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Two families of membrane enzymes catalyze the initiation of
the synthesis of O-antigen lipopolysaccharide. The
Salmonella enterica Typhimurium WbaP is a prototypic
member of one of these families. We report here the purifi-
cation and biochemical characterization of the WbaP
C-terminal (WbaPCT) domain harboring one putative
transmembrane helix and a large cytoplasmic tail. An N-
terminal thioredoxin fusion greatly improved solubility and
stability of WbaPCT allowing us to obtain highly purified
protein. We demonstrate that WbaPCT is sufficient to cata-
lyze the in vitro transfer of galactose (Gal)-1-phosphate from
uridine monophosphate (UDP)-Gal to the lipid carrier unde-
caprenyl monophosphate (Und-P). We optimized the in vitro
assay to determine steady-state kinetic parameters with the
substrates UDP-Gal and Und-P. Using various purified polyi-
soprenyl phosphates of increasing length and variable satur-
ation of the isoprene units, we also demonstrate that the
purified enzyme functions highly efficiently with Und-P,
suggesting that the WbaPCT domain contains all the essential
motifs to catalyze the synthesis of the Und-P-P-Gal molecule
that primes the biosynthesis of bacterial surface glycans.
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Introduction

The membrane enzyme WbaP of Salmonella enterica serovar
Typhimurium initiates O-antigen synthesis by catalyzing the
transfer of galactose (Gal)-1-phosphate from a nucleotide

precursor [uridine monophosphate (UDP)-Gal], onto the
membrane-embedded isoprenoid lipid carrier, undecaprenyl
monophosphate (Und-P), yielding Und-P-P-Gal (Wang and
Reeves 1994; Wang et al. 1996; Patel et al. 2010). WbaP
belongs to the polyisoprenyl-phosphate hexose-1-phosphate
transferase (PHPT) family (Valvano 2003; Valvano et al.
2011). PHPT members occur only in prokaryotes and initiate
the synthesis of various types of glycans such as, for example,
colanic acid in Escherichia coli K-12 (Stevenson et al. 1996),
K30 capsule in E. coli 09:K30 (Drummelsmith and Whitfield
1999), type 2 capsule in Streptococcus pneumoniae (Cartee
et al. 2005) and glycans for S-layer protein glycosylation in
Geobacillus stearothermophilus (Steiner et al. 2007). Most
proteins in this family utilize hexose sugars, but some excep-
tions exist: PglC in Campylobacter jejuni and PglB in
Neisseria sp. transfer 2,4-diacetamido-2,4,6-trideoxyglucose
(bacillosamine)-1-P and a 2(4)-acetamido-4(2)-glyceramido-
2,4,6-trideoxyhexose-1-P, respectively, to initiate the synthesis
of precursors for protein glycosylation pathways (Power et al.
2000; Glover et al. 2006; Chamot-Rooke et al. 2007; Hartley
et al. 2011). Another member of this family, WecP, functions
with UDP-N-acetylgalactosamine (Merino et al. 2011).
WbaP has five predicted transmembrane (TM) helices and

three domains (Saldías et al. 2008; Figure 1). The N-terminal
domain, including the first four TMs and their connecting
loops, has no assigned function, although it contributes to the
overall stability of the protein in the membrane (Saldías et al.
2008). A large predicted soluble loop between TMIV and
TMV has been implicated in modulating chain length distri-
bution of O-antigen, while the C-terminal domain that
includes TMV and the tail is sufficient for the activity of the
enzyme in vivo and in vitro (Wang et al. 1996; Saldías et al.
2008; Patel et al. 2010). Trypsin cleavage and green-
fluorescent protein reporter experiments confirmed that the
C-terminus of the protein including approximately the last 20
kDa is cytoplasmic (Patel et al. 2010). Most PHPT proteins
studied are predicted to contain five complete TMs, but others
such as Caulobacter crescentus PssY and PssZ contain only
the C-terminal domain (Toh et al. 2008). At least some of the
highly conserved residues within the cytosolic C-terminal
region of WbaP are required for function (Patel et al. 2010).
The location of the catalytic domain to a defined region of the
protein prompted us to purify and biochemically characterize1To whom correspondence should be addressed: Tel: +1-519-661-3427;
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the C-terminal domain of WbaP (spanning residues 258–476,
WbaPCT) in the absence of contaminating membrane proteins
or lipids. Using an in vitro assay with chemically defined
components, we demonstrate that WbaPCT is sufficient for
enzymatic activity and also carries high specificity for the
Und-P lipid acceptor.

Results and discussion
Overproduction and solubilization of the C-terminal domain
of WbaP with an N-terminal thioredoxin fusion
Salmonella enterica Typhimurium wbaPR274-Y476 was amplified
from LT2 DNA and cloned into pET28a generating the plasmid
pKP18. This construct encoded a product with an N-terminal
6xHis tag to facilitate detection by immunoblot and protein puri-
fication by Ni2+-affinity chromatography. Expression of the
recombinant protein was under the control of the Isopropyl β-D-
1-thiogalactopyranoside (IPTG)-inducible lacZ promoter. After
induction of BL21(DE3)/pKP18 with IPTG, total membranes
were prepared and analyzed by sodium dodecyl sulfate-poly-
acrylamide gel electrophoresis (SDS–PAGE). Immunoblotting

revealed a 29-kDa band corresponding to 6xHisWbaPCT (data
not shown). We next attempted to solubilize 6xHis-WbaPCT
from the total membrane fractions for purification. To retain the
activity of the protein, we tested non-ionic detergents, like Triton
X-100 and n-dodecyl-β-D-maltoside (DDM), and the zwitterio-
nic detergent, 3-[(3-cholamidopropyl)dimethylammonio]-1-
propanesulfonate (CHAPS) at over 10× their critical micelle
concentrations. None of the detergents were successful in
extracting 6xHis-WbaPCT from the membrane fractions (data
not shown). Varying growth and induction conditions, such as
temperature, time, IPTG concentration and aeration, did not
improve solubilization, suggesting that BL21(DE3) could
produce 6xHisWbaPCT as inclusion bodies. Inclusion bodies
are typically described for proteins that accumulate in the peri-
plasm or in the cytosol, but can also be membrane associated
and therefore detected in the total membrane fraction
(Geertsma et al. 2008). An N-terminal fusion of the 12 kDa
thioredoxin (TrxA) to a target protein prevents the formation of
inclusion bodies (LaVallie et al. 1993). Indeed, we reported
previously that an N-terminal TrxA fusion enhanced membrane
localization and folding of WbaPCT (Patel et al. 2010). We
reasoned that if this fusion reduced the production of inclusion
bodies, it would improve solubilization by detergents. Plasmid
pKP41 expresses wbaPR258-Y476 with an N-terminal 6xHis tag
and TrxA fusion (Patel et al. 2010). We solubilized total mem-
branes from BL21(DE3) cells expressing 6xHis-TrxA-WbaPCT
and the insoluble 6xHis-WbaPCT in 2.5% DDM. As before,
6xHis-WbaPCT was not solubilized from total membranes
(Figure 2, lanes 1 and 2). In contrast, 6xHis-TrxA-WbaPCTwas
well expressed and readily soluble in the detergent suspension
(Figure 2, lanes 3 and 4). To improve the solubilization, we
repeated the experiments using the C43(DE3) strain. This
strain derives from BL21(DE3) and allows for improved
expression of membrane proteins (Miroux and Walker 1996).
Expression and solubilization of 6xHis-TrxA-WbaPCT was
more efficient in C43(DE3) bacteria (Figure 2, lanes 7 and 8),
whereas 6xHis-
WbaPCT was not well expressed in these cells (Figure 2, lanes
5 and 6). Similar results were obtained using 6% CHAPS and
7% Triton X-100 (data not shown).
To find an efficient detergent for solubilization of

6xHis-TrxA-WbaPCT and compatibility with enzymatic
activity, we also tested the non-ionic detergent octylglucoside
(OG) at 0.5 and 1% concentrations. After solubilization and
high-speed centrifugation, 2.5% of the insoluble pellet and
the soluble supernatant fractions were analyzed by SDS–
PAGE and western blotting and the soluble fractions were
also tested for enzymatic activity with 20 mM MgCl2, 100
µM Und-P and 0.33 µM 14C-labeled UDP-Gal. Although
DDM was most effective at solubilizing 6xHis-TrxA-WbaPCT
(Figure 3), the protein was most active in CHAPS at a con-
centration of 1% (Table I). We concluded that DDM was pre-
ferred to solubilize and purify 6xHis-TrxA-WbaPCT while
CHAPS would be optimal to assay the protein in vitro.

Purification of an active 6xHis-TrxA-WbaPCT protein and
cleavage of the 6xHis fusion partner
6xHis-TrxA-WbaPCT was purified as described in Materials
and methods. Total membranes from a 150 mL culture of C43

Fig. 2. Solubilization of 6xHis-WbaPCT and 6xHis-TrxA-WbaPCT from total
membranes of BL21(DE3) and C43(DE3) cells (lanes 1–4 and 5–8,
respectively). After IPTG induction and solubilization with 2.5% DDM, the
insoluble pellet (P) and soluble supernatant (S) fractions were recovered as
described in Materials and methods. Samples were separated by 14% SDS–
PAGE and probed with anti-His antibodies. kDa, molecular mass markers.

Fig. 1. Predicted topology of S. enterica WbaP adapted from Saldías et al.
(2008).

Biochemical characterization of WbaP
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(DE3)/pKP41 were solubilized in buffer containing 1% DDM.
Following high-speed centrifugation, the supernatant was
recovered and applied to Ni2+-loaded resin. After washing the
resin, 6xHis-TrxA-WbaPCT was eluted with 250 µM imida-
zole. SDS–PAGE and Coomassie staining showed that
6xHis-TrxA-WbaPCT efficiently bound to the column and was
eluted at high levels of imidazole (Figure 4A). After overnight
dialysis, the protein concentration was quantified and the puri-
fied enzyme remained active as assayed with exogenous
Und-P and 14C-labeled UDP-Gal (data not shown).
We next proceeded to remove the 6xHis-TrxA fusion by

cleavage at the tobacco etch virus (TEV) site between
WbaPCT and the fusion partner. Pure 6xHis-TrxA-WbaPCT
was incubated with 6xHis-TEV overnight at 4°C. After pro-
teolysis, the sample was added to Ni2+-charged resin and the
flow-through and all fractions were analyzed by SDS–PAGE.
The TEV cleavage was complete (Figure 4B, lane 3) affording
10% WbaPCT, whereas the reminder of the cleaved protein
remained associated with the resin (Figure 4B, lane 4). The
protein recovered in the flow-through was concentrated and
quantified (Figure 4C). This protocol provided 0.2 mg/l of

highly purified and enzymatically active WbaPCT, which was
sufficient for the biochemical analysis.

Biochemical properties and kinetic parameters of purified
WbaPCT

We measured the effect of different variables in the in vitro
transferase activity of WbaPCT. The optimal pH was deter-
mined using fresh tris–HCl buffers ranging from pH 6 to
9.5. Transferase activity was only detected between pH 7
and 9, being optimal at pH 8.5 (Figure 5A). Tris–HCl
buffer at pH 8.5 was therefore used for all subsequent reac-
tions. NaCl and KCl inhibited WbaPCT activity, particularly
at concentrations higher than 200 mM salt that resulted in
more than 50% inhibition (Figure 5B). Therefore, upon clea-
vage of the 6xHis-TrxA, WbaPCT was concentrated by a fil-
tration spin column and rinsed twice with salt-free buffer to
prevent the inhibitory effects of NaCl. In vitro assays with
crude membranes containing WbaP have previously shown
that divalent cations Mg2+ or Mn2+ are required for activity
(Osborn et al. 1962; Patel et al. 2010). To determine the
optimal concentration of metal ion cofactor required for the
activity of WbaPCT, we assayed the protein at concentrations
of 0–150 mM MgCl2. Without adding MgCl2, no activity
could be detected; activity was optimal at 25 mM, while
higher concentrations had an inhibitory effect (Figure 5C).
We next investigated the kinetic parameters of WbaPCT.

Product formation was assayed over time at various con-
centrations of protein. The transferase activity profile was
linear up to 15 min for concentrations of protein up to 4
ng/µL. To determine the steady-state kinetics of WbaPCT,
we utilized optimized reaction conditions [50 mM tris–HCl
(pH 8.5), 25 mM MgCl2, 1% CHAPS] and tested the sub-
strates UDP-Gal and Und-P at concentrations ranging from
0.2 to 2.5 µM and 10 to 1000 µM, respectively. Typical
Michaelis–Menten kinetics were observed for both sub-
strates (Figure 6A and B) with a Km of 0.55 ± 0.06 µM, a
Vmax of 2448 ± 93 pmol/mg/min and kcat of 4.025 s−1 for
UDP-Gal, and a Km of 78.5 ± 0.02 µM and a Vmax of
1145 ± 65 pmol/mg/min for Und-P.

Fig. 3. Detergent screening for solubilization of 6xHis-TrxA-WbaPCT. Total membranes from IPTG-induced C43(DE3)/pKP18 cells were solubilized in 0.5 and
1% DDM, CHAPS, Triton X-100 and OG. The insoluble pellet (P) and soluble supernatant (S) fractions were recovered and 2.5% of each fraction was separated
by 14% SDS–PAGE and probed with anti-His antibodies.

Table I. In vitro activity of 6xHis-TrxA-WbaPCT solubilized with non-ionic
detergents

Sample Activity relative to total enzymatic
activity in crude membranes (%)a

Crude membranes with no detergentb 100.0
Membrane solubilized (detergent; %)
CHAPS (0.5) 62.4
CHAPS (1.0) 91.8
DDM (0.5) 81.5
DDM (1.0) 44.5
OG (0.5) 65.5
OG (1.0) 76.5
Triton X-100 (0.5) 10.0
Triton X-100 (1.0) 3.5

aTotal membrane protein (200 µg) was solubilized in buffer with detergents to
a final volume of 200 µL; 50 µL of the soluble fraction corresponding to 50
µg of solubilized membrane protein was tested for in vitro enzymatic activity
as described in Materials and methods.
b50 μg of crude membranes were tested for in vitro enzymatic activity.
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Substrate specificity of pure WbaPR258-Y476 for the lipid
carrier
We also determined whether WbaPCT retains specificity for
C55-Und-P. The in vitro activity of purified WbaPCT was
tested with polyisoprenyl (PI) phosphates of varying lengths
ranging from C10-P to C95-P (Figure 6). Minimal activity
was detected with the shorter PIs C10-P, C15-P, C20-P and
C35-P at 0.28, 0.91, 1 and 1.8% of C55-P activity, respect-
ively. A similar result was also obtained with the eukaryotic

Fig. 4. Purification of TrxA-WbaPCT. (A) Purification of 6xHis-TrxA-WbaPCT from C43(DE3) total membranes and analysis by 16% SDS–PAGE and Coomassie
staining. Lane 1, DDM solubilization; lane 2, flow-through; lane 3, wash 1 (30 mM imidazole); lanes 4 and 5, wash 2 and 3 (60 mM imidazole); lane 6, elution
1 (250 mM imidazole); lane 7, elution 2 (250 mM imidazole). Purified protein migrates at 40 kDa. (B) Analysis of TEV cleavage of 6xHis-TrxA-WbaPCT by
16% SDS–PAGE followed by western blot with anti-HIS antibodies (right) and by Coomassie staining (left). Lane 1, purified 6xHis-TrxA-WbaPCT migrates at
40 kDa; lane 2, 6xHis-TrxA-WbaPCT after TEV cleavage. Cleaved 6xHis-TrxA migrates at 17 kDa and WbaPCT migrates at 25 kDa and is not detected by
western blot. The 6xHis-TEV protease migrates at 27 kDa. Lane 3, post-TEV-cleavage flow-through. Lane 4, elution with 500 mM imidazole releases all bound
protein. (C) 12% SDS–PAGE and Coomassie staining of concentrated post-TEV-cleavage flow-through.

Fig. 5. Biochemical properties of pure WbaPCT. The effects of (A) pH, (B)
the salts NaCl and KCl and (C) MgCl2 were investigated. Each data point
represents the mean of three experiments with standard deviations.

Fig. 6. Steady-state kinetics of WbaPCT. A range of (A) 0.2–2.5 µM for
14C-labeled UDP-Gal and (B) for 10–1000 µM Und-P was assayed under
optimized reaction conditions and the reactions were carried out for 15 min at
37 µC in triplicate as described in Materials and methods. Each point
represents the mean of three experiments with standard deviations.

Biochemical characterization of WbaP

119

 at Instytut B
iochem

ii i B
iofizyki PA

N
 on D

ecem
ber 8, 2011

http://glycob.oxfordjournals.org/
D

ow
nloaded from

 

http://glycob.oxfordjournals.org/


lipid carrier, C95-P, at 4.02% activity of C55-P (Figure 7).
C50-P, however, resulted in 49.53% activity of C55-P. The
synthetic C55-P and C50-P have three internal trans residues
in their molecules, whereas the endogenous Und-P has two.
Since the measurement of the enzymatic activity of purified
WbaPCT is related to the exogenous C55-P, we conclude that
the differences in the number of trans residues are not rel-
evant for substrate recognition. However, C35-P and C95-P
have two internal trans units like authentic Und-P, and C95-P
is hydrogenated at the OH of the terminal of the isoprene unit
(α-isoprene). These results indicate that WbaPCT can recog-
nize the length of the PI chain and the unsaturation of the
α-isoprene and therefore is highly specific for Und-P.

Concluding remarks
To our knowledge, in vitro studies on WbaP as well as other
hexose-1-transferases, such as CpsE and WsaP, have relied on
crude membrane preparations (Osborn et al. 1962; Cartee
et al. 2005; Steiner et al. 2007; Saldías et al. 2008; Patel et al.
2010). Here, we have purified the WbaPCT domain, which has
allowed us characterize the transferase reaction in vitro using
chemically defined components. A striking observation in our
study was the strong specificity of WbaPCT for Und-P. Kinetic
analysis of purified PglC with PI phosphates varying in
length, double-bond geometry and degree of saturation has
also revealed a preference for the native substrate (Chen
et al. 2007). An interaction of the enzyme with the Und-P
(C55-P) acceptor presumably occurs in the inner membrane
via regions of the protein within or at the boundaries of TM
helices. In previous work, we showed the cytosolic tail of
WbaP fused to TMI resulted in a protein without function,
suggesting that the TMV is important for the catalytic activity
of the enzyme (Saldías et al. 2008). A closer examination
of the TMV helix, which is present in the purified WbaPCT
protein, reveals the sequence LIIASPLMIYLWY. This
sequence is strikingly similar to the 13 amino acids consensus

sequence LL(F/I)IXFXXIPFXFY, which was described to be
important for the recognition of PI phosphates (Albright et al.
1989; Zhou and Troy 2003). NMR and molecular modeling
of peptides containing the consensus sequence suggest that
one TM region would be sufficient to interact with Und-P
(Albright et al. 1989; Zhou and Troy 2003, 2005). Structural
studies of the WbaPCT domain, currently underway in our lab-
oratory, will provide more detailed information on the mech-
anism of catalysis as well as the residues that make contact
with substrate and cofactor molecules.

Materials and methods
Bacterial strains and growth conditions
Escherichia coli strains DH5α (laboratory stock), BL21(DE3)
(Invitrogen) and C43(DE3) (Invitrogen, Burlington, Ontario,
Canada) were used for the overexpression of proteins.
Salmonella enterica Typhimurium LT2 was used to prepare
chromosomal DNA. Bacteria grew aerobically at 37°C in
Luria–Bertani (LB) medium (Difco Laboratories, Sparks,
MD, USA) (10 mg/mL tryptone, 5 mg/mL yeast extract, 5
mg/mL NaCl). Media were supplemented with 100 μg/mL
ampicillin, 30 μg/mL chloramphenicol or 40 μg/mL kanamy-
cin as appropriate.

Plasmid construction and sequencing
Plasmid DNA was isolated using the Qiagen miniprep kit
(Qiagen Inc., Mississauga, Ontario, Canada). Digestion with
restriction enzymes, ligation with T4-ligase and transform-
ation were carried out as described by Maniatis et al. (1982).
DNA sequences were determined using an automated sequen-
cer at the York University Core Molecular Biology and DNA
Sequencing Facility, Toronto, Ontario, Canada. Plasmid
pKP18 was constructed by polymerase chain reaction (PCR)
amplification of a 624 bp fragment using primers 2882
(5′-CTGGTCGACATTATTCAGTACTTCTCG-3′) and 2907
(5′-CTAGTTAGGATCCAGGTCGTCCCGTTTTCTC-3′) and
LT2 DNA as template. This fragment was digested with SalI
and BamHI and ligated into these sites in pET28a (Novagen,
EMD Biosciences, Mississauga, Ontario, Canada). Plasmid
pKP41 is described elsewhere (Patel et al. 2010).

Chemicals
All reagents unless otherwise specified were supplied by
Sigma-Aldrich (St. Louis, MO, USA). 14C-labeled UDP-Gal
(Specific activity of 300 mCi/mmol) was purchased from
American Radiolabeled Chemicals Inc. (St Louis, MO).
Purified neryl monophosphate (C10H25N2O4P), farnesyl
monophosphate (C15H33N2O4P), geranylgeranyl monophos-
phate (C20H41N2O4P), heptaprenyl monophosphate
(C35H65N2O4P), decaprenyl monophosphate (C50H89N2O4P),
Und-P (C55H97N2O4P) and dolichyl monophosphate
(C95H163N2O4P) were chemically phosphorylated using phos-
phoramidite chemistry (Branch et al. 1999; Ye et al. 2001).
The purity of the PI phosphates was evaluated by thin layer
chromatography and determined to be >95% in all cases. To
prepare the PI phosphates, prenols (C35, C50 and C55) were
isolated from diverse plant sources (Wellburn and Hemming
1966), whereas dolichol (C95) was isolated from the

Fig. 7. Specificity of WbaPCT for the lipid carrier. A concentration of 100 µM
was used for each PI tested in optimized in vitro assay conditions as
described in Materials and methods. Data represent the mean of three
independent experiments with standard deviations.
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mammalian liver and purified from the natural extracts by
chromatographic methods (Chojnacki et al. 1975).
Oligoprenols (C10, C15 and C20) were from Sigma-Aldrich.

Membrane preparation and immunoblotting
Bacteria grew overnight in 5 mL of LB. The culture was
diluted to an initial OD600 of 0.2 and incubated at 37°C for 2 h
until reaching an OD600 of 0.6. At this point, IPTG was added
to a final concentration of 100–400 µM. Cells were incubated
for 5 h at 30°C. Cells were then harvested by centrifugation at
10,000 × g for 10 min at 4°C. The bacterial pellet was sus-
pended in lysis buffer [20 mM Tris–HCl (pH 8.5) + 300 mM
NaCl, unless otherwise specified] and protease inhibitor cock-
tail (Roche Diagnostics, Laval, Quebec, Canada) and the sus-
pension lysed using a French Press cell (Thermo Scientific,
Rockville, MD, USA). Cell debris were removed by centrifu-
gation (15,000 × g for 15 min at 4°C), and the clear supernatant
was centrifuged at 40,000 × g for 30 min at 4°C. The pellet,
containing total membranes, was suspended in lysis buffer.
The protein concentration was determined by the Bradford
assay (Bio-Rad, Hercules, CA). Staining was performed with
Coomassie brilliant blue R250 (Life Technologies Inc.,
Carlsbad, CA, USA). SDS–PAGE, protein transfers to nitrocel-
lulose membranes and immunoblots were performed as
described (Pérez et al. 2008). For detection of 6xHis proteins,
membranes were incubated with a 1:10,000 dilution of anti-His
IgG2a monoclonal antibodies (Amersham, Piscataway, NJ).

Membrane protein solubilization
For initial solubility detergent screening, total membranes
from BL21(DE3) and C43(DE3) cells expressing pKP18 and
pKP41 were solubilized in buffer [20 mM tris–HCl (pH 8.5),
150 mM NaCl, 2 mM 2-mercaptoethanol, 10% glycerol] con-
taining 2.5% DDM, 7% Triton X-100 or 6% CHAPS in a
final volume of 100 µL. The mixture was incubated at 4°C for
2 h with rotation in a Barnstead Thermolyne LABQUAKE
(Barnstead International, Dubuque, IA). After centrifugation
at 40,000 × g for 30 min at 4°C, the supernatant, representing
the soluble fraction, was collected. 10% of the soluble and
pellet fractions were used for SDS–PAGE analysis. For
screening to find an optimal detergent for enzymatic activity,
the equivalent of 200 µg of total membrane protein was solu-
bilized in buffer [25 mM tris–HCl (pH 8), 150 mM NaCl]
and 0.5 or 1% of DDM, CHAPS, OG or Triton X-100 to a
final volume of 200 µL and the soluble fraction was recovered
as described above. 2.5% of the insoluble and soluble frac-
tions were used for SDS–PAGE analysis, and 50 µL of the
soluble fraction was used to determine in vitro enzymatic
activity. For protein purification, total membranes were resus-
pended in buffer [20 mM tris–HCl (pH 8.5), 300 mM NaCl,
10 mM 2-mercaptoethanol, 10% glycerol] with 1% DDM and
the soluble fractions was collected as described above.

Purification of 6xHis-TrxA-WbaPCT and cleavage by the
TEV protease
Ni2+-bound chelating Sepharose Fast Flow resin (GE
Healthcare) equilibrated with wash buffer [25 mM NaPO4

(pH 7.5), 300 mM NaCl, 10 mM 2-mercaptoethanol, 10 mM

imidazole, 10% glycerol and 0.03% DDM] was mixed with
the cleared supernatant recovered after solubilization with 1%
DDM. After 30 min at 4°C with rotation in a Barnstead
Thermolyne LABQUAKE (Barnstead International, Dubuque,
IA, USA), the resin was centrifuged at 3000 × g and the flow-
through collected. The resin was washed with wash buffer
containing 30 and 60 mM imidazole and the protein was
eluted with 250 mM. Elutions were combined and dialyzed
overnight against 100× dialysis buffer [25 mM NaPO4 (pH
7.5), 150 mM NaCl, 10 mM 2-mercaptoethanol, 10% glycerol
and 0.03% DDM]. To remove the 6xHis-TrxA fusion, the dia-
lyzed protein was concentrated 5× using a Vivaspin 20 cen-
trifugal concentrator (MWCO = 10,000) (Vivaproducts Inc.,
Littleton, MA). Five microliters of AcTEV protease
(Invitrogen) was added to 500 µL of protein and incubated at
4°C overnight. The next day the sample was added to Ni2
+-bound resin and the flow-through containing the cleaved
protein was collected, concentrated and rinsed with buffer
containing no salts. The cleaved protein was quantified using
the bicinchoninic acid assay (Pierce, Thermo Scientific,
Rockford, IL, USA).

In vitro transferase assay
To test the enzymatic activity of detergent solubilized samples,
50 µL of solubilized protein was added to 50 mM tris–HCl
(pH 8), 25 mM MgCl2, 2 mM 2-mercaptoethanol and 0.33 µM
14C-labeled UDP-Gal to a final volume of 100 µL and incu-
bated for 30 min at 37°C. For optimization of in vitro reaction
conditions, effects of pH, salt and magnesium ions were tested
with 100, 150 and 50 ng of protein, respectively, and PIs were
tested with 50 ng. Assays were performed with the addition of
100 µM Und-P in a final volume of 50 µL. Steady-state kin-
etics were determined using optimized assay conditions (pH
8.5, 25 mM MgCl2, 1% CHAPS). For UDP-Gal, 200 ng of
protein was tested in 100 µM Und-P and in the range of 0.2–
125 µM for 14C-labeled UDP-Gal. For Und-P, 100 ng of
protein was tested in 0.33 µM 14C-labeled UDP-Gal and in the
range of 10–1000 µM for Und-P. Reactions were incubated at
37°C for 15 min. Extraction of the lipid fractions was adopted
from Schäffer et al. (2002) with modifications. After incubation
at 37°C, the reactions were stopped with 200–400 μL of
chloroform–methanol (C:M 3:2). To extract the lipid phase, the
mixture was shaken vigorously for 3 min and centrifuged for 2
min at 14,000 × g. The lower organic phase was collected and
55 µL of 40 mM MgCl2 was added followed by 5 min of vig-
orous shaking. The mixture was centrifuged as before and the
top phase was removed. The organic phase was washed twice
with 200–400 μL of pure solvent upper phase (C:M:W:1 M
MgCl2 18:294:293:1). For scintillation counting, the organic
phase was added to 5 mL of scintillation fluid (Ecolume, MP
Biomedical, Solon, OH) and radioactivity was determined by a
Beckman liquid scintillation counter (Beckman Coulter
Canada, Inc., Mississauga, Ontario, Canada).

Funding

This work was supported by a grant from the Canadian
Institutes of Health Research to M.A.V. K.B.P. was supported
by an Ontario Graduate Scholarship in Science and

Biochemical characterization of WbaP

121

 at Instytut B
iochem

ii i B
iofizyki PA

N
 on D

ecem
ber 8, 2011

http://glycob.oxfordjournals.org/
D

ow
nloaded from

 

http://glycob.oxfordjournals.org/


Technology. M.A.V. holds a Canada Research Chair in
Infection Diseases and Microbial Pathogenesis.

Acknowledgements

We thank C. Schäffer for help with the TLC method.

Conflict of interest

None declared.

Abbreviations

CHAPS, 3-[(3-cholamidopropyl)dimethylammonio]-1-propane-
sulfonate; DDM, n-dodecyl-β-D-maltoside; Gal, galactose;
IPTG, isopropyl β-D-1-thiogalactopyranoside; LB, Luria–
Bertani; OG, octylglucoside; PCR, polymerase chain reaction;
PHPT, polyisoprenyl-phosphate hexose-1-phosphate transferase;
PI, polyisoprenyl; SDS-PAGE, sodium dodecyl sulfate-poly-
acrylamide gel electrophoresis; TEV, tobacco etch virus; TM,
transmembrane; TrxA, thioredoxin; UDP, uridine monophos-
phate; Und-P, undecaprenyl monophosphate; WbaPCT, WbaP
C-terminal domain.
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