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Abstract: The topic of this work is gene expression and its score according to various

factors analyzed globally using machine learning techniques. The expression score (ES) of

genes characterizes their activity and, thus, their importance for cellular processes. This

may depend on many different factors (attributes). To find the most important classifier,

a machine learning classifier (random forest) was selected, trained, and optimized on the

Waikato Environment for Knowledge Analysis WEKA platform, resulting in the most

accurate attribute-dependent prediction of the ES of Saccharomyces cerevisiae genes. In

this way, data from the Saccharomyces Genome Database (SGD), presenting ES values

corresponding to a wide spectrum of attributes, were used, revised, classified, and balanced,

and the significance of the considered attributes was evaluated. In this way, the novel

random forest model indicates the most important attributes determining classes of low,

moderate, and high ES. They cover both the experimental conditions and the genetic,

physical, statistical, and logistic features. During validation, the obtained model could

classify the instances of a primary unknown test set with a correctness of 84.1%.

Keywords: gene expression score; Saccharomyces cerevisiae; random forest classifier; machine

learning; AI

1. Introduction

Gene expression is a manifestation of a gene’s role in a cell, usually through the

processes of RNA transcription and protein synthesis [1]. It is, therefore, a manifestation

of the “movement” of the biochemical machinery in the process of life. Gene expres-

sion may be divided into the following stages: signal transduction, chromatin remod-

eling, transcription, posttranscriptional modification, RNA transport, translation, and

mRNA degradation. There are many views on what controls protein expression, which can

be studied [2]. At the level of molecular biology, three determinants of this phenomenon

are widely recognized [3], i.e., transcriptional regulation, e.g., by transcription factors and

structural DNA properties [4]; the modulation of the transcription machinery, e.g., by ac-

cessory factors [5] and ligands [6]; and epigenetic structural influence, e.g., involving the

chromatin remodeling process [7]. All of these are focal points of interest in cell biology

and have recently been intensively investigated, mainly because of the development of

large repositories that collect exabytes of gene expression data.

The measurement of the activity of the expression of thousands of genes at once (gene

expression profiling) to create a global picture of cellular function or to show how the cells
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react to a particular treatment is possible with the technology of DNA microarrays [8]

or RNA-Seq [9].

Gene expression at the cellular level may be quantitatively characterized by the abun-

dance or the so-called expression score (ES). The first one, i.e., the number of copies of a

protein molecule in a cell, is an absolute physical quantity. The second one is a transformed

relative measure. It is calculated as a log2 ratio, where the ratio represents the normalized

detection amount, i.e., the quantity divided by the control value, or by the average value

across all conditions [10].

Abundance may be a useful parameter in the biophysical modeling of biological

processes [11], and the expression score may be a key parameter in bioinformatics predic-

tion, classification, and comparative analysis [12]. In this work, the second approach was

chosen as more universal in relation to various conditions.

Owing to the relatively high cost of gene expression profiling, the parameters men-

tioned above have been predicted theoretically, considering the kinetics of ribosome

action [13], the Bayesian network of mRNA-related features [14], and the correlation be-

tween landmark and target genes [15].

There are many views on what governs protein expression, some of which were

presented at the beginning of the introduction. Our work is a proposal for an original look

at this topic and indicates the most important factors with the participation of machine

learning (ML). To achieve this goal, we attempted to predict the ES of S. cerevisiae cells

on the Weka platform with the hope of revealing important factors associated with this

phenomenon. Therefore, after several attempts, the most effective classifier in the search

was selected: the random forest.

A set of exemplary genetic, physical, statistical, and logistic factors were taken into

account in the evaluation. In short, to achieve our task, which is a type of data mining, we

looked for a suitable classification technique for analyzing the impact of assumed attributes

on the known final result. In the preprocessing stage, with a set of different evaluators

that evaluated the usefulness of attributes in the classification process, e.g., by measuring

the Pearson correlation coefficient or the information gain coefficient with respect to the

class of the expression result, we narrowed the initial set of 472 potential attributes to

19 relevant attributes.

After preliminary trials with different classifiers, the random forest classifier was

selected as the main tool to perform the analysis. The trees of this forest are networks of

nodes and edges that describe decision-making processes.

During the training process, the random forest algorithm analyzes each decision tree

characterized by random sets of attributes assigned to nodes and decision rules assigned

to edges from the point of view of their impact on the final classification decisions for the

entire training set. It can handle both nominal and numerical data and fits a set of decision

trees that are the best in a given classification task.

With the help of this tool, we created an optimal random forest for the classification

of the expression score size and identifying the best decision paths, indicating the most

important cases in a set of important attributes. In our project, we abstracted from a single

gene and specific conditions and analyzed the global picture of the dependence of the gene

expression score on many coexisting factors. Finally, we attempted to reveal the main rules

or chains of relations that determine the intensity of expression. In this way, we developed a

classification model that connects expression scores with basic features of different natures.
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2. Materials and Methods

2.1. Introduction to ML: Basic Concepts

One of the most important advantages of ML [16] is the possible improvement in the

performance of some sets of complex algorithmic tasks. This is why such an approach has

been implemented recently in difficult bioinformatics areas [17]. The improvement comes

mainly from the technique of model training.

ML model training is the process of teaching an algorithm to find specific patterns and

then predict proper outcomes, carried out by exposing it to labeled data. This approach

starts with random parameters that are repeatedly modified to minimize the discrepancy

between its predictions and the training data labels and ends with the validation test of

the final model and then possible predictions (Figure 1). The validation of the final model

may be performed by using the test set of unseen data and/or by k-fold cross-validation,

in which the training set is randomly partitioned into k groups (roughly equal in size), and

then, the algorithm predicts one group each time by training other (k-1) groups. The final

prediction performance is the average of k repeated predictions.

Figure 1. Main stages of machine learning. Cross-validation is an option.

A random forest [18] is a machine learning model that combines multiple decision

trees to predict the data item class in the classification task (Figure 2). Initiating at the

starting node and moving the data items along the tree branches, at each node passed,

a decision is made as to which branch of the tree they should proceed. In practice, it

depends on an algorithmically specified node attribute and its split point value (see below),

according to which the items are sorted. Finally, the items are assigned to the terminal

nodes of the tree, called leaves. If many items labeled by class are sorted by tree (training) in

this manner, the number of representatives of each class in a given leaf can be determined,

and thus, the classes dominating the leaves can be determined. If an item with a formally

nonlabelled or unknown class is tested or predicted by the tree, the dominating class of

the leaf node, which is terminal for the item, may be taken into account as a vote when

further classifying. Therefore, for classification tasks, the forest performs the prediction by

majority voting among all the trained trees, examining the same item. In such an approach,

the “wisdom of crowds” is used, in which the collective decision-making process has the
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property of averaging errors and offering more reliable predictions. This is usually its

advantage relative to individual trees.

Figure 2. Random forest model. In this algorithm, the training dataset is bootstrapped into equal

random samples with replacement. Next, each data sample is used for training the separate tree,

which grows in the process of splitting. Trained trees may be tested or used for the prediction of the

class of new data. The final classification decision is always made by majority voting of all the trees.

Red color indicates the item of interest, and underlining indicates the particular decision.

During the training of the forest of random decision trees, which is an independent

process for each tree, the classifier algorithm chooses (the implementation of the method

known as bagging or bootstrap aggregation) the individual random subset of equal-size

training data (with replacement) for classification by the tree. Next, a given tree is con-

structed, aiming at the greatest degree of differentiation of the split data. It is performed

on the basis of the analyzed data attributes, which are taken as nodes, and the best-split

point values are implemented in the adequate decision rules, which are assigned for the

driving edges (branches). During the process of splitting, at every stage of tree growth,

the child nodes are selected from the random subsets of possible attributes to guarantee

further splitting of the processed data into the subsequent subsets, resulting in a maximal

decrease in the mean impurity of classes, represented by their elements. The tree local

growth continues until the pure node, or the predefined final conditions are reached (e.g.,

maximum depth of the random forest, i.e., the longest path from the root node to the leaf

node). Finally, all the leaf nodes end with a single classification vote, indicating the majority

class.

The majority voting of the forest of trained trees is used in classifying the instances of

the test or the new data. It can handle both categorical and numerical data and offers the

best set of decision trees for a given classification task.

2.2. Main Stages of the Applied Procedure

Today, ML technology operates with a large amount of data. It often requires time-

and cost-consuming preprocessing to ensure the data’s proper quality, uniqueness, rele-

vance, context, and balance and to avoid hidden incomprehensible complexity. To min-

imize the above task for the prediction of ES, we first decided to consider genes from

only 4/16 chromosomes, especially the chosen chromosomes, which represent the diverse

content of genome regions with slow, moderate, and fast replication speeds [19]. Addi-
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tionally, the range of analyzed nucleotides and amino acid sequences for a given gene was

specifically limited to the vicinity of the start codon, covering several tens to hundreds of

items, both on the coding and noncoding sides. Genome segments of this size are long

enough to form RNA stem loops [20] and locally folded protein globular domains [21].

After initial minimalization, but still in the preprocessing stage, we evaluated the

worth of the potential attributes for the classification task. A set of six different kinds

of attribute evaluators from the Waikato Environment for Knowledge Analysis (WEKA)

were used. For example, CorrelationAttributeEval evaluates the value of an attribute by

measuring the correlation (standardized covariance) between it and the class, whereas

GainRatioAttributeEval evaluates the value of an attribute by measuring the information

gain ratio concerning the class. By comparing the average values of differently estimated

worth, we narrowed the set of the 472 attributes to the 19 most essential variables.

To achieve our main task, which is a type of data mining and can benefit from the

application of ML, we tried to choose the best classification technique for analyzing the

impact of the most essential attributes on the expression score. After preliminary trials

with different optional classifiers from WEKA, trained, cross-validated, and independently

tested, a random forest classifier was selected. Its optional hyperparameters were addition-

ally tuned by an empirical process of trial and error, finally defining the optimal tool for

preparing this study. Using the random forest method, we constructed an effective classifier

for the expression score and marked the best decision routes, with the most important

elements in the set of essential attributes indicated.

2.3. The Data Platform for AI

WEKA, Waikato Environment for knowledge analysis version 3.8.5, was applied [22].

2.4. Initial Data

The data (998,000 records) describe the expression score and the 472 prechosen at-

tributes for S. cerevisiae genes located on chromosomes I, VI, XI, and XVI. They include

the results of wild-type yeast heat shock (WTH) experiments [23], ACY142 strain glucose

introduction (Glu) experiments [24], and diamide addition (Dia) to culture experiments [25],

which were taken from the SGD database [26]. In WTH experiments, strains were grown

at 25 ◦C and shifted to 37 ◦C. Samples were taken 0, 5, 15, and 30 min after the shift. In

Glu experiments, cells were exposed to 2% glucose for 20, 90, or 150 min. In Dia experi-

ments, 1.5 mM diamide (Sigma, St. Louis, MO, USA) was added to the culture, and samples

were recovered at 5, 10, 20, 30, 40, 60, and 90 min. The attributes were chosen according to

personal experience and the previous knowledge of the authors to cover many levels of

cellular organization and their relationships with the environment and experiments. The

nominal attributes were as follows: Exp{WTH, Glu, Dia} is the experiment type; Chro{I, VI,

XI, XVI} is the order number of chromosomes; Fun{1. . .358} is the function assigned on the

basis of the recommended three-letter gene name; Ii{A, T, G, C} is the first ten 5’terminal

bases of the 5’UTR (->3’ direction) (Figure 3); Ui{A, T, G, C} is the bases of the 5’UTR in the

fifty subsequent positions directly adjacent to the start codon (->5’ direction); Si{A, T, G, C}

is the subsequent bases at the first three hundred positions of the coding sequence; and

AAi{A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W} is the first one hundred subsequently

coded amino acids, according to the universal genetic code [27]. The numeric attributes

were as follows: 5’UTRL, the length of the 5’ untranslated region; TransL, the length of

the transcript; ProtL, the length of the protein-coding sequence; MM, the molecular mass

of the protein (Da); nA, nT, nG, and nC, the number of adenine, thymine, guanine, and

cytosine residues, respectively, in the analyzed coding sequence (per 300 nucleotides); and

time{5, 10, 15, 20, 30, 40, 50, 60, 90, 150}, the time of the experiment (minutes). The class
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attribute ES expression score from the Gene Expression Omnibus [28] was normalized

and log2 transformed, a measure of the corresponding protein detection. For example, the

attribute that considers chromosome number was evenly chosen such that both small (I, VI)

and large (XI and XVI) chromosomes were selected to characterize the possible dependence

of the expression score on chromosome size.
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Figure 3. Biological mining of genetic type attributes representing nucleotides (Ui and Si) along the

DNA strand and 3-letter nucleotide codons translated into amino acids (AAi) in the process of protein

synthesis, according to the universal genetic code. Always start codon S1S2S3 = ATG and amino

acid AA1 = M (methionine).

All instances were revised against repeatability and incompleteness. As a result,

5793 unique records were preselected, and a histogram of cases was prepared (Figure 4).

These records were randomly divided concerning genes into a training set (5593) and a

test set (200). The last one refers only to the genes absent from the training set.
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Figure 4. Histogram of preselected 5793 expression score (ES) records, where 0 means the

range −0.5 < ES ≤ 0, and 1 means the range 0.5 < ES ≤ 1.

2.5. Data Balancing

The attribute ES, being a real value feature, was replaced by the nominal class attribute

LMH{L, M, H}, according to the following relations:

LMH = L for ES < −1 (1)

LMH = M for −1 ≤ ES ≤ 1 (2)

LMH = H for ES > 1 (3)

Then, both the training set (5593 records) and the test set (200 records) were randomly

balanced to cover the same number of records of a given class, resulting in 3 × 523 and

3 × 21 records, respectively. Balanced sets were assumed in all the following considerations.
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2.6. Attribute Selection

To find the most significant attributes, which best indicate the gene expression classes

of the analyzed records, six WEKA attribute evaluators (weka.attributeSelection), i.e., Gain-

RatioAttributeEval, CorrelationAttributeEval, OneRAttributeEval, InfoGainAttributeEval,

ReliefFAttributeEval and SymmetricalUncertAttributeEval, were applied to the training set,

and the dedicated Ranker search method (weka.attributeSelection. Ranker -T -1.7976931348-

623157E308 -N -1) was chosen. The obtained ranks were normalized (divided by the total

sum for a given evaluator) and averaged in the set of considered evaluators. The full

mean normalized attribute ranking is presented in Figure 5. Only a few ranks of leading

attributes dominate over the rank of 0.005 (the exact values are presented in Table 1). Many

more attributes are poorly distinguished. The top-ranked mean normalized attributes are

of nongenetic meaning, i.e., MM, ProtL, TransL, Fun, nC, and 5’UTRL.

 

0
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0.015
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0.030
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Figure 5. Six WEKA attribute evaluators GainRatioAttributeEval, CorrelationAt-

tributeEval, OneRAttributeEval, InfoGainAttributeEval, ReliefFAttributeEval, and

SymmetricalUncertAttributeEval were applied to the training set, and the Ranker search

method was chosen. The obtained ranks were normalized and averaged in the set of considered

evaluators. The values vs. attribute ranking order are presented. The leading attributes are indicated

by short names.

Table 1. Attribute selection (top ranking).

Mean Normalized Rank Attribute Meaning

0.02741 MM the molecular mass of the protein

0.025221 ProtL the length of the protein-coding sequence

0.017287 TransL the length of the transcript

0.015501 Fun the gene function

0.007004 nC the number of the cytosine

0.006534 5’UTRL the length of the 5’ untranslated region

0.02741 MM the molecular mass of the protein

0.025221 ProtL the length of the protein-coding sequence

The mean normalized ranks for the characteristic groups of attributes are 0.019—physical

properties, 0.009—logistic, 0.005—statistical, 0.003—experimental conditions, and 0.002—genetic.

Owing to the above numeric evaluator findings indicating the overall domination of

the nongenetic attributes, in the following analysis, all the leading nongenetic attributes
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were applied. On the other hand, classification methods may combine many specific de-

cision rules, and then, the context may amplify the strength of the other parameters. To

enable this additional possibility, we also represented the dominant majority of the other

attributes. The arbitrarily added features indicate the experiment type, the chromosome

number, the number of nucleotides of the respective type, and the chosen genetic attributes

of the hypothetical possible meaning in the neighborhood of the start codon (coding and

noncoding positions). The Ii attributes, containing the smallest group (10) of nucleotide

sequence-related attributes, describing the sequence positions relatively far from the start

codon, were first omitted. The final list of analyzed instance attributes (19) and the class

attribute is presented in Table 2 and is divided into selected aspects of features and condi-

tions. The presented attribute order was arbitrarily chosen and conserved in all machine

learning tasks.

Table 2. Final list of analyzed attributes.

Selected Aspects of Features and Conditions Attribute Meaning

Physical properties

TransL
5’UTRL
ProtL
MM

the length of the transcript
the length of the 5’ untranslated region
the length of the protein-coding sequence
the molecular mass of the protein

Experimental conditions
Exp
Time

the experiment type
the time of the experiment

Logistic
Chro
Fun

the order number of chromosome
the gene function

Genetic

U3
U2
U1
AA2
S4
S5
S6

base of the 5’UTR (3rd before start codon)
base of the 5’UTR (2nd before start codon)
base of the 5’UTR (1st before start codon)
amino acid (2nd coded by DNA, 1st after methionine)
base of the coding sequence (4th, 1st after start codon)
base of the coding sequence (5th, 2nd after start codon)
base of the coding sequence (6th, 3rd after start codon)

Statistic

nA
nT
nG
nC

the number of the adenine
the number of the thymine
the number of the guanine
the number of the cytosine

Class LMH the low, moderate, and high expression scores (ES)

3. Results

3.1. Finding the Optimal Model

To find the optimal LMH classification model, first, the ten arbitrarily chosen

WEKA classifiers were trained on the training set, and then, it was tested on the test-

ing set (Table 3). In machine learning, the considered attributes were approved according

to the selection shown in Table 2, and in the fitting, the optional WEKA parameters were

applied. The best attempt was performed via random forest, with one hundred trees

(correctly classified tested instances cci = 77.8%, and 10-fold cross-validation (CV10) for the

training set cci = 83.9%).

To check whether the addition of the other attributes may improve the correctness of

classification with the random forest algorithm, the training and test probes were repeated

twice: the first time, with the 10Ii attributes added (test cci = 63.5%), and the second

time, with all 472 prechosen attributes included (test cci = 41.3%). The resulting lower

correctness (cci) indicated that in the further stages of the research, only the previous

19 selected attributes should be applied.
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Table 3. Summary of classification attempts for the test set. Correctly classified instances, cci [%].

Classifier cci [%] Comments References

ZeroR 33.3
Predicts the mean (for a numeric class) or the mode (for a nominal
class). Constructs a frequency table for the target and select its most
frequent value.

[29]

BayesNet 41.3

Uses various search algorithms and quality measures. Base class for a
Bayes Network classifier. Provides data structures (network structure,
conditional probability distributions, etc.) and facilities algorithms
like K2 and B that are common to Bayes Network learning.

[30]

Logistic 28.6
Constructs and uses a multinomial logistic regression model with a
ridge estimator.

[31]

MultilayerPerceptron 54.0

Uses backpropagation to classify instances. This network can be built
by hand, created by an algorithm, or both. The network can also be
monitored and modified during the training time. The nodes in this
network are all sigmoid (except for when the class is numeric, in
which case the output nodes become unthresholded linear units).

[30]

IBk 44.4
K-nearest neighbors’ classifier. Can select the appropriate value of
K based on cross-validation. Can also conduct distance weighting.

[32]

Kstar 68.3

An instance-based classifier. The class of a test instance is based upon
the class of those training instances similar to it, as determined by
some similarity function. It differs from other instance-based learners
in that it uses an entropy-based distance function.

[33]

OneR 58.7
Uses the minimum-error attribute for prediction, discretizing
numeric attributes.

[34]

J48 65.1 Generates a pruned or unpruned C4.5 decision tree. [35]

RandomForest 77.8 Constructs a forest of random trees. [36]

RandomTree 42.9

Constructs a tree that considers K randomly chosen attributes at each
node. Performs no pruning. Also has an option to allow the
estimation of class probabilities (or the target mean in the
regression case) based on a hold-out set (backfitting).

[30]

Then, the random forest algorithm with the selected nineteen attributes (Table 2)

was optimized in dozens of arbitrary trials to modify the optional hyperparameters of

the WEKA algorithm to improve the classification results. Since these trials showed the

predominant importance of two parameters, the procedure was shortened, and a systematic

step-by-step search was performed in the range of 1 < seed < 20 and 0 ≤ MaxDepth ≤ 20.

Finally, the key parameters seed = 8 and MaxDepth = 9 were set, and the following

optimized scheme was implemented:

weka.classifiers.misc. InputMappedClassifier -I -trim -W weka.classifiers.trees. Ran-

domForest -- = -P 100 -print -attribute-importance -I 100 -num-slots 1 -K 0 -M 1.0 -V 0.001

-S 8 -depth 9

The above modification increased the number of correctly classified instances of the

test set, up to cci = 84.1% (the training set CV10 cci = 83.5%). The total number of terminal

leaves in the resulting optimal forest is 204,630. This, on average, yields 0.77 assigned

instances per leaf in the forest. In the training process, only 22% of the possible leaves were

used. In the training set, the mean percentage of true positive predictions per applied leaf

was 99.86%.

The analysis of optimal model attribute importance was based on the decrease in

average impurity when a given attribute was included and is presented in Table 4, with

the number of nodes using that attribute. These results were estimated for a full training

set (cci = 100%).
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Table 4. The attribute importance is shown on the basis of the average impurity decrease and the

number of nodes using that attribute for the optimal random forest model.

Importance Number of Nodes Attribute

0.73 6906 Exp
0.61 9276 Time
0.54 712 Fun
0.41 529 ProtL
0.41 717 TransL
0.4 411 MM
0.39 541 5’UTRL
0.39 160 U2
0.37 158 U3
0.37 189 AA2
0.35 150 Chro
0.35 146 S6
0.33 156 U1
0.32 109 nG
0.31 74 S4
0.3 50 S5
0.29 92 nC
0.29 163 nA
0.27 114 nT

A confusion matrix for the final classification test is visualized in Figure 6. The detailed

rates (TPR, FPR, TNR, and FNR) of performance and the total accuracy (ACC) by class are

presented in Table 5. They were calculated with the basic performance metrics, i.e., the

number of true positive (TP), false positive (FP), true negative (TN), and false negative (FN)

classified samples, as follows:

TPR = TP/(TP + FN) (4)

FPR = FP/(FP + TN) (5)

TNR = TN/(TN + FP) (6)

FNR = FN/(FN + TP) (7)

ACC = (TP + TN)/(TP + TN + FP + FN) (8)
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Figure 6. Confusion of the optimal model. The diagonal represents true predictions. The off-

diagonal represents poor and very poor predictions at small and greater distances from the diagonal,

respectively.
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Table 5. Detailed accuracy by class. Classified samples: true positive (TP), false positive (FP),

true negative (TN), and false negative (FN) with the respective rates (R), and total accuracy (ACC).

Class TP FP TN FN TPR FPR TNR FNR ACC

L 18 1 41 3 0.857143 0.02381 0.97619 0.142857 0.936508

M 21 9 33 0 1 0.214286 0.785714 0 0.857143

H 14 0 42 7 0.666667 0 1 0.333333 0.888889

To check the correctness of the predictability of the random forest algorithm in the

case of real values of the expression score, the same optimized model was applied to

the non-nominally, preclassified real-values ES. The correlation coefficients are cc = 0.98,

cc = 0.73, and cc = 0.48 for the full training set (Figure 7), the CV10 training set, and the test

set, respectively.
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Figure 7. Actual values versus those predicted by the random forest classifier for non-classified ES.

Data for the full training set were taken. The correlation coefficient is cc = 0.98.

3.2. Example Topology of the Tree

The initial two levels of the first tree (size 1505, max depth 9) in the optimal random

forest are presented in Figure 8.

≥ ≥ ≥Figure 8. The first tree in the optimal random forest (only 2 levels from 9 are shown). The decision

rules are ProtLength < or ≥2910, MM < or ≥18,913.9 Da, Exp = {Dia, WTH, Glu}, nT < or ≥81.5,

U1 = {A, T, G, C}, Chro = {I, VI, XI, XVI}, AA2 = {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W},

Fun = {1, . . ., 358}. The gray and black triangles represent possible amino acids and functional routes,

respectively. The classification goal requires up to 9 levels.
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3.3. Best-Predicting Routes

The analysis of the training result buffer led to indication routes for the best prediction

of a given class (Table 6) in terms of counts per 1569 training records.

Table 6. The best-predicted routes.

Class Route Attempts False Predictions

L

ProtL < 2910
ProtL ≥ 514.5

nA ≥ 122.5
5’UTRL < 264.5

41 0

M
ProtL ≥ 2910

5’UTRL ≥ 64.5
Exp = Dia

120 0

H

S5 = T
Exp = Dia

U3 = A
ProtL ≥ 469.5
MM < 71,288.1

5’UtrL ≥ 72

71 0

3.4. Finding the Dependence of the Test Classification Correctness on the Presence of the
Selected Attribute

The dependence of the test set classification results on the presence of a given at-

tribute is presented in Figure 9, where the decrease in the number of correctly classified

instances (cci) is shown for the attempts with selected attributes excluded from the model.
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Figure 9. Percentage change in the number of correctly classified tested instances (cci) for the

classification attempts with the exclusion of selected attributes.

4. Discussion

The general goal of our work was to abstract from a single gene a holistic review and

an assessment of the widest possible spectrum of factors that can affect protein expression,

starting with the informational and physical specificity of DNA, whether it is transcribed or

not, and ending with the conditions controlled in the experiment. The scope of our studies

also included nucleotide statistics, DNA localization, and the primary structure of proteins
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and their functions in the cell. The real objectives of our work were to identify the attributes

and leading systems that determine exemplary protein expression in S. cerevisiae, a species

that is very popular in laboratory practice. In this work, the analyzed gene expression

profile was real, and the expression score was chosen as a more universal characteristic than

the abundance, especially concerning various conditions. Our proposal of an original look

at this topic and a comprehensive indication of the most important factors was supported

by the innovative use of artificial intelligence (AI) to perform complex biological, chemical,

and physical analyses.

Gene expression, which is essential for the functioning of a cell, is usually analyzed

by the statistical summarization of sample data and is often presented in histograms or

expression profiles [37]. The expression score is understood as the log2 of the ratio of the

protein level of a given gene to the reference level and is usually the determinant of the

change in gene activity according to the current specific cell function or the response to

environmental stimuli. In this work, the reference level for dual-channel data was typically

loaded as the control; whereas, data from single-channel arrays were normalized with the

average expression for each gene across all conditions [10]. Similar solutions have been

presented in the literature [38–40].

Different data are collectively presented in Figure 4. To indicate the overall dominance

of the S. cerevisiae genes with moderate expression scores (range: 0.5–2 × mean value). This

picture also suggests that, at first approximation, we may consider three levels of gene

expression, i.e., low (L), moderate (M), and high (H) expression scores. In our project, we

abstracted from a single gene and specific conditions and analyzed the global picture of the

dependency of the gene expression score on many coexisting factors. Finally, we attempted

to reveal the main rules or chains of relations determining the expression intensity. In

this way, we developed a classification model that relates expression scores with the basic

features of different natures. In our research performed with WEKA, which is a very

convenient environment for fast data mining, each ES was turned into the trivalent nominal

attribute low–moderate–high (LMH).

In the days before the era of machine learning, the analyzed attributes of the ob-

jects being studied were selected by the investigators in the best possible accordance

with the current state of knowledge. In the above analysis, we decided to include the

advisory help of algorithms in this matter. The initial trials of estimation of the util-

ity of attributes for a planned task with the minimized training set (1569 instances and

472 attributes) based on six WEKA attribute evaluators (i.e., GainRatioAttributeEval, Corre-

lationAttributeEval, OneRAttributeEval, InfoGainAttributeEval, ReliefFAttributeEval, and

SymmetricalUncertAttributeEval) showed the importance of nongenetic features (Table 1,

Figure 5) dominating over a rank of 0.005, and the other attributes were poorly distin-

guished. Among them, the least important group was the group of genetic attributes (mean

normalized rank 0.002). As there was no a priori threshold value of rank considered, we

decided to use all 12 nonsemantic (physical, logistic, statistical, and experimental condi-

tions) variables and only 7 of 460 prechosen genetics (Ii, Ui, AAi, and Si) from potentially

important positions of DNA and protein strain (U3, U2, U1, S4, S5, S6, and AA2). Thus, the

proposed final list of analyzed attributes (Table 2) contains only 19 items. This result comple-

mented the initial minimization and was not challenged by subsequent attempts to extend

the attributes set. Good balancing of the data to cover all considered classes equally resulted

in 1/3 of the instances being correctly classified by the ZeroR majority classifier (Table 3).

Further investigation of the best classifier for LMH resulted in the selection of a random

forest classifier (cci = 77.8%).

The two probes of the extended random forest model, trained and tested with the

addition of the attributes describing the initial sequence (Ii) or all of the prechosen attributes,
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yielded test results of cci = 63.5% and cci = 41.3%, respectively. The small importance of

the initial sequence and other parts of the genes may be surprising. This finding indicates

that, in general, the sequences closer to the start codon for translation, both before and after

translation, are more important than others are. The others may be the main source of the

classification errors in the proposed method.

The not extended but optimized version of the model, with only 22% of possible

leaves assigned (204,630), yields cci = 84.1% in the testing set containing nontrained genes.

A high accuracy result for a relatively small test sample may be due to sampling error

or overfitting, but the similar CV10 result obtained for larger samples shows that this

is not the case. This optimal model favors experimental conditions (Exp and Time) on

the attribute importance list (Table 4) during the training process. Next are the gene

function (Fun) and the physical parameters (ProtL, TransL, MM, and 5’UTRL) of the protein

and transcript, which confirms the initial findings of significant attributes independent

of the classification method (Figure 5, Table 1), except for the statistical attribute nC. The

final result is 16% worse than that for the full training set (100%). Here, the number of true

positives is equal to 18, 21, and 14 for the L, M, and H classes, respectively, per 63 tested

instances (Figure 6, Table 5). A total accuracy (ACC) greater than 0.85 is a good result.

The same random forest model applied to non-nominally, preclassified real values of

the expression score (ES) yields correlation coefficients of cc = 0.98, cc = 0.73, and cc = 0.48

for the full training set, the CV10 training set, and the test set, respectively. This result shows

that even though a more precise method (real values) offers a good explanatory description

of the known results (Figure 7), it may produce a less correct forecast of unknown changes

in the expression score (test set). Such a case suggests possible overfitting (trained fitting to

errors) or a distributional shift in the test data. It seems that nominal classification (L, M, H)

proposed in this paper may minimize these unwanted effects.

An example of a single tree branch shows the root node ProtL with the net of attributes,

both binary and multidirectional, splitting the instances according to the rules represented

by edges (Figure 8). Terminal leaves indicating assigned classes, usually present at deeper

levels, may be filled with drawn and segregated instances or not. If yes, they become

potentially predictive.

The best-predicting routes in the forest contain up to 6 levels (Table 6) and may

repeat the same attributes with differently defined rules (constraints). Here, the most

often used attribute is ProtL. The results show that there are 71 instances in which highly

expressed genes produce proteins that are not shorter than ProtL = 469.5 and lighter than

MM = 71,288.1. They have a 5’UTRL region that is not shorter than 72 and obeys the

genetic rules S5 = T, U3 = A. These effects are especially manifested in experiments with

1.5 mM diamide. The presence of adenine at the -3 position is consistent with the fact that

it most often occurs in the Kozak sequence [41]. Thymine is reported at positions +4 and +6,

giving way to cytosine at position +2. Our results may be specific to diamide-treated cells.

As shown in Figure 9, the estimated importance of the attributes during the

selection (Table 1) and training processes (Table 4) does not translate directly to impor-

tance during the test classification process. Ignoring some genetic attributes (e.g., AA2,

U3, and S5) can seriously decrease the correctness of the final test classification (Figure 9).

This may be related to the absence of test set data in the training, overfitting, or possibly

accidental specific importance of the mentioned genetic attributes in these sets of data,

i.e., amplified by the context (see below). In general, it clearly shows that less numeric

importance is not equivalent to absence, which may prevent the correct analysis of many

complex dependencies, e.g., due to the threshold effects. Thus, despite the genetic attributes

that might not be the most important, they cannot be neglected without consequences.
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The process of model training also reveals the greater importance of the experimental

conditions, i.e., Exp and Time (Table 4), than the functional, physical, logistic, genetic, and

statistical attributes revealed by attribute evaluators, e.g., MM and ProtL (Table 1), which

may be related to contextual dependencies or feature interaction effects not taken into

account by evaluators. This is not confirmed in Figure 9, probably because of the small size

of the test file.

A single decision route of the trained random forest model, from the root to the

terminal leaf, leads through instances, obeys all the attribute constraints along the route,

and assigns them a certain arbitrary given class. For the well-trained model, the ratio

of the number of instances classified in this way into the proper class to the number of

all classification attempts should be close to one. This ratio approximates the conditional

probability of the event in which the instance meeting the conjunction of all route constraints

represents a gene belonging to an algorithmically defined class. It is reciprocal to the

probability of the conjunction, with other parameters remaining constant. The probability

of a specific conjunction may be very small; in this way, the random forest model can use

the information of very specific attribute conjunctions to determine the proper class with a

very high probability of success. As such, it may be very predictive but not too universal.

The best predictions include samples of 41, 120, and 71 items, for a total of 523 items per

class. It also does not reveal the individual impact of a single feature. This is why a random

forest classifier in practice is treated as a “black box”.

The expression score attempt, which considers descriptive attributes, differs from

the abundance attempt, which analyzes the translation process from the point of view of

molecular physics [13]. Thus, from a broader perspective, the discussed optimal model is a

natural complement to a physical model. From this perspective, in general, the primary

structure of DNA determines gene expression to a lesser extent than the experimental con-

ditions, gene function, and the basic physical characteristics of proteins and transcripts. In

particular, protein length is a very useful parameter in the most effective prediction routes.

At first, the claim that the DNA primary structure has a weaker effect on gene expression

than the growth conditions may seem to be contrary to common knowledge [42,43]. How-

ever, it should be remembered that it only refers to the change in expression (k-fold change),

and this may depend on external factors. The authors believe that AI discovers the natural

intelligence of life, which means that cells are not simple automata playing the program

stored on DNA but can respond to the environmental influence adequately to the strength

of the stimulus and their own capabilities and needs.

In accordance with the above, the multilevel depth of the random forest, which predicts

the expression score, indicates the stronger role of the ensemble of factors (attributed along

the route) than single attributes. Moreover, the attributes indicated as the most important

by the ML classifiers differ from those indicated by the overall evaluators. These findings

may suggest the role of a specific amplifying context (set of conditions) defined by an

ensemble. This context should be analyzed in particular in future investigations. Of course,

single decision-making rules are also worthy of further analysis, because they may hide the

possible “bottlenecks” of the decision routes and, thus, the elementary constraints of gene

expression. Therefore, the possible useful application of the random forest gene expression

classifier may obey in silico experiments predicting the result of the modification of selected

attributes and considering the context.

The biological rationale for the special selection of chromosomes and gene regions

in this work may raise some doubts. However, we expect that the time and cost savings

in the number of chromosomes considered (4/16) should not affect the generality and

the correctness of the model, because they reflect the different content of genome regions

with slow, moderate, and fast replication rates. The additional restriction in the analyzed
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gene regions meets not only the economic expectations. The low number (5793) of finally

classified records limits the number of classification attributes, which should be much

smaller than the amount of data. We, therefore, decided to focus on the limited number

of attributes related to the narrowed gene region responsible for the initiation of the

transcription as a natural location of possible regulation of the expression rate.

The limited size of the analyzed data leaves the fundamental question of whether the

attributes and routes found here by the method of machine learning, as very important,

can sufficiently define the conditions for the accurate prediction of gene expression scores

in a case of other organisms and experimental constraints. We believe that the first few

parameters and pathways have already been determined, but many more remain to be

explored for a broad range of organisms and environmental conditions.

5. Conclusions

In practice, a classification model for predicting gene expression scores in S. cerevisiae

was developed on the basis of a set of variable physical, environmental, logistic, genetic,

and statistical attributes, including transcripts, noncoding 5’ UTRs, coding nucleotides, and

coding amino acid sequences; the properties and functions of synthesized proteins; and

the experimental conditions. We expect that, in this way, we could also gain knowledge of

the importance of the considered factors. We believe that the only source of knowledge is

understanding the information obtained as a result of great experience; thus, the expected

work should cover large datasets from large databases, deposited as needed resources. We

decided to facilitate this study with the technique of machine learning (ML), the domain of

AI being a natural area for processing big data.

The main conclusions from our work are as follows:

- The physical attributes of genes are the most important for determining gene expres-

sion scores when they are examined by different attribute evaluators.

- The random forest classification algorithm may be adapted to successfully predict

the intensity of gene expression and indicate the best routes and parameters for

this prediction.

- Logistic attributes dominate other attributes in random forest prediction, but the

predictive role of attribute ensembles may be stronger than that of single attributes.

- The genetic type attributes may not be the most important in determining the expres-

sion score, but they cannot be ignored.

- The random forest classifier is a promising tool for in silico experiments.
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