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Abstract

A determination and mathematical analysis of the statistics of gene numbers in genomes

was proposed. It establishes sampling ranges and provides an analytical description of

the probability density function, which represents the likelihood of the number of genes in

sequenced genomes falling within a specific range of values. The components of the devel-

oped statistical multi-Poissonian model revealed the fundamental mechanisms underlying

the evolution of life and identified the specific ranges of their dominant influence. The

quantitative relations between the statistics of the number of genes and the genome size

were shown. A mathematical model of genome size evolution was proposed, identifying

subpopulations of intensive and extensive genes associated with protein-coding genes,

pseudogenes, and non-coding genes.

Keywords: gene number; genome size; density function; intensive and extensive genes;

evolution

1. Introduction

The statistical laws of distribution, i.e., Maxwell–Boltzmann [1,2], Planck [3], Bose–

Einstein [4], and Fermi–Dirac [5,6], played a significant role in the development of physics.

It is timely to ask if the recent achievements of genomic research collected in big databases

and statistically modeled could influence modern biology and science as well. A statistical

model is associated with an attempt at a mathematical description of the components of

the analyzed phenomenon and constitutes an important confirmation of its understanding.

The aim of the work is to find the most general characteristics and trends describing

comparative genomics.

Seminal studies from the late 20th century, such as the development of the BLAST algo-

rithm [7] and the foundational work by Henikoff and Henikoff (1992) [8], provided essential

groundwork for the development of comparative genomics, particularly within the field of

bioinformatics. These studies were crucial for understanding the methods and tools that

have shaped modern comparative analyses. They improved database searches and the ac-

curacy of protein sequence alignments, which are core techniques in comparative genomics.

Later papers in this area include the initial comparative analysis of the mouse [9] and

domestic dog genome [10] or the human–chimpanzee genome comparison [11], which are

foundational for comparing large genomic datasets, with an understanding of evolutionary

relationships and genetic function.

The aim of this study is to analyze the distribution of gene counts and genome sizes

within a population of sequenced genomes from organisms representing the three domains

of life—Bacteria, Archaea, and Eukaryota—using data collected in the National Center for

Biotechnology Information (NCBI [12]) genome database [13].
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Basic statistics in functional genomics, such as the distribution of gene counts across

known genomes, reveal considerable variation influenced by factors including organismal

domain, environmental conditions, genome architecture, and evolutionary history. The vast

amount of empirical data available in genomic repositories, analyzed through comparative

genomics, provides a detailed understanding of these distributions, highlighting both

general trends and notable exceptions [14–16].

Typical bacterial genomes contain between about 1000 and 6000 protein-coding genes,

with a median of about 3500 [17]. Archaea genomes contain between about 1000 and

5000 genes, with a median near 2500 [18]. Eukaryote genomes are usually above 5000 genes

centering around different values, e.g., 10,000 for single-cell organisms [19], 20,000 for

animals [20], and 35,000 for plants [19]. In prokaryotes, gene number distribution is

unimodal, positively skewed, and centered near 3500 genes with a tail extending toward

larger genomes. Eukaryotic gene counts exhibit broader and often multimodal distributions,

primarily due to lineage-specific genome duplications and gene losses [20].

In the presented paper, the analysis was based on the determination of a probability

density function describing the likelihood of finding any genome failing within a specific

range of values of the number of genes, normalized per unit length of this range. The

advantage of a proper density function over a histogram is that its values are independent

of the sample size.

It was checked that the simple model of genome origination and development as

geometric progress is not enough for proper evaluation of the density function and leads to

an “ultragenome catastrophe.” In subsequent analyses, accurate results were achieved by

modeling the distribution as a linear combination of five Poisson functions, complemented

by a single-step function with exponential decay and a constant-level component. This

approach allowed us to interpret the observed genome frequency patterns as the outcome of

a multi-path evolutionary process, with pathways varying in their rates of change, potential

for differentiation, and, in some cases, culminating in gradual elimination. We also show

that a simple transformation of gene number statistics can approximately describe genome

log (size) statistics. Applied simple regression reveals the characteristic size of genes domi-

nating in the smaller genomes of all domains of life. Extending the regression model to the

nonlinear area of the gene number–genome size dependence, we proposed the size-driven

mechanism of creation (origination and adding) of a new gene. As presented, the extension

contains some speculative elements; it ought to be treated as a conceptual proposal waiting

for additional biological validation. The model defines the two distinguished types of

genes: extensive ones, which increase genome size when attached, and intensive ones,

which do not change the genome size when they are emerging. This provided a compelling

explanation for the observed shape of the relationships in the experimental dataset. The

theoretical model with fitted parameters could also predict the total fractions of extensive

and intensive genes. Finally, based on a successful comparison between estimated ratios

and experimental data, we were able to associate extensive genes with protein-coding

genes and pseudogenes, and intensive genes with non-coding genes. In general, statistics

are often perceived as a tool for lumping all variables into a single analysis. In this study,

we aimed to challenge that perception by applying a more nuanced approach.

2. Materials and Methods

2.1. Genomic Data

The genomic data (Assembly Name, Organism Name, Assembly Stats Total Sequence

Length, and Annotation Count Gene Total, Annotation Count Gene Protein-coding, and

Annotation Count Gene Pseudogene) for 25,975 reference genomes were taken from the

genome database of the National Center for Biotechnology Information (NCBI), (down-



Life 2025, 15, 1648 3 of 25

load date: 1 May 2025). Considered genomes, representing Bacteria (eubacteria) (20,931),

Archaea (752), and Eukaryota (eukaryotes) (4292), were annotated by NCBI RefSeq or

GeneBank submitters and assembled at four genome assembly levels (contig, scaffold, chro-

mosome, and complete). The number of non-coding genes was calculated by subtracting

the number of protein-coding genes and pseudogenes from the total number of genes.

2.2. Subject of Interest

The subject is the probability density function fg, which describes the likelihood of

finding a genome with a number of genes falling within a specific range of values, per unit

length of that range.

2.3. The Data Classification Interval

The range of gene numbers considered spans from 149 to 4,736,081 genes. To classify

genomes relative to the increasing number of genes they have, the size of the elementary

interval of the class for collecting genomes was examined. For this purpose, the five

attempts, with classes of the assumed length of 1, 10, 250, and 500 genes, respectively,

were performed. The number of genomes falling in each class was counted to estimate

the frequency function. The classes in the pictures were marked by the minimal integer

multiples of the interval length, i, they cover, i.e., 0 for the range from 0 to i genes, i for the

range from i + 1 to 2i genes, 2i for the range from 2i + 1 to 3i genes, and so on. Next, the

maximal values of all attempts divided by the length of the applied class interval (frequency

density values) were compared. Then, the attempt with a 500-gene interval was selected as

the best representative in the region of the stable values. Thus, the classes in the following

pictures were marked by minimal integer multiples of interval length, i = 500, i.e., 0 for 0 to

500 genes, 500 for 501 to 1000 genes, 1000 for 1001 to 1500 genes, and so on.

2.4. Probability Density Function fg

The probability density function fg was evaluated by dividing the frequency values

(for class intervals of 500 genes) by both the length of the class interval and the total number

of genomes. Specifically, fg[i] = class content[i]/(500 × 25,975).

2.5. Mathematical Modeling of Probability Density Function fg

2.5.1. Naive Model

A mathematical model for the description of the obtained probability density function

was based on the assumption that genome frequency is an exemplification of the process of

genome evolution. Initially, we assumed that this process resembles geometric progress

(each genome produces q genomes in the higher class) and is therefore described by

the function

fg[k] = fg0qk (1)

where fg0 is the initial value, and k is the ordinal number of the class, i.e., the number of

subsequent steps in the movement between classes to reach a given class from the zero class

in the beginning (for the classes dividing genomes among 500th-gene intervals, k = i/500).

2.5.2. Multi-Poissonian Model

With an unsatisfactory result, the next model was proposed as a linear combination

of the shifted Poisson distributions and the uniform distribution of a constant value as

background. The number of Poisson distributions considered was gradually increased to

reduce the ratio of the mean fitting error to the mean experimental value below 15%. To

reach the goal, with the value of the relative error below 20%, the five Poisson functions and
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constant were effectively supplemented by the step function with the exponential decay,

reducing the relative error to 11%. So finally,

fg[k] = Σ(i = 1. . .5) aiPi[k − k0i] + asS[k − k0s] + abbg (2)

where Pi is the Poisson distribution, S is the step distribution with exponential decay, bg is

a constant background distribution, ai, as, and ab are coefficients, and k0i and k0s are shifts

in the distribution starting along the gene number axis.

The fit of such a model to the evaluated probability density function was the basis

of the further discussion. Fitting was performed, predicting the frequency in the integer

numbering classes, and dividing the obtained value by 500.

2.6. Genome Size

The range of genome sizes considered spans from 112,590 to 40,054,324,612 base pairs

(bp). To classify genomes according to the increasing number of base pairs (bp), the size

was logarithmized and the length of the elementary interval 0.1 was assumed, compliant

with Rice’s rule (number of intervals) = 2 × (number of data points)1/3 [21]. The number of

genomes falling in each class was divided by 0.1 and next by the total number of genomes

to estimate the respective probability density function fs for genome size.

2.7. Mathematical Approximation of the Probability Density Function fs

A mathematical approximation of the probability density function fs for genome size

was obtained due to the transformation:

g −→ s = p1 g (3a)

fg −→ fs = p2 fg[g] (3b)

where a simple linear regression model of the relationships between gene number, g, and

the genome size, s, was assumed (Equation (3a)). The fg and fs are probability density

functions for the number of genes and size; p1 and p2 are parameters.

2.8. Extended Mathematical Model of Genome Size Evolution

The evolving genome of size s, and the number of genes g are considered. The

relationships between the number of genes and genome size are sought.

Assumption 1. The small change in the number of genes, the dg, may be divided into two parts,

i.e., the part, the dge, containing extensive genes whose presence changes the size of the genome, and

the part, the dgi, containing intensive genes that do not change the genome size. Thus,

dg = dge + dgi (4)

Assumption 2. An average increase in the genome size, the ds, can be calculated as

ds = ledge (5)

where le denotes the average change in genome size per extensive gene.

Assumption 3. The part of new extensive genes decreases proportionally to le, which may be

described as

dge = (1 − (le/lemax))dg (6)
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where the parameter lemax describes the maximal value le, constrained by molecular and physiologi-

cal constraints.

Assumption 4. Relative to the minimal genome, the average genome size change per extensive

gene is proportional to the increase in the actual size of the genome; thus,

le = a(s − s0) + le0, a > 0 (7)

where the positive parameter a is a proportionality coefficient, s0 denotes the size of the smallest

possible genome, and le0 represents the average length of the extensive genes within it.

Conclusions:

Equations (4) and (6) lead to the conclusion that

dgi = (le/lemax)dg (8)

By substituting Equations (6) and (7) into Equation (5), the following expression

is obtained:

ds/dg = a((s − s0) + b)(1 − c((s − s0) + b)) (9)

where

b = le0/a (10)

c = a/lemax (11)

The continuous approximation of Equation (9), after replacing the difference quotient

ds/dg with its derivative, s′(i.e., the limit value for dg −→ 0), consequently allows for the

formulation of the differential equation

s′[g] = a((s[g] − s0) + b)(1 − c((s[g] − s0) + b)) (12)

the solution of which is the function:

s[g] = Aea(g − g
0

)/(1+ Bea(g − g
0

)) − A/(1 + B) + s0 (13)

where g0 is the number of genes in the minimal genome, and

A = b/(1 − bc) (14)

B = bc/(1 − bc) (15)

Equation (13) was used as a nonlinear regression model of genome size dependence on

the number of genes, which describes the approximate relation between the gene number

and the genome size in the full range of considered numbers of genes.

2.9. Fitting

All minimizations were performed using Solver (1990–1995), a Microsoft Excel (2007)

add-in program [22].

The Microsoft Office Excel Solver add-in is part of a set of commands sometimes called

simulation analysis tools. It can be controlled via its user-friendly dialog box or by editing

Visual Basic code. The program finds the optimal value for a formula in a single cell—

called the target cell—in a worksheet. During this process, it adjusts the values in changing

cells you specify—called matched cells—to obtain the user-specified result (minimum,

maximum, or defined value) based on the formula in the target cell. The Solver add-in can

work with a group of cells related, directly or indirectly, to the formula in the target cell.
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It uses the Generalized Reduced Gradient (GRG2) nonlinear optimization algorithm [23].

For linear and integer problems, the simplex method with constraints on variables and the

branch-and-bound method were implemented. Possible constraints can limit the range of

values used in the model and can refer to other cells that affect the formula in the target

cell. Part of the source code of the Microsoft Office Excel Solver add-in is proprietary. The

guides on how to mimic Solver by the Pulp (3.7.2) Python Package for Linear Programming

(3.10.5) may be found on the internet [24,25].

For the purpose of this work, Solver was controlled via the dialog box activated in an

Excel worksheet containing the analyzed data. The target cell was defined to represent the

square root of the mean square error of fitting of predicted values to the corresponding

originals, which was finally minimized. The matched cells represented the parameters of

the fitted model used in the calculation of predictions and thus were indirectly related to

the target value. Predefined Solver parameters and selected options were as follows: max

time 100 s, iterations 100, precision 0.000001, tolerance 5%, convergence 0.0001, tangent

estimate, forward derivative, and Newton method.

2.10. Estimation of the Total Fractions of Extensive and Intensive Genes, ge/g and gi/g

An estimation of the fraction of extensive genes ge/g in the genomes of a given g was

performed on the assumption that all the genomes are arranged according to the increased

number of genes and size (second order). Then, for the genome k in the series, the ratio of

the total number of attached extensive genes to the total number of all its genes, ge/g [gk],

is performed by the formula

ge/g [gk] = (Σ(i = 1. . .k) dge/dg[gk − 1](gk − gk − 1])/gk (16)

where according to Equations (6) and (7),

dge/dg[gk − 1] = (1 − (le[sk − 1]/lemax)) (17)

le[sk] = a(sk − s0) + le0 (18)

The value of sk for a given gk was calculated according to Equation (13).

The ratio of the total number of emerging intensive genes to the total number of all

genes gi/g [gk] was performed by the formula

gi/g [gk] = 1 − ge/g [gk] (19)

3. Results

3.1. Determination of the Gene Number Classification Interval

The pattern of genome frequency by gene number was analyzed using different

classification interval widths, specifically i = 1, 10, 50, 250, and 500 genes. The data were

grouped up to 100,000 genes. The results for the intervals of different lengths are presented

in Figure 1a–e. The presentation covers up to 35,000 genes.
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Figure 1. Cont.
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Figure 1. (a) The dependence of genome frequency, grouped into classes by gene number, for a

classification interval length of i = 1 gene. (b) The dependence of genome frequency, grouped into

classes by gene number, for a classification interval length of i = 10 genes. (c) The dependence

of genome frequency, grouped into classes by gene number, for a classification interval length of

i = 50 genes. (d) The dependence of genome frequency, grouped into classes by gene number, for a

classification interval length of i = 250 genes. (e) The dependence of genome frequency, grouped into

classes by gene number, for a classification interval length of i = 500 genes.

The increase in the length of the classification interval stabilizes the estimated fre-

quency density (Figure 2). In order to compute the probability density function for gene

number, an interval length of 500 genes was ultimately selected. This corresponds to

a resolution of 0.5% (500/100,000 × 100%) relative to the range of grouped gene num-

bers analyzed.
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Figure 2. The dependence of the maximum value of the genome frequency density on the length of

the classification interval.

The data in Figure 1e, divided by the interval length (500) and the total number of

genomes (25,975), were used for the estimation of the probability density function for the

number of genes, fg.

Additional analysis of histogram bin width gives Rice’s rule [21] value

hR = 2 × (number of data points)(1/3) = 59 and Freedman–Diaconis rule [26] value

hFD = 2 × (Q3 − Q1) × (number of data points)(−1/3) = 225, where Oi means quar-

tile i.

3.2. Mathematical Models of Probability Density Function

To mathematically describe the obtained result, a simple model of the geometric

progression was fitted to fg. The landscape of the “catastrophic” prognosis is presented in

Figure 3.

 

Figure 3. The model qk of geometric progress (fg = fg0qk) fitted to the estimated probability density

function for the number of genes, fg. The resulting adjustment parameters are fg0 = 5.2 and q = 2.3.



Life 2025, 15, 1648 10 of 25

To achieve a better fit, a multi-component model was examined. Components were

added gradually as follows: constant background, plus n functions of a shifted Poisson

distribution, and the step distribution with exponential decay. The change in the minimiza-

tion of the average fitting discrepancy error per class (expressed as the root mean square

error) with the addition of successive components is shown in Figure 4. The data was taken

for the best-fitted model, removing its parts in the opposite direction.

Figure 4. The minimization of the average discrepancy error per experimental point was analyzed

with the sequential addition of model components: a background constant (bg), followed by n Poisson

distributions (bgnP) for up to n = 5, and finally a step distribution with exponential decay (bg5Ps).

MV is the mean value of experimental data, and SD is the standard deviation of the data.

The final version of the mathematical model, bg5Ps, was fitted to the probability

density function fg, and the results are presented in Figure 5a,b.

Parameters of the model are presented in Table 1.

Table 1. Parameters of the fitted density function model.

Model Input Formula
Start Class, k0i,
kos

Parameters
L, λi, Ls, γ

Coefficients
abg, ai, as

bg 1/L for k ≥ 0 0 200 0.007000

P1

λi
k − k0ie−λi/(k − k0i)! for k ≥ k0i

0 6.133813 0.531584

P2 2 23.092150 0.074895

P3 4 9.513952 0.153836

P4 6 2.071796 0.161564

P5 44 16.900607 0.004509

S
1/(Ls + 1/γ) for k ≥ 30 and k < 59
e−γ (k − k0s)/(Ls + 1/γ) for k ≥ 59

30, 59 29, 0.045683 0.058909
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(a) 

(b) 

Figure 5. (a) The fitting of the mathematical model bg5Ps to the data for probability density function

fg is presented for a smaller number of genes. (b) The fitting of the mathematical model bg5Ps to the

data for probability density function fg is presented across the full range of gene numbers. The fg

axis is presented on a logarithmic scale.

The variation in the rate λi of Poisson components and the mean value of S input,

µs = (Ls
2/2 + 1/γ)/(Ls + 1/γ), is presented in Figure 6.
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The quality of the fit is documented in Figure 7.

 

Figure 7. The quality of the fitting (Figure 5a,b) of the mathematical model bg5Ps to the data for

probability density function fg. A linear trend was shown, y = 0.9994x + 9 × 10−8, at R2 = 0.9987.

The fitting can be decomposed into the constitutional parts. The result is presented in

Figure 8a,b.

The dominating component input (bg, 1–5 Poisson or step with exponential decay)

was signaled in Figure 9.

A hold-out set type validation step was proposed to enhance the confidence of the

above model. In this step, the fitting was performed once more, but this time to a smaller

dataset, in which the data for the number of genes falling in the range of 3001–4500 were

excluded from consideration. This way, 33% (8564/25,975) of initially considered items

were omitted. The removed data intentionally represent close vicinity of the predicted

maximum possible value of the analyzed density function. In the above test, the obtained
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new parameters of the model differ from the initial values for the total dataset, on average,

by 7% and no more than 27% (as for λ4, Table 1). The predictions of the narrowed model

regarding the removed values of the density function (classes 6, 7, and 8) have an error of

11% on average.
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Figure 8. (a) The decomposition of the fitting (Figure 5a,b) of the mathematical model bg5Ps to the

data for probability density function fg, presented for genomes with a smaller number of genes.

(b) The decomposition of the fitting (Figure 5a,b) of the mathematical model bg5Ps to the data for

probability density function fg, presented across the full range of the number of genes. The fg axis is

presented in a logarithmic scale.
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Figure 9. The dominating component of the mathematical model bg5Ps fitted (Figure 5a,b) to the

data for the probability density function fg is presented for the full range of the number of genes.

3.3. The Analysis of Genome Size

Introduction

The presentation of the points of the start of the subsequent distributions and their

maximal input are presented on the map of the relation between the number of genes

and the size of the genome in Figure 10a,b. Original background data were not classified

with respect to the number of genes. The number of genes for starting points (Figure 10a)

was attributed using multiplied (×500) data taken from Table 2. The number of genes for

maximum points (Figure 10b) was taken from Figure 8a,b. Genome size was calculated

according to Equation (13).

Table 2. The parameters of the mathematical model of genome size evolution.

Parameter Definition Value

A Fitted 5,000,000.26632
B Fitted 0.00202752763471099
a Fitted 0.000202289166662222
g0 Fitted 149
s0 Fitted 137,475.095259792
b A/(1 + B) 4,989,883.14035894
c B/A 4.05505505343353 × 10−10

le0 ab 1009.39930220508
lemax a/c 498,856.770121871

The simple linear transformation of the predictions of the mathematical model for fg

(Figure 5a,b), using Equation (3a,b) with parameters p1 = 1000 and p2 = 15.953324, allowed

for the estimation of the probability density function for genome sizes, fs, presented in

Figure 11. A single-point fitting, minimizing the difference between maximal values of fs

and prediction, was applied.
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(a) 

(b) 

 
(c) 

Figure 10. (a) The starting points of the subsequent distributions used in the mathematical model

bg5Ps, as fitted to the data for the probability density function fg (Figure 5a,b), are presented on

the map showing the relationship between the number of genes and genome size. Note that the

background data are not classified with respect to the number of genes. (b) The points of the maximal

input of subsequent distributions used in the mathematical model bg5Ps, as fitted to the data

for probability density function fg (Figure 5a,b), are presented on the map showing the relationship
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between the number of genes and genome size. Note that the background data are not classified

with respect to the number of genes. The data for calculating (with Equation (13)) the values of the

white-circle points were taken from Figure 8a,b. (c) Cartoon showing hypothetical origination of

considered inputs on the evolutionary tree.

 

0

1

2

5 6 7 8 9 10

data

prediction

fs [1/a.u]

log10 S

Probability density function fs [1/0.1] 

Figure 11. The probability density function for the logarithm of genome size was predicted by

transforming the mathematical model bg5Ps, which was fitted to the empirical probability density

function fg (Figure 5a,b). In the transformation, proportions between gene number and size and

between density functions fg and fs were applied.

A visualization of applied regression (Equation (3a)) is presented in Figure 12.

Figure 12. The regression line (red) for the transformation (Equation (3a)) is applied to the estimation

of fs in Figure 11. It accurately describes the relation between gene number and genome size, but

only within the region around the extrema indicated in Figures 5a and 11, approximately marked by

blue lines. Note that presented data are not classified concerning the number of genes.



Life 2025, 15, 1648 17 of 25

3.4. The Genome Size Modelling

Mathematical Model

A mathematical model of the relationship between the number of genes and the

genome size was proposed (Materials and Methods, Equation (12)), the solution of which

(Equations (13)–(15)) was fitted to ordinary (not classified) data. The result of the best

fit is presented in Figure 13. The parameters of the best fit are as follows: A, B, a, g0,

and s0. The intermediate parameters are b and c. The final predicted parameters were

le0 (Equation (10)) and lemax (Equation (11)). All parameters considered were collected in

Table 2.

 

Figure 13. A nonlinear regression model describing the dependence of genome size on the number of

genes. It approximates the relationship between the gene number and the genome size across the

entire range of gene numbers. The model was fitted to ordinary (not classified) data.

3.5. Intensive and Extensive Gene Analysis

The fractions of extensive genes and intensive genes changed in the evolving genome

according to Equations (6), (8) and (13), and the parameters from Table 2 are presented in

Figure 14.

Figure 14. Predicted by the model, the fraction of the number of new extensive genes (e-genes) and

new intensive genes (i-genes) changed during evolution vs. the total number of genes. Parameters

are shown in Table 2.
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The dependence of the fraction (the relative number) of protein-coding genes (p-c

genes), the non-coding genes (n-c genes), and pseudogenes (ps genes) in a given genome

on the number of all genes is presented in Figure 15a–c.

(a) 

(b) 

(c) 

Figure 15. (a) The fraction of protein-coding genes (p-c genes/genes) in each genome is plotted

against the number of genes in analyzed genomes (25,975). (b) The fraction of non-coding genes (n-c

genes/genes) in each genome is plotted against the number of genes in analyzed genomes (25,975).

(c) The fraction of pseudogenes (ps genes/genes) in each genome is plotted against the number of

genes in analyzed genomes (25,975).
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The total fractions of extensive and intensive genes, ge/g and gi/g, were predicted by

the model, Equations (16) and (19), according to the parameters from Table 2. Then, they

were compared with the data derived, the ratio of the sum of pc-genes and ps genes to all

the genes in the genome (Figure 16a), and the ratio of the nc-genes to all the genes in the

genome (Figure 16b).

(a) 

(b) 

Figure 16. (a) The ratio of the sum of pc-genes and ps genes to the number of genes in the genome.

The unspecified data (black points) summed up from Figure 15a,c and the predictions (red points

indicate fraction of e-genes) of the model (Equation (16)) for parameters listed in Table 2 are shown.

(b) The ratio of number of nc-genes to the number of genes in the genome. The unspecified data

(black points) from Figure 15b and the predictions (red points indicate fraction of i-genes) of the

model (Equation (16)) for parameters listed in Table 2 are shown.

4. Discussion

When we analyze genome statistics from large bioinformatics databases, it seems to

us that, due to the significant scatter, different sizes of probes, and lack of a mathematical

description of the shape, we cannot say much about individual cases, let alone the pro-

cesses involved in them. Grouping data into classes and determining probability density
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introduces a standard that can facilitate their discussion and possible comparison with

other studies. We illustrated this in Figures 1a–e and 2.

Although the values obtained using Rice’s rule (hR = 59) and the Freedman–Diaconis

rule (hFD = 225) support the third and fourth data points in Figure 2, we choose to use a

bin width of 500 genes in the histogram analysis. This choice slightly smoothed the data

curves, allowing us to focus on the most significant features of the analyzed functions. The

subsequent mathematical modeling aimed to deepen our understanding of the nature of

the observed statistical distributions.

In the case of genomes analyzed in this paper, to free ourselves from the catastrophic

predictions of the geometric model (Figure 3), we sought statistics that would have an

inherent ability to limit themselves.

The Poisson distribution models a series of discrete events occurring within a fixed

time interval, where λ represents the average number of events (rate) in that interval. The

events occur at random, with their exact timing being both independent and memoryless.

It decays with the number of events. The exact value of the interval is not important. It

may even be infinite.

According to our idea, events can represent genome transitions into subsequent classes

containing genomes with an increased number of genes. Thus, the number of genes is

treated as a kind of pseudo-time. In our model, on average, the 500 additional genes are

significant when considering the latter state. Thus, a chosen group of N genomes, evolving

at the rate λ, are currently observed according to a Poisson distribution formed throughout

the entire evolutionary period. Moreover, we believe that all genomes initially evolved

together, but over time, some groups of them broke off and moved on at different speeds.

This idea was qualitatively described by the model bg5Ps, which was gradually

developed and examined in a series of attempts (Figure 4). The final fitting of the model to

the data for the probability density function of the gene numbers (Equation (2), Figure 5a,b,

Table 1) and predicted oscillating rates of the considered inputs (Figure 6), at the obtained

quality (Figure 7), allow us to draw several conclusions.

When decomposing the mathematical model into constitutive components, a land-

scape of smooth inputs is revealed (Figure 8a), supplemented by a characteristic decaying

short jump in the range of larger gene numbers (Figure 8b).

Thus, we can identify five evolving Poissonian groups with the different values of

Ni and λi, starting at different classes (stages of evolution), and a group appearing as

step input with an exponential decay. There is also a uniform background of the order of

the standard deviation (Figure 3), which we take for noise of errors. The largest genome

content is found in Poissonian group 1, where N1 represents a fraction a1 = 0.531584

of the total (Table 1), accounting for over 53% of the analyzed population, specifically

13,808 (a1 × 25,975) genomes. Despite this, due to evolutionary dispersion of genome gene

numbers, it dominates only in the range of the smallest sets of genes (Figure 9). Genomes

with a higher number of genes are predominantly associated with Poissonian group 3.

Using Figure 9, with a low probability of error, one may assign S. cerevisiae (6477 genes) to

the Poissonian group P3 and H. sapiens (59,715 genes) to the group S resembling step input.

We believe that Poissonian groups can represent genomes progressing through succes-

sive phases of evolution, without preserving less distinct intermediate forms or retaining

the forms that quickly disappear. In contrast to this, the step-like group represents genomes,

which, when moving from class to class, approximately at the same rate, leave behind repli-

cas of their representatives. However, after a certain number of transitions, the progress of

this group exponentially vanishes.

Analyzing the magnitude of the considered inputs, presented in Figure 8a,b, and

locating the appearance of the discussed groups on a map illustrating the relationship
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between gene numbers and genome size, Figure 10a,b, we can approximately conclude that

only Poissonian group 1 (P1) may contain the smallest bacteria and archaea (Figure 10a).

Some genes in this area for eukaryota, with bp > 107, are probably an error. The P2 group

may contain the smallest and moderate eukaryota. On the other hand, the P3 and P4 groups

may cover moderate and big bacteria (Figure 10b). On the contrary, the S group does

not cover any bacteria or archaea but includes moderate and big eukaryota. The last, P5

group, contains only moderate eukaryota. Note that the P2, S, and P5 inputs increased

in size more than was predicted by the emerging initial linear regression. To aid in the

visualization of these possibilities, hypothetical points of origin for the discussed inputs

along the evolutionary tree are illustrated in the schematic shown in Figure 10c.

It is important to acknowledge certain limitations of the above conclusions. Due

to overlapping contributions and their theoretically infinite range, it is not possible to

establish a flawless correspondence between a class of organisms defined by a given gene

number and a single characteristic input. Only genomes with fewer than 500 genes can

be strictly related to a single input, P1 (neglecting the background error, bg). It is usually

a more or less probable relation, so we can only indicate the dominating input among

others in a settlement of a certain area of gene numbers. In the opposite direction, search

predictability looks better. Only inputs P1 cannot be strictly related to one domain of life.

Other inputs can be attributed under the assumption of domain inheritance, whereas P1

lack any domain-specific attribution.

An example below illustrates the above features in practice. Let us consider a his-

togram bin with gene numbers in the range 5001–5500. It contains genomes that are 94%

bacterial, 1% archaeal, and 5% eukaryotic. On the other hand, the inputs contribute to the

total number of genomes in this class, as follows: P1-47%, P3-23%, and P4-30% (Figure 8a).

Other inputs may be neglected. One may conclude that P1 input delivers 6% genomes for

archaea and eukaryota and 41% for bacteria. So, 44% of bacterial genomes in this class are

P1 type.

As illustrated by the above example, under certain conditions, the input type of a

genome belonging to a specific domain and class can be identified, albeit with a relatively

high probability of error. The question arises if additional attributes, e.g., kingdoms,

phylogeny, lifestyle, and environment, could reduce this uncertainty up to the level of

species. This may be an interesting area for separate statistical study, using machine

learning methods, especially classifiers.

Finding a mathematical formula for the probability density function, fg, regarding

gene number, helped in the theoretical determination of the probability density function, fs,

regarding logarithmized genome size. Fitting the transformed fg (Equation (3a,b)) to the

data provides a good estimate of the experimental fs values (Figure 11), but only in the gene

number range where the density function exhibits a characteristic dominating bell-shaped

peak. The linear regression applied during transformation (Equation (3a)), as illustrated

in Figure 12, reveals the limited applicability of this approximation, fortunately confined

to the gene number range where genomes occur most frequently, though only among

relatively small-sized genomes. The revealed characteristic size per gene (p1 = 1000) is in

the typical reported range for prokaryotic and small or moderate eukaryotic genomes [27].

In general, the relationship between gene number and genome size is not linear. The

first small “acceleration” in the overall genome size may be related to the maximal inputs

of the components P1, P3, and P4 (Figure 10b). The next higher increase falls in the domain

of maximal input P2. The highest increases may be related to maximal inputs S and P5.

The appearance of the discussed inputs may also be associated with a strong divergence in

genome size at an approximately constant number of genes.
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To explain the observed nonlinear behavior, an extended mathematical model of

genome size evolution was introduced. The nonlinearity (Equation (13), Figure 13) is inter-

preted as resulting from a precise fractioning of new genes into two categories: intensive

genes (dgi), which do not affect genome size, and extensive genes (dge), which contribute

to its increase. A key variable of the model used in the constitutive equation (Equation (5)),

relating the small change in genome size (ds) with the change in dge, is the average genome

size change per extensive gene, le. At the beginning, intensive genes may be related to

emerging overlapping genes [28], and extensive genes may be referred to attached genes

from duplication [29], or horizontal transfer [30]. According to this model, the fraction

of new extensive genes decreases proportionally to the le (Equation (6)). This assumption

describes the self-limiting attaching of large extensive genes, and the consistently increasing

emergence of intensive genes (Equation (8)). A basic source determining such effects may

be the evolutionary tendency toward minimization of the size of genome and maximiza-

tion of the number of its genes. Discussed effects could be especially advantaged in the

nucleated (eukaryotic) cells, where the mutations producing overlapping genes prevent

enormous increase in the size of big genomes. When applying the discussed model, we also

have to assume that the average size of attached new material per extensive gene increases

with genome size (Equation (7)).

In summary, according to the model, we may expect that with the increase in genome

size, the length of new extensive genes increases, but their fraction decreases. This may

lead to a slowdown in genome size growth due to the so-called parabola effect. In the

extreme case, when the length le reaches its maximal value lemax, genome size expansion

may cease entirely. An accompanying increase in the number of intensive genes could

further inhibit growth in the total number of genes, ultimately leading to a complete halt.

The predicted maximum length, lemax, is approximately 498,857.

Approximately analyzing the data in Figure 13 with Equations (6) and (7), we may

obtain the following results. For the number of genes around g = 1500 and s = 106, the

result is le = 200, le/lemax = 0.0004, and dge = 0.9996dg. For g = 20,000 and s = 2.5 × 108, the

resulting value is le = 50,000, yielding le/lemax = 0.1, and dge = 0.9dg. For g = 50,000 and

s = 2.5 × 109, the result is le = 500,000, le/lmax = 0.998, and dge = 0.002dg.

The discussed model predicts that the minimal length of an extensive gene (le0) is

approximately 1009, which is close to the value p1. The values g0 and s0 for the minimal

genome used in the model were ultimately set equal to those for the minimal genome in

the dataset.

The determined values of the parameters lemax and a (Table 2) are effective for model-

ing the data across the entire range of gene number variability. In the real case, they may

differ for the different groups of genomes and could have been slowly modified during

evolution to regulate the rate of genome size increase.

As shown in Figure 6, the dependence of mean values λi and µs, which characterize

the rate of the consecutive inputs to fg, on the number of genes exhibits an oscillating

pattern. The initial upward trend in the rate of emerging new genes with the increase in the

gene number, or the genome size, is nothing special. In light of the discussed findings, the

superimposed oscillations, e.g., the slowing of the rate in P3 and P4, cannot be explained as

the result of larger overlapping by an increased number of intensive genes. The mentioned

inputs start (Figure 10a) in the region of unnoticeable changes in the intensive gene income

(Figure 14). As can be seen, the slowdown in P5 by the same mechanism is also doubtful.

It is probably because the slight increase in the fraction of new intensive genes cannot

seriously modify the ratio of the total number of these genes to all genes. Thus, the reason

may be of a more complex evolutionary nature, modifying the fitness of the genome. In

this way, it may also produce a rate increase in inputs P2 and S. Slow-evolving group P3
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may contain fungal genomes, and faster-evolving groups P2, S, and P5 dominate in the

gene numbers area of invertebrates, vertebrates, and plants. These kingdoms may have

different evolutionary strategies.

The comparison between the model’s genome size predictions and the experimental

data supports the model’s validity in accurately describing the overall relationship between

gene number and genome size. Furthermore, as predicted by the model, a decrease in

a fraction of new extensive genes (Figure 14) is consistent with an observed decrease in

the fraction of protein-coding genes (p-c genes) in larger genomes (Figure 15a). It is also

consistent with an increasing number of non-coding genes (n-c genes) (Figure 15b), which

can be related to the increasing fraction of new intensive genes (Figure 14). Pseudogenes

(ps genes), like pc-genes, start to vanish around gene number 3 × 104 (Figure 15c). The

results in Figure 15a,b show that the dominant changes concern eukaryota.

The above observations were verified by the predicted total gene pool in the genome.

Specifically, the comparison between the predicted fractions of extensive and intensive

genes, ge/g (Equation (16)) and gi/g (Equation (19)), and the derived experimental data

support this interpretation. These data include the ratio of the sum of protein-coding genes

and pseudogenes to the total number of genes in the genome (Figure 16a) and the ratio of

non-coding genes to total genes (Figure 16b). This comparison indicates that meaningful

relationships between gene types can be established. As suggested, extensive genes that

contribute to genome size expansion can be associated with both protein-coding genes and

pseudogenes, whereas intensive genes correspond to non-coding genes. Of course, these

are not strict rules but rather general observations of dominant trends, which are subject to

limitations due to the high dispersion in analyzed data, especially in genomes with large

gene counts such as very large eukaryotic genomes. Therefore, they refer to a statistically

average situation, and in the specific case, the discrepancy may be particularly large.

Good examples of intensive genes seem to be overlapping genes, especially well-

known nested genes. The majority of nested genes are non-coding. For example, in the

nematode C. elegans, over 92% of nested genes are ncRNAs [31]. Rare examples of coding

nested genes are Ins5B and Ins5C in the E. coli genome [32], TAR1, NAG1, and CDA12 in S.

cerevisiae [33], and F8A1 in H. sapiens [34].

Extensive genes, on the other hand, can be represented by non-overlapping genes.

Approximately 75% of human protein-coding genes were found not to overlap with their

neighbors [35]. Although it was shown that pseudogenes may also be related to extensive

genes, in fact a significant number of pseudogenes may overlap with protein-coding

genes [36]. This overlap may be the result of evolutionary progress in sharing a region of

initially distinct gene.

The origins of extensive and intensive genes should be sought in an early stage of life,

called the “RNA world” [37,38], which existed before DNA and proteins became dominant.

In this world, RNA performed the functions of both modern DNA (informational), proteins

(catalytic), and modern RNA (regulational). The early life proliferation of functional

RNA molecules required a relatively large operational space for classic non-overlapping

sequences, which could not be sufficiently available within a single-stranded RNA. As

a result, both the elongating sequences of self-replicating proto-ribozymes and shorter

regulatory elements introducing innovations began to overlap, thereby reusing existing

sequence space. Host-nested molecule configuration could be evolutionarily preferred,

being a precursor of extensive and intensive genes.

Equations (6) and (8) of the model lead to the equation, which may be presented in

the form

(lemax − le)dgi = ledge (20)
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describing the balance on a scale with unequal arm lengths (lemax − le) and le, where the

“weights” correspond to dgi and dge. Such an analogy may inspire the hypothesis of an

equilibrium between the emergence of new intensive and extensive genes, a concept that

could be explored in future investigations. In our opinion, future development of the model

could also describe, in a more detailed way, the dependence of the length le on the gene

function and a relatively high dispersion of the size of genomes for moderate and high

gene numbers.

The authors believe that the aims of this work have been achieved and propose that

the analysis of probability density functions, supported by further mathematical modeling,

may serve as an effective tool in future bioinformatics research of genomic data, offering

valuable insights into the foundations of evolution.
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