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Mutagenic Potency of MMS-Induced
1meA/3meC Lesions in E. coli
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The mutagenic activity of MMS in E. coli depends
on the susceptibility of DNA bases to methylation
and their repair by cellular defense systems.
Among the lesions in methylated DNA is 1meA/
3meC, which is recently recognized as being muta-
genic. In this report, special attention is focused on
the mutagenic properties of 1meA/3meC which,
by the activity of AlkB-dioxygenase, are quickly
and efficiently converted to natural A/C bases in
the DNA of E. coli alkB1 strains, preventing 1meA/
3meC-induced mutations. We have found that in
the absence of AlkB-mediated repair, MMS treat-
ment results in an increased frequency of four
types of base substitutions: GC?CG, GC?TA,
AT?CG, and AT?TA, whereas overproduction of
PolV in CC101–106 alkB2/pRW134 strains leads
to a markedly elevated level of GC?TA, GC?CG,
and AT?TA transversions. It has been observed

that in the case of AB1157 alkB2 strains, the
MMS-induced and 1meA/3meC-dependent
argE3?Arg1 reversion occurs efficiently, whereas
lacZ2? Lac1 reversion in a set of CC101–106
alkB2 strains occurs with much lower frequency.
We considered several reasons for this discrep-
ancy, namely, the possible variance in the level of
the PolV activity, the effect of the PolIV contents that
is higher in CC101–106 than in AB1157 strains
and the different genetic cell backgrounds in
CC101–106 alkB2 and AB1157 alkB2 strains,
respectively. We postulate that the difference in the
number of targets undergoing mutation and differ-
ent reactivity of MMS with ssDNA and dsDNA are
responsible for the high (argE3?Arg1) and low
(lacZ2 ? Lac1) frequency of MMS—induced muta-
tions. Environ. Mol. Mutagen. 50:791–799,
2009. VVC 2009Wiley-Liss, Inc.
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INTRODUCTION

Alkylating agents are widespread in the environment

and also result from normal cellular metabolism. Their

reactions with nucleic acid bases create products that are

toxic, mutagenic, or neutral to cells [Singer and Kus-

mierek, 1982; Beranek, 1990; Taverna and Sedgwick,

1996]. Alkylating agents (i.e., methylating and ethylating)

can be divided according to their chemistry into two

types, SN1 (e.g., N-methyl-N0-nitro-N-nitrosoguanidine

(MNNG)) and SN2 (e.g., methylmethane sulfonate

(MMS)). Both can methylate nitrogen and oxygen in

DNA bases, however, the rate of methylation differs; SN1

reagents produce much more O-methylated bases (e.g.,

O6meG) than SN2 reagents.

The most abundant methylated base in MMS-treated

DNA is N7meG, which accounts for 78–83% of the total

methylated product and is neither harmful nor mutagenic

[Singer and Grunberger, 1983]. The O6meG adduct is not

directly toxic but is highly mutagenic as a consequence of

its ability to form base pairs with dTTP as well as dCTP

during replication and induce GC?AT transitions. The

most toxic and mutagenic lesions are the 3meA adducts

(a substrate for Tag and AlkA N-glycosylases), AP sites

transiently formed during base excision repair (BER), and
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1meA/3meC adducts, the substrates for AlkB dioxygenase

[Sedgwick, 2004]. The presence of 3meA, AP sites, and

1meA/3meC arrests DNA replication, and to be bypassed

and induce mutations, it requires umuDC-dependent,

DNA polymerase V (PolV) [Nieminuszczy et al., 2006b].

Methylating agents can induce two global DNA repair

systems in bacteria: the adaptive response (Ada response),

involving four genes associated with the repair of alky-

lated DNA [Shevell et al., 1988; Fernandez De Henes-

trosa et al., 2000; Landini and Volkert, 2000; Sedgwick

and Lindahl, 2002; Nieminuszczy and Grzesiuk, 2007]

and the SOS response, involving more than 40 genes

including those participating in replication, recombination,

DNA repair, and synthesis of DNA polymerases [Fer-

nandez De Henestrosa et al., 2000; Courcelle et al., 2001;

Janion, 2008].

Following the induction of the Ada response in E. coli,
four proteins – Ada, AlkA, AlkB, and AidB (encoded by

the ada, alkA, alkB, and aidB genes, respectively) – are

highly expressed [Lindahl et al., 1988; Shevell et al.,

1988; Landini and Volkert, 2000; Sedgwick and Lindahl,

2002]. The Ada protein plays more than one role in DNA

repair. It shows methyltransferase activity for O6meG,

O4meT, and methylphosphotriesters in DNA, and when

methylated at Cys38 (or Cys38 and Cys322), it serves as

an inducer for all genes in the Ada regulon.

The recently identified AlkB protein shows Fe(II) and

2-oxoglutarate (2OG)-dependent oxidative demethylase

activity; in the presence of O2, 2OG is converted to succi-

nate and CO2, and concomitantly, the methyl groups on

1meA/3meC are oxidized to hydroxymethyl derivatives

that rapidly dissociate to form formaldehyde and recover

the A and C bases both in DNA and RNA [Falnes et al.,

2002; Trewick et al., 2002; Aas et al., 2003; Drablos

et al., 2004; Ougland et al., 2004; Falnes et al., 2007;

Sedgwick et al., 2007]. In a similar way, AlkB oxidizes

and dealkylates ethyl, ethano-1, and cyclic etheno-substi-

tuted bases in DNA [Delaney et al., 2005; Mishina et al.,

2005; Frick et al., 2007].

In E. coli, three out of five DNA polymerases – PolII,

PolIV, and PolV – are upregulated within the SOS system

in response to DNA damage. PolII is able to restart

arrested DNA replication in an error-free manner [Rangar-

ajan et al., 1999], whereas PolIV and PolV bypass the

non-coding lesions and induce mutations [Wagner et al.,

2002; Fuchs et al., 2004]. The dinB-encoded PolIV is a

low-fidelity polymerase that acts on damaged and undam-

aged DNA and produces untargeted mutations. Among

the SOS polymerases, PolIV binds more frequently at a

stalled replication fork and is involved in adaptive muta-

genesis by inducing 21 frameshift mutations [Kim et al.,

2001]. The umuDC-encoded PolV is the major error-prone

polymerase participating in translesion synthesis (TLS).

Under non-SOS conditions, there are 180 UmuD mole-

cules per cell and a non-detectable number of UmuC mol-

ecules. Derepression of the SOS regulon by proteolytic

cleavage of the LexA protein produces 2,500 UmuD and

200 UmuC molecules [Sommer et al., 1993]. PolV is

formed by UmuC and two molecules of UmuD0 (UmuD0

is post-translationally modified and is 15 amino acids

shorter than UmuD) [Wagner et al., 2002; Fuchs et al.,

2004]. The content of PolV in the induced cell is re-

stricted by the number of UmuC molecules.

In this report, our attention has been focused on the

mutagenic activity of 1meA/3meC residues persisting in

the DNA of MMS-treated E. coli strains defective in the

alkB gene product. The involvement of PolV in the muta-

genic processing of these lesions was of special interest.

The markers for testing mutagenesis were as follows: (i)

argE3?Arg1 reversion in AB1157 situated on the chro-

mosome and (ii) lacZ2?Lac1 reversion located on the

episome in a set of CC101–106 strains used for determi-

nation of the specificity of mutations. We have found that

in the absence of AlkB-mediated repair, the frequency of

four types of transversions is elevated as a result of MMS

treatment: GC?CG, GC?TA, AT?CG, and AT?TA.

The overproduction of PolV in CC101–106 alkB2/

pRW134 strains resulted in a marked elevation of

GC?TA, GC?CG, and AT?TA transversions.

Since the frequency of MMS-induced mutations in

AB1157 alkB2 strains measured in the argE3?Arg1 re-

version system was extremely high [Nieminuszczy et al.,

2006b] compared with the level of Lac1 reversions in CC

alkB2 strains [Dinglay et al., 2000; Nieminuszczy et al.,

2006a], we considered several reasons for this discrepancy,

namely, the influence of PolV synthesis and SOS induc-

tion, the effect of PolIV overproduction in CC strains, and

the number and structure of targets leading to the Arg1 or

Lac1 reversions. The results reported herein indicate that

the latter explanation seems to be the most reasonable.

MATERIALS ANDMETHODS

Media and Plates

Luria-Bertani (LB) broth and LCA medium were the rich media

[Miller, 1972]. The minimal medium E contained C-salts [Vogel and

Bonner, 1956] supplemented with glucose (0.5%), casamino acids

(0.2%), and thiamine (10 lg/ml). E-Arg and E-Pro plates contained E

medium devoid of casamino acids but supplemented with His, Thr, Pro,

and Leu (each at 25 lg/ml) (E-Arg) or Arg, His, Thr, and Leu (E-Pro).

The LAC medium was E-Pro with 0.5% lactose instead of glucose. All

plates were solidified with Difco agar at 1.5%. Bacteria harboring antibi-

otic resistance were selected on LB plates containing the appropriate

antibiotics: carbenicillin (50 lg/ml), kanamycin (50 lg/ml), spectinomy-

cin (50 lg/ml), and chloramphenicol (30 lg/ml).

Bacterial Strains and Plasmids

The Escherichia coli K12 strains and plasmids as well as their deriva-

tives constructed in this study are listed in Table I. The constructed strains,

except for DlacZYA derivatives, were obtained by P1-mediated transduc-

tion [Miller, 1972]. The alkB mutants were selected on appropriate plates

Environmental and Molecular Mutagenesis. DOI 10.1002/em

792 Nieminuszczy et al.



containing carbenicillin, and the presence of the alkB mutation was con-

firmed by the plate test measuring sensitivity to MMS as described by

Nieminuszczy et al. [2006b]. The CC101–106 and AB1157 derivatives

with umuDC deletion (the source of the deletion was RW82 strain)

were obtained by P1-mediated transduction, selected on plates contain-

ing chloramphenicol, and confirmed by increased sensitivity to UV

irradiation.

The sulA::Tn5 and lexA300 (Del) mutants were selected on appropri-

ate plates containing kanamycin and spectinomycin, respectively. Disrup-

tion of sulA and lexA genes was verified by an analysis of the PCR

products.

The set of CC101–106 strains constructed by Cupples bears a different

point mutation at Glu461 in episomal lacZ gene encoding b-galactosi-

dase. Each of the strains can be back-mutated to Lac1 by all possible

transitions or transversions that permit straight definition of the specific-

ity of mutations [Cupples and Miller, 1989].

Transformation with pRW134 (harboring umuD0C) and pGB2

(empty control vector) was done according to Sambrook et al [1989].

Transformants were selected on appropriate plates containing spectino-

mycin. The presence of plasmid DNA was confirmed by agarose gel

electrophoresis.

Construction of the AB1157 Strain Deleted in lacZYA
and TransformedWith F0 Episome

The one-step gene inactivation method described by Datsenko and

Wanner [2000] was used to construct a lacZYA deletion. E. coli AB1157

strain was transformed with the pKD46 plasmid harboring phage k Red

recombinase. The PCR fragment was generated with pKD4 plasmid as a

template and the following primers:

50-GCGGGCAGTGAGCGCAACGCAATTAATGTGAGTTAGGTGT

AGGCTGGAGCTGCTTC-30 and 50-GTCATCGACAATGGTTAAATTGA

AATTTGCATAAAACATATGAATATCCTCCTTAG-30. The underlined

sequences correspond to 20 bases that are specific for pKD4, whereas the

remaining sequences correspond to the ends of lacZYA. The PCR products

were used to transform strains carrying pKD46 by electroporation.

Recombinant strains were selected on LB plates containing kanamycin. De-

letion of lacZYA genes was verified by PCR.

Transfer of the F0 episome from the respective CC strains into

AB1157 DlacZYA alkB1 or alkB2 derivatives was carried out by conju-

gation according to Miller [1972]. Logarithmic-phase cultures of donor

and recipient strains were mixed (1:1) and incubated without shaking at

Environmental and Molecular Mutagenesis. DOI 10.1002/em

TABLE I. Bacterial Strains and Plasmids

Strain Genotype Source/method of strain construction

AB1157 arg E3 hisG4 leuB6 D(gpt-proA)62 thr-1 ara-14 galK2

lacY1 mtl-1 xylA5 thi-1 rpsL31 glnV44

tsx-33 rfbD1 mgl-51 kdgK51

[Bachmann, 1987]

RW82 DumuDC595::catdonor [Woodgate, 1992]

EC2413 as AB1157 but DumuDC [Grzesiuk and Janion, 1994]

BS87 as AB1157 but alkB117::Tn3 [Sedgwick, 1992]

GC4540 pyrD sulA::Tn5 [Fijalkowska et al., 1997]

JL2145 lexA300(Del)::spc [Hill and Little, 1988]

AB1157 sulA as AB1157 but pyrD sulA::Tn5 this work AB1157 3 P1/GC4540

AB1157 sulA lexA as AB1157 but pyrD sulA::Tn5 lexA300(Del)::spc this work AB1157 sulA 3 P1/JL2145

AB1157 sulA alkB117 as AB1157 but pyrD sulA::Tn5 alkB117::Tn3 this work AB1157 sulA 3 P1/BS87

AB1157 sulA lexA alkB117 as AB1157 but pyrD sulA::Tn5

lexA300(Del)::spcalkB117::Tn3

this work AB1157 sulA alkB117 3 P1/JL2145

AB1157 DlacZYA as AB1157 but DlacZYA(KanR) this work according to [Datsenko and Wanner, 2000]

HK82 DlacZYA as HK82 but DlacZYA(KanR) this work according to [Datsenko and Wanner, 2000]

AB1157 alkB117 DlacZYA as AB1157 but alkB117::Tn3 DlacZYA(KanR) this work AB1157 DlacZYA 3 P1/BS87

CC101-CC106 ara thi D(lac-proB)xiii, F0 lacI2Z2proB1 [Cupples and Miller, 1989]

CC101-CC106 alkB117 as CC101-CC106, but alkB117::Tn3 [Nieminuszczy et al., 2006a]

CC101-CC106 DumuDC as CC101-CC106, but DumuDC this work

CC101-CC106 alkB117 DumuDC as CC101-CC106, but alkB117::Tn3 and DumuDC this work

CC102 (104, 105) sulA lexA as CC102 (104, 105) but sulA::Tn5 lexA300(Del)::spc this work CC102 (104, 105) sulA 3 P1/JL2145

CC102 (104, 105) alkB117 sulA as CC102 (104, 105) but alkB117::Tn3 sulA::Tn5 this work CC102 (104, 105)

alkB117 3 P1/AB1157 sulA

CC102 (104, 105)

alkB117 sulA lexA

as CC102 (104, 105) but alkB117::Tn3

sulA::Tn5 lexA300(Del)::spc

this work CC102 (104, 105)

alkB117 sulA 3 P1/JL2145

NR11152 ara thi D(lac-proB)xiii, F0CC102 Schaaper’s collection constructed for this work

NR11155 ara thi D(lac-proB)xiii, F0CC105

NR16625 ara thi D(lac-proB)xiii, F0CC102/DdinB::kan

NR16626 ara thi D(lac-proB)xiii, F0CC105/DdinB::kan

NR16627 ara thi D(lac-proB)xiii DdinB::kan, F0CC102/DdinB::kan

NR16628 ara thi D(lac-proB)xiii DdinB::kan, F0CC105/DdinB::kan

NR11152 (11155, 16625, 16626,

16627, 16628) alkB117
as NR11152 (11155, 16625, 16626, 16627,

16628) but alkB117::Tn3
this work NR11152 (11155, 16625, 16626,

16627, 16628) 3 P1/BS87

Plasmids

pGB2 SpcR, low-copy pSC101 derivative with mp8 polylinker [Churchward et al., 1984]

pRW134 umuD0C genes inserted into pGB2 [Ho et al., 1993]

pKD46 araC-ParaB and gb exo derivative of pINT E.coli Genetic Stock Center, Yale University, USA

pKD4 KanR derivative of pANTSg

Mutagenic Activity of1meA/3meC 793



378C for 1 hr. Conjugants were selected on E-Pro plates containing

kanamycin (recipient strains are KanR) and the presence of the F0 epi-

some, which enabled growth on a medium devoid of proline.

MMSMutagenicity Assay

Bacteria (overnight culture diluted 1:50), grown in fresh E medium to

2–4 3 108 cells/ml, were treated with 20 mM (0.17%) MMS for 15 min,

spun down, washed twice, resuspended, diluted (1:10) in fresh E me-

dium, and grown overnight to express the mutations. Subsequently, the

bacteria were plated on LB or E-Pro (usually diluted 106) and on E-Arg

or LAC plates (diluted when necessary) and incubated for 1 day for via-

ble cells or for 2 days for Arg1 and Lac1 revertants. Following colony

counting, the frequency of reversion (number of Arg1 and Lac1 rever-

tants/108 viable cells) was determined. All experiments were repeated

six to nine times in duplicate, and the standard deviations (6 SD) were

calculated.

RESULTS

Effect of PolVon the Frequency and Specificity
of MMS-InducedMutations

It has been shown previously that mutations in the alkB
gene significantly increase the sensitivity of bacteria to

the cytotoxic and mutagenic activities of MMS. It is also

known that PolV is crucial for MMS-induced mutagenesis

[Grzesiuk and Janion, 1994; Nieminuszczy et al., 2006b].

These latter observations prompted us to examine more

closely the contribution of PolV to the mutagenic activity

of MMS in the investigated alkB2 strains. To increase the

PolV level, we transformed CC101–106 and AB1157

alkB1 as well as alkB2 strains with a low-copy pRW134

plasmid carrying the umuD0C sequence (as a control an

empty plasmid vector, pGB2 was used). To eliminate

PolV from the cells, the umuDC operon was deleted from

the above mentioned strains.

The results presented in Table II (Lac1 revertants) indi-

cate that MMS exerts different mutagenic effects in plas-

mid-free CC101–106 strains. There were few MMS-

induced Lac1 revertants monitored in these strains. The

most numerous (about 19 Lac1 revertants/108 cells) were

the GC?AT transitions in CC102, and AT?TA transver-

sions (about 3 Lac1 revertants/108 cells) in CC105.

The alkB117 mutation resulted in an elevated level of

MMS-induced Lac1 revertants that arose from unrepaired

1meA/3meC lesions. It is especially seen in CC103

alkB2, which monitors GC?CG transitions, and in

CC104 alkB2, which monitors GC?TA transversions. In

these strains, the level of Lac1 revertants was 24- and

7-fold higher, respectively, than in the alkB1 counterparts.

The introduction of the pRW134 plasmid into the CC

alkB1 strains led to a 3-fold (CC101, CC104, CC105)

and about 8-fold (CC103) increase in the level of MMS-

induced Lac1 revertants, whereas in the CC103, CC104,

and CC105 alkB2 strains harboring the pRW134 plasmid,

the level of these revertants was 8-, 18-, and 6-fold

higher, in comparison to their plasmid-free counterparts

(Lac1 revertants of Table II). Interestingly, in CC102

alkB1 and CC102 alkB2 bearing pRW134, the frequency

of GC?AT transitions was slightly decreased.

In most cases, the presence of the pGB2 plasmid (the

control for pRW134) did not influence the level of MMS-

induced Lac1 revertants. Two strains, CC104 alkB2/

pGB2 and CC103 alkB2/pGB2, were exceptional with

their 3- and 2-fold increase in the level of mutation. How-

ever, this was still 18- and 8-fold smaller, respectively,

than the strains bearing the pRW134 plasmid encoding

Environmental and Molecular Mutagenesis. DOI 10.1002/em

TABLE II. Effect of PolV Content on the Level of MMS–Induced (A) Lac1 and (B) Arg1 Reversions

Bacterial strains

and specificity of

mutations

alkB1 alkB117

no plasmid DumuDC 1pGB2 1 pRW134 no plasmid DumuDC 1pGB2 1 pRW134

A: Frequency of Lac
1
revertants (310

28
cells) in strains

CC101 AT ? CG 0.0 6 0.0 0.0 6 0.0 0.3 6 0.5 3.1 6 0.9 2.5 6 2.4 0.0 6 0.0 1.6 6 2.2 7.6 6 4.2

[0.0 6 0.0]* [0.0 6 0.0] [0.07 6 0.12] [0.0 6 0.0] [0.1 6 0.1] [0.0 6 0.0] [0.1 6 0.1] [0.3 6 0.2]

CC102 GC ? AT 18.9 6 3.3 7.2 6 1.2 24.6 6 3.2 15.7 6 2.1 27.9 6 8.4 3.7 6 1.1 27.0 6 10.7 18.0 6 6.0

[0.0 6 0.0] [3.8 6 0.8] [1.5 6 0.8] [1.4 6 0.1] [1.3 6 1.1] [0.3 6 0.0] [0.5 6 0.5] [1.3 6 0.2]

CC103 GC ? CG 0.1 6 0.0 0.0 6 0.0 0.1 6 0.1 1.1 6 0.7 3.4 6 2.5 0.0 6 0.0 7.0 6 3.2 29.3 6 11.9

[0.0 6 0.0] [0.0 6 0.0] [0.0 6 0.0] [0.0 6 0.0] [0.0 6 0.0] [0.2 6 0.0] [0.4 6 0.7] [0.0 6 0.0]

CC104 GC ? TA 0.9 6 0.5 0.2 6 0.0 2.1 6 1.1 2.7 6 1.6 6.6 6 3.2 0.7 6 0.1 20.3 6 5.9 118.6 6 16.3

[0.2 6 0.0] [0.2 6 0.0] [1.0 6 0.5] [0.99 6 1.4] [0.6 6 0.2] [0.7 6 0.1] [0.2 6 0.3] [0.3 6 0.5]

CC105 AT ? TA 2.7 6 1.2 1.6 6 0.2 0.8 6 0.7 7.5 6 5.0 4.7 6 1.1 0.0 6 0.0 7.7 6 3.7 30.3 6 9.0

[0.2 6 0.0] [0.7 6 0.1] [0.4 6 0.5] [0.3 6 0.4] [0.4 6 0.2] [0.2 6 0.0] [0.3 6 0.2] [0.1 6 0.2]

CC106 AT ? GC 0.0 6 0.0 0.0 6 0.0 0.1 6 0.1 0.7 6 0.3 0.0 6 0.0 0.5 6 0.1 1.1 6 0.8 1.7 6 1.6

[0.0 6 0.0] [0.0 6 0.0] [0.1 6 0.1] [0.0 6 0.0] [0.0 6 0.0] 0.0 6 0.0 [0.0 6 0.0] [0.0 6 0.0]

B: Frequency of Arg1 revertants (31028 cells) in strains

AB1157 140.9 6 79.7 27.2 6 3.4 176.2 6 68.2 724.3 6 151.2 1795.7 6 492.1 35.0 6 11.3 1436.6 6 905.8 3353.6 6 915.6

[0.5 6 0.0] [0.0 6 0.0] [0.5 6 0.1] [0.8 6 0.2] [0.6 6 0.03] [0.0 6 0.0] [0.7 6 0.1] [0.9 6 0.2]

*Values in brackets represent the frequency of spontaneous Lac1/Arg1 revertants.
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UmuD0C proteins, in terms of the frequency of Lac1

revertants (Lac1 revertants of Table II).

To confirm the involvement of PolV in MMS-induced

mutagenesis in CC strains, a umuDC deletion was intro-

duced into these strains. As expected, the level of MMS-

induced Lac1 revertants was dramatically decreased in all

six CC strains. However, in CC102 DumuDC, which

monitors GC?AT transitions, the frequency of MMS-

induced mutations was still significant (7.2 Lac1 rever-

tants/108 cells). Interestingly, in the CC102 DumuDC
alkB2 strain, the level of MMS-induced Lac1 revertants

was 2-fold lower in comparison to CC102 DumuDC
alkB1 (Table II).

The data for AB1157 alkB1 and alkB117 strains, both

with and without the pRW134 plasmid, are shown in

Table II. The level of MMS-induced Arg1 revertants was

almost 13-fold higher in AB1157 alkB2 than in the corre-

sponding alkB1 strain. However, in the alkB2 background

the elevated level of UmuD0C produced from pRW134

increased the frequency of Arg1 revertants only by 1.8-

fold, whereas in AB1157 alkB1, the frequency increased

by up to 5-fold. In contrast, both strains lacking PolV,

AB1157 DumuDC alkB1, and AB1157 DumuDC
alkB117, showed an extremely low level of MMS-induced

Arg1 revertants.

The Effect of Constitutively Expressed SOS Response on
the Level of MMS-Induced Lac1/Arg1 Revertants

In attempting to increase the level of PolV, we have

constructed alkB1 and alkB2 derivatives of CC102,

CC104, CC105, and AB1157, in which the SOS system is

constitutively expressed. The product of the lexA gene,

the LexA protein, is a repressor for all genes in the SOS

regulon. The lexA300(Del) mutant is entirely devoid of

the LexA protein since the lexA gene was replaced by a

segment of DNA encoding spectinomycin resistance. The

sulA-encoded SulA protein is exclusively expressed in the

SOS-induced cells and plays a role in arresting cell divi-

sion. As a result, the bacteria grow as long filaments.

Mutations in sulA and lexA genes lead to normal cell divi-

sion, and the bacteria grow as single cells under condi-

tions of constitutive SOS induction. Bacteria mutated in

lexA only are not able to grow [Hill and Little, 1988].

The results shown in Table III indicate that among the

three pairs of alkB1 and alkB117 strains tested, CC102,

CC104, and CC105, a high frequency of MMS-induced

Lac1 revertants was observed only in CC104 alkB117
sulA and in CC104 alkB117 sulA lexA300 mutants. The

level of MMS-induced Lac1 revertants in these strains

was 54- and 188-fold higher in comparison to the alkB1

strains, respectively. However, under conditions of consti-

tutive SOS induction, the level of MMS-induced Lac1

revertants in the CC104 lexA sulA alkB117 strain was

almost as high as in the lexA1 strain (75.5 vs. 52.4 Lac1

revertants/108 cells, Table III). On the other hand, in

CC105 alkB117 sulA lexA300, the level of MMS-induced

AT?TA transversions was the lowest among the three

strains tested (3.2 Lac1 revertants/108 cells) (Table III).

In the same CC105 strain, with the alkB117 mutation and

harboring pRW134 plasmid, the frequency of MMS-

induced mutations was 10-fold higher. Therefore, this

class of mutation is exclusively PolV-dependent and not

dependent on the SOS response as a whole.

In the AB1157 sulA2alkB2 strain, the MMS treatment

led to a 7-fold increase in the frequency of Arg1 rever-

tants in comparison to that observed in the alkB1 variant.

In the AB1157 sulA2lexA2 mutant that constitutively

expresses the SOS response, the level of Arg1 revertants

was significantly higher (19-fold) in comparison to the

alkB1 counterpart (Table III).

Does Elevated Level of PolIV in CC Strains May Decrease
MMS-Induced Lac1 Reversion?

The series of CC101–106 strains and the derivatives of

AB1157 differ in the number of dinB genes encoding

DNA polymerase IV (PolIV). The AB1157 strain bears

only one dinB gene on its chromosome, expressing 250

PolIV molecules per one non-induced cell and 10-fold

Environmental and Molecular Mutagenesis. DOI 10.1002/em

TABLE III. Effect of Chronic Induction of the SOS Response on MMS–Induced (A) Lac1

and (B) Arg1 Revertants

Bacterial strains

alkB1 alkB117

(2) MMS (1) MMS (2) MMS (1) MMS

A: Frequency of Lac1 revertants (31028 cells) in strains

CC102 but sulA::Tn5 3.9 6 2.5 25.7 6 3.3 3.1 6 2.0 22.2 6 3.7

CC102 but sulA::Tn5 lexA300(Del)::spc 0.7 6 0.4 13.9 6 6.0 2.0 6 0.9 26.0 6 1.3

CC104 but sulA::Tn5(lexA1) 2.3 6 0.4 1.0 6 1.0 0.4 6 0.6 52.4 6 9.0

CC104 but sulA::Tn5 lexA300(Del)::spc 0.9 6 1.3 0.4 6 0.5 0.5 6 0.8 75.3 6 21.8

CC105 but sulA::Tn5(lexA1) 0.3 6 0.0 1.3 6 1.2 0.3 6 0.4 14.1 6 5.7

CC105 but sulA::Tn5 lexA300(Del)::spc 1.8 6 2.1 2.0 6 0.6 0.4 6 0.3 3.2 6 3.1

B: Frequency of Arg1 revertants (31028 cells) in strains

AB1157 but sulA::Tn5 2.2 6 2.2 179.7 6 153.4 1.7 6 0.4 1304.0 6 373.6

AB1157 but sulA::Tn5 lexA300(Del)::spc 2.1 6 1.3 171.7 6 141.9 3.5 6 0.8 3268.0 6 449.6
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more per SOS-induced cell. In CC101–106 bacteria, apart

from one copy of the dinB gene on the chromosome,

there is one more copy on its F0 episome, which is

expressed at a level of 750 and 7,500 PolIV molecules

per non-induced, and SOS-induced cell, respectively. In

other words, in AB1157 strains, there are 2,500 PolIV

molecules per SOS-induced cell, in the CC101–106

strains, there is a 4-fold higher level of PolIV, i.e., 10,000

molecules per SOS-induced cell [Kim et al., 2001]. The

latter suggests that a significantly higher amount of PolIV

over PolV may be able to suppress PolV activity in the

CC strains.

Recently, CC101–106 derivatives that differ in their

number of dinB genes were constructed in Roel Shaaper’s

laboratory (Table I). We have chosen three derivatives of

CC102 (NR11152, NR16625, NR16627), and three deriv-

atives of CC105 (NR11155, NR16626, NR16628), bearing

from none to two copies of the dinB gene, and introduced

the alkB117 mutation into them. The frequency of MMS-

induced Lac1 reversions was estimated in each of the

aforementioned strains and their alkB2 derivatives. The

results are presented in Table IV and demonstrate that for

all tested strains differing in the number of dinB genes,

the frequency of MMS-induced mutations does not differ

significantly in either the alkB1 or alkB2 derivatives.

This indicates that the increased level of PolIV in

CC101–106 does not influence the level of Lac1 rever-

tants; thus, either 1meA/3meC lesions are not bypassed

by PolIV or bypass by PolIV does not induce mutations.

Measurement of MMS-Induced Lac1 and Arg1 Revertants
in One Tester Strain

Our experimental approaches presented above did not

resolve the problem of the poor MMS mutability in a set

of the CC101–106 alkB117 strains measured by

lacZ2?Lac1 reversion, and the high mutability in the

AB1157 alkB2 strains measured by argE3?Arg1 rever-

sion. To eliminate any metabolic reasons for this discrep-

ancy, we constructed bacteria that permit the determina-

tion of reversions of both argE3?Arg1 and lacZ2?Lac1

markers in the same tester strain. Therefore, by genetic

manipulation (see Materials and Methods for details), we

deleted lacZYA from the chromosome of AB1157alkB1

and AB1157alkB117, transformed these strains with epi-

somal DNA isolated either from CC102 (F0102) or CC105

(F0105), and then tested the reversion frequency of each

marker.

The data shown in Table V indicate that in general the

frequency of MMS-induced mutations in the constructed

strains is comparable with that observed in the separate

strains for each marker shown in Table II. Nevertheless,

the level of Arg1 revertants measured in separate alkB1

and alkB2 strains was slightly higher in comparison to

the level observed in the strains lacking the lacZYA op-

eron but containing introduced F0102 (141 vs. 118 Arg1

revertants/108 cells in alkB1 and 1,800 vs. 1,409 Arg1

revertants/108 cells in alkB2). Similar results were

obtained in the strains with F0105 (141 vs. 119 Arg1

revertants/108 cells in alkB1 and 1,800 vs. 1,317 Arg1

revertants/108 cells in alkB2). In the case of Lac1 rever-

tants, the introduction of F0102 into alkB1 and alkB2

DlacZYA resulted in a slightly elevated level of Lac1

revertants (29 vs. 19 Lac1 revertants/108 cells in alkB1

and 46 vs. 28 Lac1 revertants/108 cells in alkB2),

whereas the introduction of F0105 into the alkB1 DlacZYA
strains led to a rather decreased level of Lac1 revertants

(0.3 vs. 2.7 Lac1 revertants/108 cells). In the alkB2
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TABLE V. MMS-Induced Mutations in AB1157 DlacZYA alkB1

or alkB2 Derivatives Harboring the Indicated F0 Episome

Bacterial strain F0-episome

Frequency of revertants

(31028 cells)

Lac1 Arg1

AB1157 alkB1 DlacZYA F0102 28.7 6 4.5 118.0 6 58.9

F0105 0.3 6 0.1 119.2 6 20.0

AB1157 alkB117 DlacZYA F0102 45.6 6 12.6 1409.1 6 294.4

F0105 2.7 6 3.2 1316.8 6 262.3

F0-102 and F0-105 denote F0 episomal DNA isolated from CC102 (GC

? AT) or CC105 (AT ? TA) strains.

TABLE IV. The Frequency of MMS-Induced Lac1 Reversions in Strains Differing in dinB
Copy Number

Specificity of

mutation

Bacterial

strain

dinB genotype Frequency of Lac1 revertants (31028 cells) in strains:

Chromosome F0

alkB1 alkB117

control 1 MMS control 1 MMS

GC ? AT NR11152 1 1 2.0 6 2.1 18.7 6 13.5 1.9 6 2.2 17.8 6 8.8

NR16625 1 2 0.4 6 0.4 24.0 6 14.7 0.9 6 0.8 23.7 6 12.3

NR16627 2 2 0.3 6 0.1 16.9 6 0.1 1.6 6 2.3 19.9 6 9.0

AT ? TA NR11155 1 1 0.2 6 0.1 1.3 6 1.2 0.3 6 0.1 11.1 6 6.0

NR16626 1 2 0.2 6 0.1 1.3 6 1.2 0.2 6 0.1 12.3 6 7.3

NR16628 2 2 0.5 6 0.6 2.3 6 1.5 0.8 6 1.3 8.7 6 4.5

All NR strains are derivatives of CC102 (GC ? AT) and CC105 (AT ? TA).
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strain, the levels were identical (2.6- and 2.7 Lac1 rever-

tants/108 cells).

DISCUSSION

Modification of nucleic acid bases by the MMS treat-

ment exerts a strong mutagenic and genotoxic effect on

E. coli. However, there are many cellular defense systems

and proteins that repair the modified DNA bases and pro-

tect cells against toxicity. One such protein is AlkB diox-

ygenase that repairs 1meA/3meC lesions that arise in

MMS-treated E. coli cells and restore natural A and C

bases in DNA through damage reversal.

It has been shown that mutations arising in alkB-defec-

tive strains are dependent on umuDC-encoded PolV [Nie-

minuszczy et al., 2006b; Fix et al., 2008]. Here, we have

established more precisely the involvement of PolV in the

processing of 1meA/3meC lesions arising after the MMS

treatment in E. coli alkB2 mutants, and also resolved the

problem of the great frequency difference in MMS-

induced Arg1 and Lac1 revertants measured in AB1157

and CC strains. With the use of the CC101–106 strains,

we were able to determine the specificity of Lac1 rever-

tants according to the AlkB and UmuD(D0)C content. In

testing CC alkB1 strains, we have found that the great

majority (83%) of MMS-induced Lac1 revertants arose

by GC?AT transitions monitored in CC102. This class

of mutations was also the most numerous in the CC

alkB2 strains; however, it constituted only 62% of all

types of Lac1 revertants (Table II). In strains lacking the

functional AlkB protein the level of other classes of Lac1

revertants, namely the GC?TA (CC104), AT?TA

(CC105), and GC?CG (CC103) transversions, was ele-

vated by 15-, 11-, and 8-fold, in comparison to the CC

alkB1 strains, respectively. Transformation of the

CC101–106 alkB1 and alkB117 strains with the pRW134

plasmid bearing umuD0C genes increased the level of

MMS-induced Lac1 reversions in all strains except

CC102, which monitored GC?AT transitions. It is likely

that the premutagenic lesions producing this class of

mutations are the O6meG residues leading to umuDC-in-

dependent mutations.

An extremely high increase in the frequency of Lac1

revertants has been observed in the CC104 alkB117/

pRW134 strain (118.6 Lac1/108 cells), which monitors

GC?TA transversions. The level of these mutations was

44-fold higher in comparison to the alkB1 counterpart

(Lac1 revertants of Table II, last column). A significant

increase in the Lac1 revertants was noted also in CC103

(GC?CG transversions) and CC105 (AT?TA transver-

sions) bearing the alkB117 mutation and harboring the

pRW134 plasmid. In these strains, the level of MMS-

induced Lac1 revertants of indicated specificity was 30-

and 4-fold higher in comparison to the alkB1 strain,

respectively.

According to Delaney and Essigmann [2004], under

conditions of SOS induction (here assured by MMS treat-

ment) and in the absence of functional AlkB, 3meC pro-

duces 35% C?T transitions, 30% of C?A, and 5% of

C?G transversions. Fix et al. [2008] have shown that the

MMS-induced C?T mutations in E. coli alkB2 strains

are strongly sequence-dependent; therefore, specificity of

mutations may vary depending on the test system used.

The 1meG lesion, which is able to induce GC?TA trans-

versions, can be also a substrate for the AlkB enzyme

[Delaney and Essigmann, 2004]. However, as it has been

shown here that this mutational specificity is detectable

only in the CC104 alkB117/pRW134 which has an

increased level of Pol V.

To find the reason for poor mutability of MMS in the

lacZ2?Lac1 reversion system, we considered the follow-

ing possibilities: (i) shortage of PolV in the CC strains;

(ii) the effect of PolIV on mutation suppression, taking

into account that PolIV is overproduced in the CC101–

106 strains but not in AB1157; (iii) the role of SOS

induction on MMS-induced mutations; and (iv) the struc-

ture and number of targets involved in the mutagenic

pathway leading to Arg1 or Lac1 reversions.

As shown above, even under the condition of increased

levels of PolV, in the CC strains harboring pRW134, the

highest Lac1 frequency was only 118 revertants/108 cells

in CC104 alkB117/pRW134 (Table II). In addition, reduc-

tion of the PolIV content by deletion of one or both dinB
genes (on the chromosome and/or episome) in the

CC101–106 alkB1 and alkB2 strains did not change the

frequency of MMS-induced mutations (Table IV).

The influence of constitutive expression of the SOS

response on the level of MMS-induced Lac1 reversions

was studied in alkB1 and alkB2 CC102, CC104, and

CC105 strains mutated in sulA, or in both lexA and sulA
genes. Among the three strains and six variants tested

(lexA1/2 and sulA2), elevated levels of MMS-induced

Lac1 revertants were observed only in CC104 alkB117
sulA::Tn5 lexA300(Del), and surprisingly, in its lexA1

counterpart. Moreover, the levels of the Lac1 revertants

shown in Table III for CC104 alkB117 sulA and CC104

alkB117 sulA lexA(Del), are �10-fold higher than the cor-

responding values for CC104 alkB117 sulA1. This result

indicates that disturbance in cell division and filamentous

growth of MMS-treated alkB2 sulA1 strains results in

lower frequency of Lac1 revertants, in comparison to

sulA2 strains, and that inhibition in bacterial growth plays

an important role in mutation avoidance. Additional muta-

tion in alkB in the CC104 sulA2 lexA1 and CC104 sulA2

lexA2 strains led to an increase in MMS-induced Lac1

revertants of over 50-fold and 188-fold, respectively (Ta-

ble III). The high level of mutations in the CC104/

pRW134 strains indicates that GC?TA transversions are
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the main class of PolV-dependent mutations that occurs

in alkB2 strain.

A possible reason for the differences in MMS mutabil-

ity of the argE3 and lacZ2 markers in the same cell back-

ground (Table V) is the different number of targeted sites

and their various structures in the cells. Our previous

studies showed that in the MMS-treated AB1157 strain

about 68% of Arg1 revertants arose by the supL suppres-

sor formation by AT?TA transversions and 22% by the

supB suppressor arising by GC?AT transitions. In the

BS87 alkB- strain, these proportions are different; only

33% of Arg1 revertants arise by the supL suppressor and

as much as 56% by the supB and supE suppressor forma-

tion, both by GC?AT transitions. The remaining muta-

tions arise by unknown supX suppressor formation. Back

mutations occurring by base substitutions in the argE3
site constitute about 4% of all types of Arg1 revertants in

the AB1157 strains as well as in BS87 strains [Niemi-

nuszczy et al., 2006b]. In the CC101–106 strains, rever-

sion of lacZ2 ? Lac1 occurs only by back mutation at

one point in the structural gene encoding the b-galactosi-

dase protein that when not expressed would be primarily

in a double-stranded DNA form. Reversion to Arg1

occurs mostly by formation of a variety of suptRNA

(ochre) suppressors that are heavily transcribed and exist

mostly as single stranded DNA. There are at least eight

separate tRNA genes, which by point-mutations located at

the anticodon part of tRNA, can form tRNA(ochre) sup-

pressors able to suppress the ochre codon present at the

argE3 locus thus recovering the Arg1 phenotype [Sled-

ziewska-Gojska et al., 1992]. Moreover, DNA encoding

tRNA genes most often exists in a single-stranded form

that facilitates methylation of A/C to 1meA/3meC. In

ssDNA, 1meA/3meC occurs at about 6- to 7-fold higher

frequency than in dsDNA [Drablos et al., 2004; Niemi-

nuszczy and Grzesiuk, 2007]. In conclusion, the great dis-

crepancy in the frequencies of MMS-induced lacZ- ?
Lac1 and argE3?Arg1 revertants most probably depends

on the number of targets undergoing mutations and results

from differences in reactivity of MMS to form 1meA/

3meC lesions in single vs. double stranded DNA.
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