33 (negative control) (Fig. 3A, B). Subsequently, we
evaluated LILRB1 surface protein levels in B-ALL PDX. Notably,
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LILRB1 was expressed in 24/26 tested PDX samples representing
high-risk B-ALL subtypes including KMT2A-r, BCR-ABL1, BCR-ABL1-
like and hypodiploid, with typically moderate but uniform
expression levels across cell population (Fig. 3C). Additionally,
we assessed LILRB1 protein levels in freshly isolated primary
samples at diagnosis and relapse in pediatric and adult patients
with various B-cell malignancies. In the pediatric cohort, we
observed moderate expression in most diagnostic and relapsed
B-ALL cells (Fig. 3D, Supplementary Table 4). In adult patients, the
prominent expression of LILRB1 was found in most B-ALL and
various B-NHL malignant cells (Fig. 3E, Supplementary Table 5).
These findings underscore the substantial expression of LILRB1
across various B-cell malignancies, emphasizing its potential as a
viable target for immunotherapy.

LILRB1 is stably expressed in malignant B-cells resistant to
previous lines of immunotherapy
Antigen escape or downregulation are established mechanisms of
resistance to various immunotherapies. Therefore, we utilized
models resistant to previous lines of immunotherapy [25] in B-NHL
cell lines that were LILRB1-positive (surprisingly, LILRB1 was
expressed only in 2 out of 8 analyzed B-ALL cell lines and 4 out
of 6 B-NHL cell lines) (Supplementary Fig. 4A, B). In lymphoma
models resistant to rituximab (RTX), an anti-CD20 antibody, LILRB1
levels tended to increase, while CD20 was downregulated, and
CD22 and CD19 remained largely unchanged (Fig. 4A). We also
assessed the level of selected markers in in vitro-generated
lymphoma Raji cells resistant to CD19 CAR-T cells [26]. We
observed a loss of CD19 expression accompanied by only partial
downregulation of CD22, CD20, and LILRB1 (Fig. 4B). In RNA-seq
data from B-ALL patients who lost surface CD19 following CD19
CAR-T therapy [2], post-therapy samples showed increased LILRB1
mRNA levels, while CD22 and MS4A1 (codes for CD20) levels were
reduced (Fig. 4C). Although CD19 transcript levels also slightly
increased (Fig. 4C), they corresponded to transcripts encoding
truncated, nonfunctional CD19 as reported by Orlando et al. [2].
Next, in the retrospective analysis comparing B-ALL paired
samples (before/after anti-CD19 immunotherapy), we observed
loss or significant CD19 downregulation in blasts isolated from 16
patients (Supplementary Fig. 4C). Furthermore, in 10/16 cases,
CD22 exhibited a concurrent decrease alongside CD19, while
CD20 levels were either low or absent in most cases, already prior
to immunotherapy (Supplementary Fig. 4C), demonstrating the
disadvantages of these targets for next-line treatments. Notably, in
our cohort of 16 patients, one patient with CD19-negative relapse

after CD19 CAR-T cell therapy was examined for LILRB1 expression
and demonstrated a robust increase in LILRB1 levels (Fig. 4D).
Furthermore, we analyzed a sample from a patient who relapsed
after blinatumomab treatment and displayed a mixed CD19−/+

phenotype. Importantly, in this sample robust LILRB1 expression
was detected, with stable levels even in the CD19-negative
subpopulation of leukemic cells (Fig. 4E). Altogether, these
findings further reinforce the critical necessity for the identifica-
tion of non-B-cell-specific targets to serve as substitutes in
patients experiencing CD19-negative relapses and support LILRB1
CAR-T cells as a valid next-line treatment.

Development of LILRB1-directed CAR-T cells
To generate LILRB1 CAR-T cells and select LILRB1-specific single-
chain variable fragments (scFv), we screened various clones of
murine anti-LILRB1 monoclonal antibodies (mAbs) in B-ALL cell lines
exhibiting various levels of LILRB1, ultimately choosing two clones:
HP-F1 and #292305 (Supplementary Fig. 5A). We utilized de novo
antibody sequencing via LC-MS/MS to derive the antibodies variable
domains. They were subsequently used to design the antigen-
binding domains, the single-chain variable fragments (scFv), which
were then integrated into a second-generation CAR backbone (CD8
hinge, CD8 transmembrane domain, 4-1BB-CD3z signaling), linked
by 2 A ribosome-skipping peptide to a truncated CD34 protein,
enabling transduced cells’ detection. The resulting CARs derived
from HP-F1 and #292305 antibody clones were designated as
constructs 2115 and 2116, respectively (Fig. 5A). Primary T cells from
healthy donors were transduced with these CAR constructs, and the
CD34 signal was observed in 70–90% of T cells, indicating robust
transduction efficiency (Fig. 5B, left panel). Similarly, sufficient
transduction efficiency and CAR expression were detected in CD19
CAR-T cells, as proved by high levels of murine antigen-binding
fragment (Fig. 5B, right panel).

LILRB1 CAR-T cells exhibit activity against leukemia and
lymphoma cells
We evaluated the killing potential of LILRB1 CAR-T cells generated
using both 2115 and 2116 constructs. As target cells, we selected
representative B-ALL (SD-1) and B-NHL (DHL-4) cell lines with the
highest expression of LILRB1 among tested cells (Supplementary
Fig. 4A, B). In both cell lines, 2116 LILRB1 CAR-T cells, but not 2115
LILRB1 CAR-T cells, exhibited potent killing efficacy comparable to
CD19 CAR-T cells, as assessed by flow cytometry (Fig. 5C) and in
bioluminescence-based killing assay (Fig. 5D). Importantly, 2116
LILRB1 CAR-T effectively killed RS4;11 B-ALL cells with moderate
LILRB1 levels (Fig. 5D, Supplementary Fig. 4A, 5A). Subsequently,
both 2116 LILRB1 and CD19 CAR-T cells killed B-ALL PDX cells
expressing luciferase with similar efficacy, while 2115 LILRB1 CAR-
T cells did not exhibit any advantage over MOCK T cells (Fig. 5E).
Based on these findings, we concluded that the 2116 LILRB1 CAR
construct surpassed the 2115 LILRB1 construct, warranting its
selection for subsequent experiments. Hereafter, the 2116 LILRB1
CAR will be referred to as LILRB1 CAR.

Fig. 3 LILRB1 is expressed in malignancies derived from B-cells. A Box plot showing mRNA expression levels of LILRB1, CD19, CD22, and
CD33 genes assessed using the St Jude hospital dataset deposited in the EGA14 under accession number EGAS00001003266 [59], both in
children and adults including young adults with B-ALL. B Box plots showing mRNA expression levels of LILRB1, CD19, CD22 and CD33 genes
assessed using microarray data downloaded from the GEO15 database for: DLBCL16 GEO accession number GSE31312 [60]; MCL17, GEO
accession number GSE93291 [61]; and FL18, GEO accession number GSE93261 [62]. C LILRB1 expression was evaluated by flow cytometry on
B-ALL PDX samples (adult and pediatric) representing various leukemia subtypes (n= 26). The cells were stained with anti-LILRB1 Ab. MFI for
each sample is shown next to the corresponding histogram. D LILRB1 expression was evaluated by flow cytometry in BM samples from B-ALL
patients at diagnosis (n= 21; upper plot) and relapse (n= 7; lower plot) using anti-LILRB1 Ab. Data are presented as a dot plot overlay showing
LILRB1 levels in gated B-ALL cells (red) together with monocytes (aquamarine) and T cells (blue) serving as positive and negative reference
populations, respectively. Circles in respective colors represent the MFI of B-ALL cells, monocytes, and T cells from individual overlaid cases.
E LILRB1 expression was evaluated by flow cytometry using anti-LILRB1 Ab on BM samples obtained from adult patients with B-ALL (n= 12,
left panel) and B-NHL19 (n= 10, right panel). Histograms show LILRB1 expression levels for gated malignant cells. MFI for each sample is
shown next to the corresponding histogram. In panels C-E, clone HP-F1 of the anti-LILRB1 Ab was used.

14European Genome-Phenome Archive
15Gene Expression Omnibus
16Diffuse Large B Cell Lymphoma
17Mantle Cell Lymphoma
18Follicular Lymphoma
19B-Cell Non-Hodgkin Lymphoma
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LILRB1 CAR-T cells specifically kill LILRB1-expressing cells and
induce potent cytokine production
To verify the specificity of LILRB1 CAR-T cells, we overexpressed
LILRB1 in 697 cells (B-ALL) that were originally LILRB1-negative
(Supplementary Fig. 5B). LILRB1 CAR-T cell killing activity was

exclusively detected in 697 cells overexpressing LILRB1 (Fig. 6A).
Furthermore, LILRB1 CAR-T cells exhibited no cytotoxic effects
against LILRB1-negative B-NHL cells (Supplementary Fig. 5C) as
well as non-hematologic LILRB1-negative cells, such as breast and
hepatocellular carcinoma cell lines (Supplementary Fig. 5D, E).
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Subsequently, we compared the cytotoxic effects of LILRB1 CAR-T
cells with CD19 CAR-T cells against KMT2A-r B-ALL PDX with
varying LILRB1 levels. LILRB1 CAR-T cells exhibited cytotoxicity
against four PDX samples (PDX#1-PDX#4), which was comparable
to CD19 CAR-T cells cytotoxicity (Fig. 6B), consistent with their
high LILRB1 and CD19 levels (Supplementary Fig. 5F). Conversely,
lower cytotoxicity of LILRB1 CAR-T cells as compared to CD19 CAR-
T cells was observed in samples PDX#5 and PDX#6 (Fig. 6B), which
expressed low LILRB1 levels (Supplementary Fig. 5F). To evaluate
the potential of LILRB1 CAR-T cells in targeting CD19-negative
relapses, we developed CD19 knockout (CD19 KO) cell line
models. Our analysis revealed that LILRB1 expression remained
stable in CD19-negative cells (Supplementary Fig. 5G). While CD19
KO cells exhibited complete resistance to CD19 CAR therapy, they
were effectively eliminated by LILRB1 CAR-T cells (Fig. 6C, D).
Furthermore, LILRB1 CAR-T cells potently killed Raji cells resistant
to CD19 CAR-T cells (Fig. 6E) that aligned with the preserved
LILRB1 expression (Fig. 4B). Altogether, our findings confirm the
specificity of LILRB1 CAR-T cells and demonstrate that their
cytotoxicity corresponds with LILRB1 levels on target cells.
To validate the functionality of generated LILRB1 CAR-T cells, we

tested their degranulation in the presence of cells expressing high
LILRB1 levels (SD-1). LILRB1 CAR-T cells exhibited pronounced
degranulation, comparable to CD19 CAR-T cells (Fig. 6F), and
released significant amounts of IFNγ and TNFα (Fig. 6G). These
findings collectively demonstrate target-specific degranulation
and cytokine release by LILRB1 CAR-T cells.

LILRB1 CAR-T cells exhibit minimal toxicity against normal
leukocytes apart from monocytes
To assess potential off-tumor toxicity across normal leukocytes, we
conducted co-culture experiments with LILRB1 CAR-T cells and
healthy donor peripheral blood mononuclear cells (PBMC). Flow
cytometry analysis of PBMC subtypes revealed specific depletion
of monocytes by LILRB1 CAR-T cells, with no discernible effects on
B cells, T cells or NK cells (Fig. 6H, Supplementary Fig. 6). Monocyte
depletion was also observed for CD33 CAR-T cells, a therapy
currently tested in clinical trials in AML patients [27]. In contrast,
CD19 CAR-T cells selectively eliminated CD19-expressing B cells
(Fig. 6H, Supplementary Fig. 6). We next assessed the toxicity of
LILRB1 CAR-T cells on normal hematopoiesis in comparison to
CD33 CAR-T cells. CD33 CAR-T cells significantly reduced the
number of colonies derived from erythroid and myeloid
progenitors, whereas bone marrow treated with LILRB1 CAR-T
cells produced a similar number of colonies as the MOCK-treated
group (Fig. 6I). These findings suggest that targeting LILRB1 is
likely to spare normal leukocytes, except for monocytes, and that
LILRB1 CAR-T cells are less myelotoxic than CD33 CAR-T cells,

which remains in accordance with LILRB1 expression profile
(Fig. 2A, C).

LILRB1 CAR-T cells demonstrate anti-B-ALL activity in vivo
To assess the in vivo efficacy of the LILRB1 CAR, we utilized NOD
scid gamma (NSG) mice implanted with RS4;11 B-ALL cells
expressing GFP-luciferase (GFP-luc+) (Fig. 7A). Mice treated with
two doses of either LILRB1 CAR-T cells or CD19 CAR-T cells
exhibited a significant reduction in tumor burden, as measured by
bioluminescent imaging (Fig. 7B, C), and had markedly prolonged
survival compared to those receiving MOCK T cells (Fig. 7D). At the
time of sacrifice, organ analysis showed that mice treated with
LILRB1 CAR-T cells had significantly lower tumor burden in the
spleens compared to the groups after MOCK and CD19 CAR-T
cells, and significantly lower tumor burden in the bone marrow
compared to the group treated with MOCK T cells (Fig. 7E,
Supplementary Fig. 7). Additionally, a significant number of
human CD3+ cells were detected among human cells in the
spleens and bone marrow of the LILRB1 CAR-T cell-treated group
(Fig. 7F). Importantly, RS4;11 tumor cells that relapsed following
CD19 CAR-T treatment continued to express LILRB1 (Fig. 7G).
These findings indicate that LILRB1 CAR-T cells are effective
against B-ALL in vivo and their antitumor efficacy is comparable to
that of CD19 CAR-T cells.

LILRB1 is expressed in monocytic AML, and LILRB1 CAR-T cells
eliminate monocytic AML both in vitro and in vivo
Considering the abundant expression of LILRB1 in monocytes, we
also checked LILRB1 mRNA levels in various AML subtypes from
the BeatAML2 study [28] deposited in the Genotype and
Phenotype (dbGaP) database (study phs001657.v3.p1). We found
LILRB1 expression generally lower than CD33 across subtypes, with
the highest expression observed in monocytic/monoblastic/
myelomonocytic AML and AML with chromosome 6 abnormalities
(Fig. 8A, Supplementary Fig. 8A). Next, we evaluated LILRB1 surface
protein levels in AML cell lines and monocytic AML primary cells.
Consistent with mRNA data, the highest levels of LILRB1 protein
were found in monocytic (U937) and bi-phenotypic B-myelomo-
nocytic (MV4;11) cell lines (Fig. 8B) as well as in M5 AML primary
cells (Fig. 8C, Supplementary Table 6). Accordingly, we observed
potent in vitro killing of LILRB1-expressing AML cell line (U937) by
LILRB1 CAR-T cells (Fig. 8D) and prominent cytokine release
(Fig. 8E).
Finally, we investigated the in vivo efficacy of LILRB1 CAR-T

cells in AML using an aggressive model of U937 cells in NSG mice.
Mice treated with two doses of either LILRB1 CAR-T cells or CD33
CAR-T cells (Fig. 8F) exhibited a robust response, as evidenced by
reduced leukemic burden observed through bioluminescent
imaging (Fig. 8G, H) and significantly prolonged survival
compared to MOCK T cells treatment (Fig. 8I). To assess LILRB1
levels on cancer cells post-CAR treatment, we isolated spleens
from the mice at the time of sacrifice. Although LILRB1 levels in
U937 cells were much lower in vivo than in vitro, they were stable

Fig. 4 LILRB1 remains stably expressed in malignant B-cells that are resistant to prior lines of immunotherapy. A LILRB1 expression was
evaluated by flow cytometry on B-NHL cell lines (Ramos, RL) with developed in vitro resistance to RTX20. The cells were stained with anti-
LILRB1 Ab. MFI for each sample is shown next to the corresponding histogram. B LILRB1 expression was evaluated by flow cytometry on
B-NHL cells (Raji) with developed in vitro resistance to CD19 CAR-T cells (CD19 CAR-T res) and compared to parental Raji cells and the cells
exposed to unmodified T cells (control). The cells were stained with anti-LILRB1 Ab. MFI for each sample is shown next to the corresponding
histogram. C Box plots showing mRNA expression levels of LILRB1, CD19, CD22, and MS4A1 in eight patients with matched RNA-seq data at
diagnosis and post-relapse from CD19 CAR-T therapy as described in Orlando et al. [2]. Raw counts were extracted from BAM21

files deposited
in the SRA22 under accession number PRJNA451298 and normalized. D LILRB1 and CD19 protein levels were assessed by flow cytometry in
B-ALL cells before CD19 CAR-T therapy and after relapse. Normal T and NK cells served as negative controls. The MFI values are displayed near
the histograms. E LILRB1 and CD19 protein levels were assessed by flow cytometry in treatment-refractory B-ALL cells following one cycle of
blinatumomab treatment. LILRB1 expression was evaluated on both CD19+ and CD19- cells, with results shown on separate histograms.
Normal T and NK cells served as negative controls. The MFI values are displayed near the histograms. In (A, B, D, E), clone HP-F1 of the anti-
LILRB1 Ab was used.

20Rituximab
21Binary Alignment Map
22Short Reads Archive
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across treatment groups (Supplementary Fig. 8B, C). Collectively,
these results show that LILRB1 CAR-T cells effectively reduce
leukemic burden and prolong survival in this aggressive
AML model.

DISCUSSION
In this study, we identified LILRB1 as a novel target for CAR-T cell
immunotherapy of hematologic malignancies. LILRB1, primarily
expressed in lymphoid tissue, belongs to the group of immune
inhibitory receptors that bind MHC class I molecules to transmit

inhibitory signals [29, 30]. Blocking antibodies targeting LILRB1-
mediated signaling have previously been shown to enhance NK
cell antitumor activity and tumor cell killing [30, 31]. Herein, we
demonstrate that LILRB1 is expressed in various hematological
malignancies, including B-ALL, B-NHL, as well as monocytic AML.
Previous studies have also reported LILRB1 expression in B-ALL
and monocytes [32, 33]. Notably, LILRB1 shows minimal expres-
sion outside the lymphoid compartment, enhancing its suitability
as an immunotherapy target. Herein, we present that CAR-T cells
targeted against LILRB1 specifically kill LILRB1-expressing tumor
cells both in vitro and in vivo while sparing LILRB1-negative cells.
LILRB1 expression profile in normal tissues is suitable for

targeting by CAR. It is minimally expressed in activated T cells and
CAR-T cells, thus enabling efficient CAR-T cell generation.
Furthermore, it is expressed at low levels on HSCs, HSPCs, and
mature granulocytes, potentially reducing the risk of treatment-
related immunosuppression. While hematopoietic cell transplan-
tation (HSCT) is a recognized cure for myelotoxicity, it carries
significant risks. The need for HSCT post-CAR-T therapy varies by
disease type, largely due to the differences in the distribution of
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Fig. 5 Generation of LILRB1 CAR-T cells and preliminary in vitro efficacy testing. A A scheme representing modular structure of generated
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into a second-generation CAR backbone comprising CD8 hinge, CD8 transmembrane domain, and 4-1BB-CD3ζ signaling tail. B Efficiency of
primary T cells transduction with CAR constructs. The expression of LILRB1 CARs was evaluated by staining the cells with anti-CD34 Ab, CD19
CAR presence was confirmed using anti-mFab25 Ab. Data shows means ± SD26 from n= 6 donors. C Cytotoxicity of LILRB1 CAR-T cells against
B-cell leukemia (SD-1) and lymphoma (DHL-4) cells was assessed by flow cytometry-based killing assay. CAR-T cells and CTV27-labeled target
cells were co-cultured for 24 h at 1:1 E:T28 ratio. The samples were then stained with PI29, and the percentage of dead CTV+PI+ target cells was
determined. Data shows mean ± SD from n= 3 donors, P values were calculated using ordinary one-way ANOVA with Tukey’s multiple
comparisons test (MOCK vs. CAR-T and various CAR-T comparisons). D Cytotoxicity of LILRB1 CAR-T cells against B-cell leukemia (SD-1, RS4;11)
and lymphoma (DHL-4) cells was assessed using a luciferase-based killing assay. CAR-T cells and luciferase-expressing target cells were co-
cultured for 24 h at a 1:1 E:T ratio. The percentage of dead target cells was determined by measuring the decrease in luminescence signal. Data
represent mean ± SD from n= 3 donors. P values were calculated using ordinary one-way ANOVA with Tukey’s multiple comparisons test
(MOCK vs. CAR-T and various CAR-T comparisons). E Cytotoxicity of LILRB1 CAR-T cells against KMT2A-r B-ALL PDX cells was assessed by
luciferase-based killing assay. CAR-T cells and luciferase-expressing target cells were co-cultured for 24 h at 0.5:1 E:T ratio. The percentage of
dead target cells was determined by measuring the decrease in luminescence signal. Data shows mean ± SD from n= 3 donors, P values were
calculated using ordinary one-way ANOVA with Tukey’s multiple comparisons test (MOCK vs. CAR-T and various CAR-T comparisons).
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24Monoclonal Antibody
25Murine Antigen Binding Fragment
26Standard Deviation
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antigens targeted by CARs. In B-ALL and B-NHL, post- CAR-T HSCT
can be beneficial but also poses serious toxicity risks, particularly
in adult patients, therefore, it is most often considered after CAR-T
treatment failure [34, 35]. In AML, CD33 CAR-T cells target HSPCs
and CD33-expressing neutrophils, leading to marrow hypoplasia

and severe neutropenia, often making HSCT necessary [36].
Emerging strategies, such as drug-regulated CD33 CARs [37] or
combinatorial approaches [38], show promise in reducing
HSPC toxicity. LILRB1 CAR-T cells offer a distinct advantage by
sparing HSCs and neutrophils, potentially avoiding severe
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immunosuppression and providing a safer alternative to currently
tested CAR-T therapies in AML.
In this study, we constructed two different LILRB1-specific CAR

molecules, 2115 and 2116, based on two clones of anti-LILRB1
mAbs: HP-F1 and #292305, respectively. T cells expressing the
2116 CAR construct were significantly more efficient in killing
LILRB1-expressing cells. Given the substantial differences in the
variable regions of the heavy chains of these two antibody clones
(data not shown), we speculate that they bind different LILRB1
epitopes. In accordance with previously published work, this may
affect the immune synapse structure and, consequently, CAR
efficacy [39]. Focusing on the more efficient 2116 variant, we
conducted extensive preclinical validation of the LILRB1 CAR-T
cells both in vitro and in vivo. Based on our results, we
demonstrate for the first time that LILRB1 is a viable target for
immunotherapy and propose LILRB1 CAR-T cells as a prototype
for a novel strategy applicable across various hematologic
malignancies.
To assess the applicability of LILRB1 CAR-T cells as a salvage

therapy, we employed cell lines resistant to previous treatments.
Since rituximab plus chemotherapy (R-CHOP) is a first-line

treatment for lymphoma, we used two distinct RTX-resistant cell
lines. Notably, these cell lines showed upregulation of LILRB1
compared to controls, supporting LILRB1’s utility as a target in
RTX-resistant patients. Furthermore, given that CD19-directed
immunotherapy is effective long-term only in about 50% of
patients, we used a CD19 CAR-T-resistant cell line generated by
exposing it to CD19 CAR-T cells over multiple cycles, mirroring
clinical data where resistance may result from CD19 loss. In this
model, CD19 loss was accompanied by disturbances in pathways
related to lymphocyte proliferation, activation, and adhesion [26],
while LILRB1 expression remained stable. Importantly, LILRB1
expression was preserved in primary cells from patients with
CD19-negative relapses after previous CD19-targeted therapies.
Our findings align with a recent study identifying LILRB1 as a
marker of CD19-negative B-ALL lymphoblasts that relapsed after
CD19 CAR-T therapy [40]. Moreover, our retrospective analysis of
patients previously treated with CD19-targeting immunotherapy
revealed that CD22 is often lost or downregulated along with
CD19, as reported before [11], while CD20 is typically expressed at
low levels. These observations suggest that CD22 and CD20
may not always be optimal targets. Therefore, LILRB1 CAR-T
cells could be particularly beneficial for patients resistant to
previous treatments, providing an alternative to other CAR-T cells
tested in preclinical studies, targeting CD72, CD79a, or CD79b
[7, 8, 41].
LILRB1 CAR-T cells may also be useful for treating B-ALL cases

with a lymphoid-to-myeloid lineage switch. Although rare in
pediatric B-ALL cases treated with chemotherapy [42], lineage
switch or myeloid feature acquisition occurs in up to 10% of
patients treated with CD19-directed immunotherapy [13, 14].
B-ALL cells, originating from committed pre-B cells or earlier
progenitors, can reprogram into other hematopoietic lineages,
often adopting a monocytic or myelomonocytic phenotype [14].
Prolonged CD19-directed immunotherapy can induce lineage
switching, characterized by loss of B-cell markers (CD19, CD22,
B220) and appearance of myeloid markers (CD33, Gr1, CD11b)

Fig. 6 LILRB1 CAR-T cells demonstrate target specificity and functionality after antigen stimulation. A Cytotoxicity of LILRB1 CAR-T cells
against B-ALL cells (697) genetically modified to overexpress LILRB1 was assessed by flow cytometry-based killing assay. CAR-T cells and CTV-
labeled target cells were co-cultured for 24 h at 1:1 E:T ratio. The samples were then stained with PI, and the percentage of dead CTV+PI+

target cells was determined. Data shows mean ± SD from n= 3 donors, P values were calculated using two-way ANOVA with Tukey’s multiple
comparisons test (MOCK vs. CAR-T cells in each group and CAR-T vs. control or modified cell line). B Cytotoxicity of LILRB1 CAR-T cells against
6 KMT2A-r B-ALL PDX cells was assessed by flow cytometry-based killing assay. CAR-T cells and CTV-labeled target cells were co-cultured for
24 h at 0.5:1 E:T ratio. The samples were then stained with PI, and the percentage of dead CTV+PI+ target cells was determined. Data shows
mean ± SD from n= 2–3 donors, P values were calculated using ordinary one-way ANOVA with Tukey’s multiple comparisons test (MOCK vs.
CAR-T and various CAR-T comparisons). C Cytotoxicity of LILRB1 CAR-T cells against B-ALL cells (RS4;11) with CD19 KO30 was assessed using a
luciferase-based killing assay. CAR-T cells and luciferase-expressing target cells were co-cultured for 24 h at a 2:1 E:T ratio. The percentage of
dead target cells was determined by measuring the decrease in luminescence signal. Data shows mean ± SD from n= 3 donors, P values were
calculated using two-way ANOVA with Tukey’s multiple comparisons test (CAR-T vs. control or CD19 KO cell line). D Cytotoxicity of LILRB1 CAR-
T cells against B-NHL cells (Ramos) with CD19 KO was assessed by flow cytometry-based killing assay. CAR-T cells and CTV-labeled target cells
were co-cultured for 24 h at 2:1 E:T ratio. The samples were then stained with PI, and the percentage of dead CTV+PI+ target cells was
determined. Data shows mean ± SD from n= 3 donors, P values were calculated using two-way ANOVA with Tukey’s multiple comparisons test
(CAR-T vs. control or CD19 KO cell line). E Cytotoxicity of LILRB1 CAR-T cells against Raji cells resistant to CD19 CAR-T cells was assessed using a
luciferase-based killing assay. CAR-T cells and luciferase-expressing target cells were co-cultured for 24 h at 5:1 E:T ratio. The percentage of
dead target cells was determined by measuring the decrease in luminescence signal. Data shows means ± SD from n= 3 donors, P values
were calculated using two-way ANOVA with Tukey’s multiple comparisons test (MOCK vs. CAR-T cells in each group and CAR-T vs. control or
resistant cell line). F Degranulation of LILRB1 CAR-T cells was assessed by flow cytometry. CAR-T cells and target cells (SD-1) were co-incubated
for 18 h at 1:2 E:T ratio, in the presence of anti-CD107a Ab. Next, the samples were stained with anti-CD3 Ab, and the percentage of
CD3+CD107a+ T cells was determined. Data shows mean ± SD from n= 4 donors, P values were calculated using ordinary one-way ANOVA
with Tukey’s multiple comparisons test (MOCK vs. CAR-T and CAR-T comparison). G. Cytokine release by LILRB1 CAR-T cells was evaluated
using ELISA31 assay. CAR-T cells and target cells (SD-1) were co-incubated for 24 h at 1:2 E:T ratio. The concentration of IFNγ32 and TNFα33 was
then measured in the culture medium. Data shows mean ± SEM34 from n= 3 donors, P values were calculated using ordinary one-way ANOVA
with Dunnett’s multiple comparisons test (MOCK vs. CAR-T). H Cytotoxicity of LILRB1 CAR-T cells against normal PBMC35 was assessed by flow
cytometry. CFSE36-labeled CAR-T cells were co-incubated with PBMCs for 24 h at 1:2 E:T ratio. The samples were then stained with anti-CD19,
anti-CD56, anti-CD3, and anti-CD14 antibodies to determine the approximate percentages of B-cells (CD19+ cells), monocytes (CD14+ cells),
T cells (CD3+ cells), and NK cells (CD56+ cells). Data shows mean ± SD from n= 4 donors, P values were calculated using ordinary one-way
ANOVA with Dunnett’s multiple comparisons test (MOCK vs. CAR-T). I CFU-E37, BFU-E38, CFU-GM39, and CFU-GEMM40 colonies were counted
upon co-culture of 2.0 × 105 BMNC41 with 2.0 × 106 CAR-T cells respectively (E:T ratio of 10:1) for 6 h, followed by plating in methylcellulose and
incubated for 14 days at 37 °C (n= 3; technical replicates).

30Knockout
31Enzyme Linked Immunosorbent Assay
32Interferon Gamma
33Tumor Necrosis Factor Alpha
34Standard Error Of The Mean
35Primary Peripheral Blood Mononuclear Cell
36Cell trace™ Carboxyfluorescein Succinimidyl Ester
37Colony-Forming Unit–Erythroid
38Burst-Forming Unit–Erythroid
39Colony-Forming Unit–Granulocyte, Macrophage
40Colony-Forming Unit–Granulocyte, Erythrocyte, Monocyte,
Megakaryocyte

41Bone Marrow Mononuclear Cell
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[43]. Instances of myeloid lineage switching have been docu-
mented following blinatumomab and CD19 CAR-T treatments
[44–46]. In these scenarios, LILRB1 CAR-T cells could offer a
valuable alternative to already existing therapies.
LILRB1 CAR-T cells also offer a promising treatment option for

monocytic and mixed-lineage AML. Our findings show that LILRB1

is highly expressed in normal monocytes and monocytic AML
primary cells, and LILRB1 CAR-T cells effectively eliminate these
cells in preclinical in vitro and in vivo models. Monocytic AML (M5
by FAB classification) is a difficult-to-treat, life-threatening
malignancy, constituting about 10% of AML cases. M5 AML cells
exhibit increased resistance to venetoclax, with relapses showing
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a monocytic phenotype in around 30% of patients, resulting in
reduced overall survival compared to non-M5 AML cases [47].
Given the need for effective immunotherapy targets for monocytic
AML, several candidates such as CD64 [48], LILRB4 [49], and CLL1
[50] have been preliminarily evaluated. However, it should be
highlighted that no sustainable efficacy in patients has been
demonstrated so far with any of the currently tested CAR-T
therapies in AML [18]. Although still in early stages of develop-
ment, LILRB1 CAR-T therapy represents a promising alternative to
existing strategies to be tested in further preclinical studies and
clinical trials.
Finally, as LILRB1 is expressed in monocytes and macro-

phages, both broader applicability and potential toxicities of
LILRB1 CAR-T cells can be anticipated. On one hand, eliminating
non-classical monocytes and tumor-associated macrophages
could enhance the efficacy of other cancer therapies, particularly
in tumors with monocyte/macrophages accumulation, which is
linked to poor survival [51–53]. This approach is being explored
in clinical trials targeting macrophage receptor CSF1R [54]. On
the other hand, LILRB1 expression on Kupffer cells raises
concerns about hepatic toxicity, similarly to the risks associated
with CD33-targeting therapies. CD33 is also expressed on
Kupffer cells, and severe hepatic toxicity, including veno-
occlusive disease, has been reported with CD33-targeting
antibody-drug conjugates, but this toxicity was attributed to
the calicheamicin component rather than the targeting of
Kupffer cells [55]. Importantly, such toxicity has not been
observed in early-phase clinical trials of CD33 CAR-T cells
[27, 36]. Nonetheless, potential hepatic toxicity with LILRB1 CAR-
T therapy remains a concern and warrants further investigation
in preclinical models.
In conclusion, we have developed LILRB1 CAR-T cells effective

against B-ALL, B-NHL, and monocytic AML. Our research highlights
the potential of LILRB1 CAR-T cells to overcome the limitations of
current immunotherapies, particularly for patients resistant to
CD19-directed treatments or those with monocytic AML, which
currently lack CAR-T options. We identified an effective scFv in the
standard 41BB-CD3ζ CAR format. Future efforts will focus on
refining the scFv and exploring its integration into alternative CAR
backbones to enhance therapeutic efficacy. Furthermore, scaling
up LILRB1 CAR-T cell production will be a critical step in advancing
toward first-in-human clinical trials.

MATERIALS AND METHODS
Cell surface protein labeling
PDX generation is described in the Supplementary Methods. Prior to cell
surface protein labeling of B-ALL PDX cells, red blood cell lysis was
performed on splenocyte suspensions using ACK Lysing Buffer (Thermo
Fisher Scientific, cat. no. A1049201). The samples used for subsequent
steps contained at least 90% of human cells. Next, 90 × 106 cells were
washed twice with ice-cold PBS and incubated with 0.5 mg/ml EZ-Link™
Sulfo-NHS-LC-Biotin (Thermo Fisher Scientific, cat. no. 21335) in ice-cold
PBS on a rocking platform for 2 h at 4 °C. Non-biotinylated control cells
were incubated with PBS under the same conditions. After centrifugation
at 300 × g for 5 min, the pellet was resuspended in 100 mM glycine to
quench the biotinylating reaction. Next, the cells were washed twice with
ice-cold PBS, pelleted, and lysed in the Lysis buffer (2% NP-40, 1% Triton
X-100, 10% glycerol in PBS) containing EDTA-free protease inhibitors
(Roche, cat. no. 04693159001) for 30 min on ice with intermittent
vortexing. The cell lysates were centrifuged at 10,000 × g for 2 min at
4 °C, the supernatant was transferred to a new tube and used for
purification of biotinylated proteins on NeutrAvidin Agarose resin (Thermo
Fisher Scientific, cat. no. 29201). For each PDX, the biotinylated samples
for MS analysis were prepared in 4 technical replicates, while non-
biotinylated control samples were prepared in duplicates. Before use,
75 µl of NeutrAvidin Agarose resin was washed twice with the Lysis buffer.
The clarified supernatant containing 300 µg of protein was added to the
resin and incubated on a rocking platform for 2 h at RT. Unbound proteins
were removed by centrifugation for 1 min at 1000 × g and repetitive
washing: 3 times with 800 µL of Lysis Buffer, then 5 times with 800 µL of
Wash Buffer (100 mM Tris-HCl pH 8 in high-grade ultrapure H2O), then 5
times with 800 µL of 100 mM ammonium bicarbonate (ABC) in high-grade
ultrapure H2O.

CAR constructs
The cloning of CAR constructs was performed as previously described [56].
Briefly, sequencing of two mouse anti-LILRB1 antibodies (clone HP-F1 and
clone #292305) was performed by Rapid Novor (Kitchener, Ontario,
Canada). Two anti-LILRB1 scFv were ordered as DNA fragments (Eurofins)
encoding for the variable domains of the heavy and light chains joined by
linkers. Anti-LILRB1 scFv DNAs were cloned into a vector containing a CD8
hinge, a CD8 transmembrane domain, a 41BB co-signaling, and a CD3ζ
signaling domain, linked by a 2 A ribosome skipping peptide to a
truncated CD34 protein to enable verification of transduction efficiency
[57]. LILRB1 CARs were expressed from a pMP71 retroviral vector. Anti-
CD19 (fmc63-based) and anti-CD33 scFv-containing CAR constructs’ design
was already described [57]. Overall, both constructs hold the same
structure as LILRB1 CAR with CD8 hinge, CD8 transmembrane, 41BB co-
signaling, and CD3ζ signaling domains.

Animal studies testing CAR-T cells activity
All performed animal experiments complied with the EU Directive 2010/
63/EU and the Polish legislation for animal experiments of the
Polish Ministry of Science and Higher Education (February 26, 2015). The
2nd Local Ethical Committee for Experiments on Animals in Warsaw
accessed the project and approved the use of animals in this study

Fig. 7 LILRB1 CAR-T cells exhibit in vivo efficacy against LILRB1+ B-ALL cells. A A scheme representing the design of the experiment
evaluating the in vivo efficacy of LILRB1 CAR-T cells. NSG42 mice were injected iv43 with 3.0 × 106 of luciferase-expressing RS4;11 cells. On days
3 and 6 after the injection of cancer cells, the mice were treated with two doses, each of 5.0 × 106 of CAR-T cells. The tumor development was
monitored using IVIS44 imaging system. B Representative images of the mice with developing tumors were obtained from the IVIS imaging
system on days 3, 14, 24, 38, 46, and 53 following RS4;11 cells injection. The radiance scale demonstrates bioluminescence intensity. C The
quantification of tumor development was performed based on the measured bioluminescence from a region of interest drawn over each
animal and is presented as the mean ± SD of total flux signal (n= 5–7/group) over time. P values were calculated for the results obtained up to
day 38 using two-way repeated measures ANOVA with Dunnett’s multiple comparisons test (MOCK vs. CAR-T). The P values on day 38 are
displayed on the graph. D Event-free survival depicted on Kaplan–Meier survival plot. Curve comparison was done by log-rank (Mantel–Cox)
test. E The percentage of RS4;11 cells among all analyzed cells present in the spleens and bone marrow of the mice following the treatment
was determined based on flow cytometry analysis at the day of sacrifice. Human cancer cells were defined as cells negative for murine CD45
(mCD45) antigen and human CD3 antigen. Data shows mean ± SEM from n= 4–7 mice, P values were calculated using ordinary one-way
ANOVA with Tuckey’s multiple comparisons test. F The percentage of human T cells residing in the spleens and bone marrow of the mice
following CAR-T treatment was determined based on flow cytometry analysis. Human CD3+ cells were gated out from the cell population
negative for murine CD45 antigen. Data shows mean ± SEM from n= 4–7 mice, P values were calculated using ordinary one-way ANOVA with
Tuckey’s multiple comparisons test. G LILRB1 surface expression on the RS4;11 cells obtained from spleens and bone marrow of the mice
following CAR-T treatment was assessed by flow cytometry.

42Nonobese Diabetic (NOD) Severe Combined Immunodeficiency
(SCID) Gamma Mouse
43Intravenously
44In-Vivo Imaging System
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(WAW2/042/2023 and WAW2/077/2024). Pre-defined exclusion criteria
were applied according to the ARRIVE guidelines. The NOD.Cg-Prkdcscid

Il2rgtm1Wjl/SzJ (NSG) mice (Charles River Laboratories, Wilmington, MA,
USA) were in-house bred and maintained in a controlled specific
pathogen-free animal facility with IVC systems. All experiments were
performed using female mice aged 8–12 weeks. The sample size was

calculated using the resource equation approach [58] or power analysis.
For the evaluation of CAR-T cells efficacy against B-ALL, each mouse was
injected via tail vein with 3 × 106 RS4;11 cells stably expressing luciferase
(RS4;11-luc). In vivo, bioluminescence was evaluated three days after
cancer cells engraftment, and the mice were randomly allocated to control
and treatment groups (5–7 mice per group). On the same day, the mice
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were injected via tail vein with 5.0 × 106 unmodified T cells (MOCK), CD19
CAR-T cells, or LILRB1 CAR-T cells depending on the group. The second
dose of MOCK or CAR-T cells was administered on day 6 post-engaftment.
The in vivo imaging was performed twice a week. For the evaluation of
CAR-T cells efficacy against AML, the mice were injected via tail vein with
0.5 × 106 U937 cells stably expressing luciferase (U937-luc). In vivo
bioluminescence was evaluated one day after cancer cells engraftment,
and the mice were randomly allocated to control and treatment groups
(6–7 mice per group). On the same day, depending on the group, the mice
were injected with 5.0 × 106 MOCK T cells, CD19 CAR-T cells, or LILRB1 CAR-
T cells via the tail vein. The second dose of MOCK or CAR-T cells was
administered on day 4 post engraftment. No blinding was applied during
the outcome assessment (analysis of bioluminescence). The in vivo
imaging was performed three times per week. In both experiments, in
addition to bioluminescence detection, the mice were controlled for other
signs of illness, including body weight loss, ruffled fur, hind paw reflex loss,
reduced movement, and lethargy. The mice were sacrificed when they
reached predefined humane endpoint criteria. The organs (spleens and
bone marrow) were collected and analyzed on the same day.
The detailed description of other methods is provided in Supplementary

Information.

DATA AVAILABILITY
Proteomic MS data have been deposited to the PRIDE database and will be accessible
upon manuscript publication under the accession number PXD058992. Data files will
be made available upon reasonable request to the corresponding authors.
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