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ABSTRACT

DNAtraffic (http://dnatraffic.ibb.waw.pl/) is
dedicated to be a unique comprehensive and richly
annotated database of genome dynamics during
the cell life. It contains extensive data on the no-
menclature, ontology, structure and function
of proteins related to the DNA integrity mechanisms
such as chromatin remodeling, histone modifi-
cations, DNA repair and damage response from
eight organisms: Homo sapiens, Mus musculus,
Drosophila melanogaster, Caenorhabditis elegans,
Saccharomyces cerevisiae, Schizosaccharomyces
pombe, Escherichia coli and Arabidopsis thaliana.
DNAtraffic contains comprehensive information on
the diseases related to the assembled human
proteins. DNAtraffic is richly annotated in the
systemic information on the nomenclature, chemis-
try and structure of DNA damage and their sources,
including environmental agents or commonly used
drugs targeting nucleic acids and/or proteins
involved in the maintenance of genome stability.
One of the DNAtraffic database aim is to create
the first platform of the combinatorial complexity
of DNA network analysis. Database includes illustra-
tions of pathways, damage, proteins and drugs.
Since DNAtraffic is designed to cover a broad
spectrum of scientific disciplines, it has to be exten-
sively linked to numerous external data sources. Our
database represents the result of the manual anno-
tation work aimed at making the DNAtraffic much
more useful for a wide range of systems biology
applications.

INTRODUCTION

A comprehensive understanding of the maintenance of
DNA integrity during the cell life requires the thorough

characterization of many simple data concerning all
nuclear processes involving DNA, and including replica-
tion, repair, recombination (3R) and transcription. The
major processes that regulate chromatin structure and
counterbalance its repressive effects are: (i) chromatin re-
modeling, (ii) post-translational histone modifications and
(iii) histone replacement. Chromatin is a dynamic struc-
ture that modulates the access of regulatory factors to the
genetic material. The main role of DNA molecules is the
long-term storage of information, genetic instruction used
in the development and functioning of all known living
organisms (with the exception of RNA viruses). Cells
are continuously exposed to damaging agents whose
action results in modification of nucleic acids. DNA
damage from endogenous sources gives rise to 20000
lesions/mammalian cell/day (1). Lesions are also caused
by errors in DNA metabolic processes, including the for-
mation of single and double-strand breaks from the
collapse of replication forks and the introduction of
modified nucleic acid bases during DNA replication.
Counting all together, daily the 10°-10'® repair events
occur in a healthy adult man (10'® cells) (2). On the
other hand, DNA damage is also caused by the environ-
mental factors such as chemicals, UV light and ionizing
radiation. Also, DNA structure and some proteins
involved in DNA replication and repair are targets for
the drugs used during chemotherapy (3). The available
anticancer drugs have distinct mechanisms of action,
which may vary in their effects on different types of
normal and cancer cells. Their role is to slow and hope-
fully halt the growth and spread of a cancer.

Across the evolutionary spectrum, living organisms
depend on high-fidelity DNA replication and recombin-
ation mechanisms have to response to DNA damage and
balance between the harmful and beneficial effects of ma-
nipulation into the genetic code. The knowledge of the
processes in charge of DNA metabolism is critical to our
understanding of how and why the genome is affected
during the lifespan of the organism, and how the DNA
repair systems efficiently work via several different
pathways to protect the genome from potential mutagenic
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modification and allow accurate transmission of genetic
information (4). Unrepaired lesions or strand brakes left
in DNA might be the result of dysfunction in DNA repair,
and lead to aging, carcinogenesis or neurodegeneration
(5,6). Some pathological disorders are directly related to
defects in DNA repair, telomere maintenance or DNA
damage response machinery (7-9). At the same time,
random changes in DNA are viewed as a main source of
genetic variability (e.g. the antibody production), and thus
a driving force for evolution. A precise coordination of the
genome networks is crucial to ensure that the correct
genetic code is maintained within the genome.

Traditionally, most of the known information on the
DNA study, DNA damage, disecases and drug targets
has been resisted in books, journals and databases.
Moreover, research in molecular biology has been
focused on single problems, simplified to the maximal
extend. Recently, the holistic approach to research,
referred to as the systems biology, has gained importance
and interest in the scientific community. Arising databases
mainly contain information on the sequenced genomes,
genes, proteins, RNAs, etc. Also, the depositaries of in-
formation on drugs, small molecules and chemicals are in
common use. The topic of the DNA metabolism is
covered by many computational resources. Metabolic
pathway databases contain metabolic pathways from a
wide variety of organisms (10-17). Those databases
queried about ‘DNA metabolism’, ‘DNA replication’,
‘DNA repair’, ‘nucleic acid’ show several dozen answers.
However, the chromatin maintenance network contains
about 20 subpathways, depending on the organism [e.g.
Escherichia coli cells lack of non-homologous end joining
(NHEJ) repair or Fanconi anemia (FA) pathway].

In contrast to others, the open access DNAtraffic
database is a richly annotated resource for systems
biology of DNA research containing information on:
(i) DNA metabolism (replication, transcription, DNA
repair pathways, chromatin organization, histone modifi-
cations and the DNA damage response network in eu-
karyotic and prokaryotic organisms); (il) proteins
enrolled in widely understanding the DNA metabolism;
(iii) DNA damage (damage type, damage source and
damage effect); (iv) diseases related to the assembled
human proteins and (v) drugs targeted on nucleic acids
metabolism and proteins involved in the maintenance of
genome stability.

DNAraffic database for systems biology of genome in-
tegrity is addressed to scientists, pharmacologists and
students.

DETAILS RELATING TO DNAtraffic’s OVERALL
DESIGN AND DATA STRUCTURE DEPICTION
CONVENTIONS

The aspects of the biochemistry and molecular biology of
the genome dynamics during the cell life are the key for
learning genome stability networks. During DNA replica-
tion, transcription and DNA repair, the cellular
machineries performing these tasks need to gain access
to the DNA that is packaged into chromatin or

nucleoid. The main aim of the DNAraffic database is to
cover and elucidate the interdisciplinary knowledge
linking all aspects of the DNA integrity processes (e.g.
chromatin dynamics, DNA replication, damage signaling
and DNA repair), DNA damage and drugs interacting
with DNA or proteins directly enrolled in DNA metabol-
ism and connect all pieces together for the coordination of
steps within a pathway or for crosstalk between different
pathways. As transcription, recombination and DNA in-
tegrity are central components in the evolution of recent
genome structures, and because replication, recombin-
ation and repair (3R) were fundamental prerequisites for
the origin of life, all these topics are taken under analysis
and serve as the cohesive force underlying this comprehen-
sive DNA topic-focused database (18).

PathCARD

We used KEGG (13) and Reactome (12) databases for
data implementation about pathways and networks con-
cerning DNA metabolism. Some data like prokaryotic
SOS response and translesion synthesis (TLS) were
directly added by our DNAtraffic team. All proteins are
classified according to the orthology class, and next to the
DNA integrity networks: chromatin organization and
histone modifications, replication, damage checkpoint,
DNA repair, modulation of nucleotide pools and so on
(Table 1). It must be emphasized that all described
processes are tightly connected to each other and they
act in concert sharing some steps and/or proteins.
Known functions of proteins are indicated in the curator
comments section of each entry. A special emphasis is
devoted to the function of that protein within DNA me-
tabolism pathways but we also refer to alternative roles in
other pathways. Additionally, all Gene Ontology terms
associated to that protein are listed. The pathway in
which a given protein is playing a role is also explored
by linking from DNAtraffic to the pathways included in
the KEGG and Reactome databases.

ProteinCARD

According to the DNA metabolism network we used the
UniProt (19), KEGG (13) and National Center for
Biotechnology Information (NCBI) databases for
protein data implementation into DNA/raffic database
for eight model organisms commonly used for DNA
study. We collected 2921 proteins, for example—>582 for
Homo sapiens, 277 for Saccharomyces cerevisiae and 91 for
E. coli (as of 13 October 2011). Using direct access from
DNA traffic to protein all users can obtain unusual view of
well-known proteins from model organisms but classified
into the orthology classes. This innovation may be useful
for the systems biology research and proper selection of
the model organism for further study (Figure 1) of selected
pathway. Amino acids and DNA sequences were down-
loaded from Ensemble. When available, links to the
protein 3D structure in Protein Data Bank (PDB) were
provided and 2D picture is visible in the single
ProteinCARD entry. If annotated, possible physical inter-
actions with other proteins were obtained through IntAct,
STRING and other databases providing interacting



Table 1. Distribution of the orthology classes into DNA maintenance
network in DNA/raffic database

General name of Name of process Number of
super-pathway orthology
class
Genome dynamics Chromatin remodeling 72
Histones 5
Histone modifications 75
Transcription 34
Transcription factors 35
Heterochromatin formation 27
Telomere maintenance 23
Prokaryotic nucleoid remodeling 12
DNA synthesis DNA replication 67
TLS 13
Rad6 pathway 5
DNA repair Direct repair
Direct reversal 8
Single-strand breaks repair
Base excision repair 39
Nucleotide excision repair 47
Mismatch repair 42
Very short patch repair 1
Double-strand breaks repair
Homologous recombination 56
FA pathway 58
NHEJ 17
Damage checkpoint DDR 23
Prokaryotic SOS response 18
Nucleotide level Modulation of nucleotide pools 6

protein pairs from small and large-scale experiments.
Also, manual annotation work was needed to match the
DNA damage or drug to appropriate protein and DNA
structure. Also, the DNA metabolism-related proteins
from the DNA fraffic database were classified by orthology
into the functional (or predicted by orthology) activities
such as DNA polymerase, DNA ligase, DNA glycosylase,
DNA helicase, nuclease, etc. This action also needed
manual annotation work. Using our knowledge and bio-
informatics tools, in near future, protein will be classified
into the structural families attending to the presence of
characteristic domains, e.g. BRCAl, BARDI1, BRCT
and RING, etc (20,21). Each protein possesses its own
ProteinCARD entry with a succinct description, recipro-
cal links to pathway(s), and if existing—to disease
and DNA damage, and additional external links to
NCBI, KEGG and UniProt databases. Moreover, from
single ProteinCARD user can overview and access to the
other proteins from the same orthology class. This infor-
mation can be useful for the systemic study of DNA
integrity.

DiseaseCARD

Disease is a condition, which arises in a living organism,
animal or plant, when something malfunctions and
impairs the normal operation of the organism.
Developing an understanding of the factors that cause
disease motivates most of biological research. Till now,
DNAraffic collects 121 diseases related to dysfunction
in 77 proteins enrolled to the DNA networks. Data were
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implemented from OMIM (22) and KEGG databases (13)
as well as directly from PubMed. This action needed
manual annotation work. Each disease possesses its own
DisecaseCARD entry with a succinct description, link to
protein(s) and sometimes the picture of the symptoms.
Reciprocal links to diseases are also available in each
protein and pathway field (Figure 1).

DamageCARD

As of 13 October 2011, we collected information about
146 different types of damage in the DNA. Many of
them describe general classes of damage events such as
methylation or oxidative damage, or single-strand breaks
or base loss, which are independent of the local sequence.
About 50 chemical compounds that cause DNA damage
were connected to the appropriate types of damage. Each
type of damage is described on its own DamageCARD
entry that includes information about the potential
source (e.g. spontaneous formation, intermediate in
some DNA repair process, methylating agents, etc.),
proteins that may recognize its presence in the DNA,
keywords that facilitate analyzing its context and
external links (if available) to: PubChem Compound
(CID), PubChem Substance (SID), ChemSpider, KEGG
Compound, ChEBI and ChEMBL. DNAraffic database
also displays the unique chemical structures of DNA
lesions in 2D and provides atomic coordinates for
download in the smiles, InChi and InChiKey format.

DrugCARD

Till now, we collected information about over 181 differ-
ent types of drugs interacting with DNA or proteins
involved in nucleic acids metabolism. Data were imple-
mented from DrugBank, T3DB, Therapeutic Target
Database (TTD), KEGG Compounds databases
(13,23-25). Each type of drug is described on its own
DrugCARD entry that includes information about the
potential application (e.g. anticancer treatment, DNA
topoisomerase inhibitor and other), drug-protein or
drug—-DNA interaction and external links to DrugBank,
KEGG Compound, PubChemCompound, PubChem
Substance, ChemSpider, ChEBI, ChEMBL and TTD
databases. DNAtraffic database also displays the unique
chemical structures of drugs in 2D and provides atomic
coordinates for download in the smiles, InChi and
InChiKey format.

SCHEME OF THE DNAtraffic DATABASE
ARCHITECTURE

The unordered data are difficult to interpret and many of
the connections are lost. The OWT ontology provides the
clear view and discovers the new connections. DNAtraffic
database has been implemented using the Django web
framework (http://www.djangoproject.com/). It uses a
PostgreSQL relational database to store data (http://
www.postgresql.org/). Scripts are written in Phyton
language. DNAraffic database is freely available and
can be accessed at http://dnatraffic.ibb.waw.pl/
dnatraffic/.
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Figure 1. Scheme of DNA/raffic database.
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EXPANDED DATABASE LINKAGES

Because DNAfraffic was designed to cover a broad
spectrum of scientific disciplines, it must be extensively
linked to many external databases. Until now,
DNAzraffic contains up to 15 database hyperlinks
including links to KEGG (13), UniProt (19), OMIM
(22), PDB (26), PubChem (27), ChEBI (28), ChEMBL,
GenBank (29), Pfam (30), GeneCards (31), GenAtlas
(32), HGNC, PubMed, ChemSpider (33) and TTD (25).

CONCLUSION

Researchers of the various chromatin structure and DNA
repair processes have recently embraced approaches in
which global measurements of gene expression and the
proteome can be combined with genome-wide screening
of sensitivity mutants to develop an integrated view of
how cells respond to and protect themselves against
DNA damaging agents. The emerging picture from these
global genomic studies is quite different from the previous
concept of DNA repair, cell cycle control and induction of



apoptosis as being independent processes. In fact these
processes appear to form a fully integrated network.
Integration of these genome-wide measurements allows
the development of specific models of response networks
that could not have been detected or discerned previously.

DNAraffic database is the first platform for systems
biology of DNA integrity during the cell life, and can be
also integrally involved in translational research (18). This
includes the identification of small molecule inhibitors of
novel DNA damage response (DDR) pathways that put
new light on the causes of cancer or have potential uses in
treatment.

DNAraffic contains a significant number of data.
As highlighted throughout this article, numerous improve-
ments have been made in the quantity, quality, depth and
organization of the information provided. DNAtraffic
contains illustrated DNA networks in the cell, protein,
damage and drug structures data and pictures.
DNAraffic also offers expanded database links. It is
hoped that DNAraffic will continue to develop to fulfil
the needs of its users and provide an increasingly useful,
information-rich DNA metabolism resource.
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