This is an author manuscript of a paper published in a final edited form as:

Leuk Lymphoma. 2012 Dec;53(12):2474-8. [doi: 10.3109/10428194.2012.696313]

Chronic myeloid leukemia stem cells display alterations

in expression of genes involved in oxidative phosphorylation.

Flis K, Irvine D, Copland M, Bhatia R, Skorski T.

available at: http://informahealthcare.com/doi/abs/10.3109/10428194.2012.696313

PMID: 22616753

Chronic myeloid leukemia stem cells display alterations in the expression of genes involved in oxidative phosphorylation

Running title: Altered oxidative phosphorylation in CML

Krzysztof Flis^{1,2}, David Irvine³, Mhairi Copland³, Ravi Bhatia⁴, Tomasz Skorski^{1,*}

¹Department of Microbiology and Immunology, Temple University, School of Medicine, Philadelphia, PA 19140, USA

²Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland

³Paul O'Gorman Leukemia Research Centre, University of Glasgow, Glasgow, UK.

⁴Division of Hematopoietic Stem Cell and Leukemia Research, Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010, USA

*Corresponding author: Tomasz Skorski, Department of Microbiology and Immunology, Temple University School of Medicine, 3400 N. Broad Street, MRB 548, Philadelphia, PA 19140, USA, e-mail: <u>tskorski@temple.edu</u>

Key words: CML leukemia stem cells, oxidative phosphorylation, microarray analysis

Abstract

Mitochondrial respiratory chain (MRC) consists of the protein complexes I, II, III, IV, and V to carry oxidative phosphorylation (OXPHOS), which depends on electron transport to generate ATP. Electron "leakage" from MRC generates reactive oxygen species (ROS). Chronic myeloid leukemia in chronic phase (CML-CP) stem cells (LSCs) produce high levels of mitochondrial ROS causing oxidative DNA damage resulting in genomic instability generating imatinib-resistant BCR-ABL1 kinase mutants and additional chromosomal aberrations. Using global mRNA microarray analysis combined with Ingenuity pathway analysis we found that LSCs display enhanced expression of genes encoding MRC complexes I, II, IV, and V. However, expression of genes encoding complex III was deregulated. Treatment with imatinib did not correct the aberrant levels of MRC genes. Therefore we postulate that abnormal expression of genes may facilitate electron "leakage" to promote production of ROS and accumulation of genomic instability in LSCs in imatinib-naive and imatinib-treated patients.

Introduction

Chronic myeloid leukemia in chronic phase (CML-CP) is initiated by the oncogenic BCR-ABL1 tyrosine kinase that transforms hematopoietic stem cells (HSCs) to leukemia stem cells (LSCs) [1]. Deregulated growth of LSCs-derived leukemia progenitor cells (LPCs) leads to the manifestation of the disease. ABL1 tyrosine kinase inhibitors (TKIs), such as imatinib, dasatinib and nilotinib may induce favorable therapeutic responses, but LSCs are intrinsically insensitive to TKIs despite inhibition of BCR-ABL1 kinase [2]. CML-CP cells may at some stage acquire additional genetic changes that confer TKI resistance and induce more aggressive CML blast phase (CML-BP) [3].

Genomic instability may result from enhanced oxidative DNA damage caused by reactive oxygen species (ROS) [4]. Superoxide anion ($\cdot O_2^-$), the first produced ROS molecule, is a moderately stable free radical. Superoxide dismutase uses $\cdot O_2^-$ to generate hydrogen peroxide (H₂O₂), which may be then converted to the highly reactive hydroxyl group (\cdot OH). ROS can damage DNA bases to produce oxo-derivatives such as 7,8-dihydro-8-oxo-2'-deoxyguanosine (8-oxoG) and also induce spontaneous DNA double-strand breaks (DSBs). Unfaithful and/or inefficient repair of these oxidative DNA lesions can generate point mutations and chromosomal aberrations.

We reported recently that CML-CP LSCs and early LPCs accumulate high levels of ROS resulting in accumulation of TKI-resistant BCR-ABL1 kinase mutants and additional chromosomal aberrations [5]. This effect was due to Rac2-mediated modification of the mitochondrial membrane potential ($\Delta \Psi_m$) associated with slower electron flow through mitochondrial respiratory chain (MRC) complex III. This phenomenon facilitated electron "leakage" from the complex III and production of superoxide anion. The current study suggests

that an imbalance in the expression of MRC components may contribute to production of ROS in CML-CP LSCs.

Materials and Methods

Isolation of hematopoietic stem and progenitor cell populations from CML patients and normal donors: Fresh leukapheresis or peripheral blood samples were obtained with written informed consent and approval of the Greater Glasgow and Clyde Ethics Committee (Institutional Review Board) from patients with newly diagnosed chronic phase (n=6), accelerated phase (n=4) or myeloid blast crisis (n=2) CML and healthy donors of peripheral blood stem cells (n=3). Samples were enriched for CD34⁺ cells using CliniMACS (Miltenvi Biotec Ltd) according to the manufacturer's instructions and cryopreserved in 10% (v/v) DMSO in 5% (w/v) Human Albumin Solution (Baxter Healthcare Ltd). After thawing, CD34⁺ cells were cultured overnight in serum free medium (SFM) consisting of Iscove's Modified Dulbecco's Medium (IMDM, Sigma-Aldrich) containing a serum substitute (bovine serum albumin, insulin, transferrin; all from StemCell Technologies), 0.1µM 2-mercaptoethanol (Sigma-Aldrich), and a high concentration five growth factor cocktail comprising 100ng/mL Flt3-ligand (Flt3L), 100ng/mL stem cell factor (SCF), and 20ng/mL each of interleukin (IL)-3, IL-6 (all from StemCell Technologies) and granulocyte-colony stimulating factor (G-CSF; Chugai Pharma Europe). $CD34^{+}$ CML and normal cells were simultaneously stained with lineage (Lin) cocktail-FITC, CD90-PE, CD34-PerCP, CD38-PE-Cy7, CD123-APC and CD45RA-Pacific Blue (all from BD Biosciences) at room temperature for 20 minutes. Unbound antibodies were washed off with PBS/2% fetal calf serum (FCS) and the cells were sorted to isolate the different subpopulations (hematopoietic stem cell [HSC] – lin⁻CD34⁺CD38⁻CD90⁺; multipotent progenitor [MPP] – lin⁻ CD34⁺CD38⁻CD90⁻; common myeloid progenitor [CMP] – lin CD34⁺CD38⁺CD123⁺CD45RA⁻; granulocyte monocyte progenitor [GMP] – lin CD34⁺CD38⁺CD123⁺CD45RA^{Io}; and megakaryocyte erythroid progenitor [MEP] – lin CD34⁺CD38⁺CD123⁻CD45RA⁻) using FACSAria (BD Biosciences).

RNA preparation from normal and CML samples and microarray analysis: RNA was prepared from sorted subpopulations of cells using the RNeasy kit (Qiagen). RNA processing and microarray analysis was carried out at the Sir Henry Wellcome Functional Genomics Facility (SHWFGF, University of Glasgow). RNA samples were analyzed on the Affymetrix GeneChip Human Gene 1.0 ST arrays using standard Affymetrix protocols. The raw data CEL files were normalized using gcRMA n Partek Genomic Suite software

http://www.partek.com/partekgs. One way ANOVA was performed on the imported, normalized and summarized microarray data to find differently expressed genes between all cell subpopulations and disease states. Lists of differentially expressed genes were created using an FDR limit of 0.05 to control for multiple comparisons but no limit on degree of fold change. These lists were uploaded directly into Ingenuity Pathway Analysis (IPA) software (Ingenuity Systems). To determine which functional groupings of genes were differentially expressed we performed gene ontology ANOVA (GO ANOVA). Partek GS utilizes the gene ontology (GO) database to map genes to standardized functional groupings. The ANOVA model was configured to contrast the different sub-populations and disease states in order to determine the significance and average fold change of each GO category across all the comparator groups. These results were visualized using dot plots where the average expression of all genes in that functional group is represented as a single dot. The average expression is plotted on a log2 scale on the y axis, and each subpopulation in each disease state on the x axis.

Analysis of CML-CP samples treated or not with imatinib: CML-CP patient samples, imatinib treatment and microarray analysis were as described before [6]. Briefly, CML $CD34^{+}CD38^{-}$ cells selected with flow cytometry sorting were treated with 1 μ M imatinib or cultured without exposure to the drug (control) for 24 hr (n = 3 each). Total RNA from 5000 cells was extracted with the RNeasy kit (Qiagen), amplified and labeled with GeneChip Two-Cycle Target Labeling and Control Reagents (Affymetrix, Santa Clara, CA), and hybridized to Affymetrix GeneChip Human Genome U133 Plus 2.0 Arrays. Microarray data analyses were performed with R (version 2.9) with genomic analysis packages (version 2.4) from Bioconductor. Expression data were normalized with the robust multiarray average (RMA) algorithm, with background adjustment, quantile normalization, and median polish summarization. Probe sets with low expression levels or low variability across samples were filtered. For genes with multiple probe sets, the gene level expression was set to be the median of the probe sets. Linear regression was used to model the gene expression with the consideration of 2 3 2 factorial design and matched samples. Differentially expressed genes were identified by calculating empirical Bayes moderated t-statistic, and p values were adjusted by FDR with the "LIMMA" package. Gene Set Enrichment Analysis (GSEA) was performed with GSEA software version 2.04 (http://www.broadinstitute.org/gsea/) for detection of enrichment of predetermined gene sets with t-scores from all 13,812 genes [7]. These lists were uploaded directly into IPA software (Ingenuity Systems).

Results

We performed global gene expression studies on normal and CML hematopoietic stem and progenitor cell populations (HSC, MPP, CMP, GMP and MEP) using the Affymetrix GeneChip Human Gene 1.0 ST arrays. One way ANOVA and GO ANOVA were used to identify differentially expressed single genes and functional groupings of genes, respectively, in comparison to normalized data from HSCs obtained from healthy donors. The gene grouping and individual genes associated with OXPHOS (GO-ID: 6119) such as UQCRB, UQCRC1, UQCRH were significantly de-regulated in CML-CP LSCs compared to normal HSCs, but were not abundantly altered between normal and CML-CP in the different progenitor sub-populations (**Figure 1A, B**; **Supplemental Table 1**). As the disease progressed to CML-AP and CML-BP, expression of OXPHOS genes was highly variable and became more often downregulated in LSCs and LPCs.

Differential expression of genes involved in OXPHOS in CML-CP LSCs compared to normal HSCs was further analyzed using Ingenuity Functional Term (IFT): Oxidative phosphorylation (**Figure 2**; **Supplemental Table 2**) and Mitochondrial Dysfunction (**Figure 3**; **Supplemental Table 3**). Both approaches detected uniform upregulation of the expression of genes encoding MRC complex I (NADH-coenzyme Q oxidoreductase) such as NDUFA2, NDUFA3, NDUFA9, NDUFA11, NDUFB6, NDUFB9, NDUFB10, NDUFB11, NDUFAB1, NDUFS4, NDUFS7, NDUFS8 and NDUFV3, MRC complex II (succinate-Q oxidoreductase) such as SDHB, MRC complex IV (cytochrome c oxidase) such as COX5A, COX5B, COX6B1, COX7B and COX11, and MRC complex V (ATP synthase) such as ATP5A1, ATP5B, ATP5C1, ATP5D, ATP5G1, ATP5H, ATP5I and ATP5J2. In contrast, expression of genes encoding MRC complex III (Q-cytochrome c oxidoreductase) were in disarray: CYTB and UQCRB were downregulated whereas CYC1, UQCR10, UQCRC1, UQCRC2, UQCRFS1 and UQCRH were upregulated. Ingenuity Pathway Analysis (IPA), including the genes identified by IFT, highlighted potential deregulation of the MRC genes in CML-CP LSCs (**Figure 4A**). Interestingly, imatinib treatment did not correct their aberrant expression (**Figure 4B**; **Supplemental Table 4**).

Discussion

Some cancer stem cells (CSCs), for example breast and lung CSCs, maintain low ROS levels due to several factors, including increased expression of free radicals scavengers, lower quantity of mtDNA and higher $\Delta \Psi_m$ [8,9]. In contrast, LSCs from BCR-ABL1 –positive CML-CP and IDH1/2 mutation –positive AML accumulate high levels of ROS [5,10]. We reported that high levels of ROS in CML-CP LSCs induced oxidative DNA damage resulting in genomic instability which may produce imatinib-resistant BCR-ABL1 kinase mutants and additional chromosomal aberrations leading to the disease relapse and/or malignant progression [5,11,12]. Since CML-CP LSCs, in particular the quiescent sub-population, are refractory to TKIs, genomic instability in these cells is especially dangerous [13]. Identification of the mechanisms of genomic instability in CML-CP LSCs may lead to novel therapeutic modalities preventing the disease relapse/malignant progression in patients under TKI treatment.

At least 50% of ROS in CML-CP LSCs is produced by mitochondria [5]. However, the mechanism responsible for this phenomenon has not been described. Here we report that CML-CP display deregulated expression of the MRC components, which may contribute to overproduction of mitochondrial ROS. Numerous MRC genes appear overexpressed in LSCs suggesting enhanced OXPHOS, which may reflect enhanced proliferation associated with decreased self-renewal and increased differentiation of LSCs in comparison to normal HSCs [14]. Unexpectedly, two members of MRC complex III, UQCRB and CTYB were downregulated. The reason for this effect is not known, but it may result from transcriptional regulation and/or better adaptation to bone marrow niche conditions [15-17]. Overall, elevated or normal expression of the components of MRC complex I and II suggests that OXPHOS reaction and electron flow can be properly initiated, but deregulated expression of the members of MRC complex III may "derail" and/or slow down the flow of electrons causing their "leakage". This

speculation is supported by our previous report that Rac2-mediated reduction of $\Delta \Psi_m$ combined with inhibition of the electron flow through MRC complex III facilitated electron "leakage" resulting in high levels of ROS in CML-CP [5].

We reported before that imatinib inhibited BCR-ABL1 kinase and ROS in BCR-ABL1 – positive 32Dcl3 cell line [12]. However, despite inhibition of BCR-ABL1 kinase, imatinib did not significantly reduce ROS in LSCs/LPCs in the presence of growth factors, suggesting that other factors play an important role in generation of high levels of ROS in patient cells [5]. Imatinib did not restore proper expression levels of MRC components in CML-CP LSCs implicating their continuous role in generation of ROS (this work) and accumulation of genomic instability even in imatinib-treated patients [3,13]. Retention of Rac2 activity in imatinib-treated CML-CP cells may contribute to this phenomenon. Functional studies are warranted to determine if postulated deregulation of the expression of MRC genes depends on Rac2 activity or other mechanisms.

Overall, our findings are consistent with the hypothesis that mitochondria present in CML-CP LSCs display a unique "metabolic-bioenergetic-oxidative" phenotype in which dysfunctional MRC generates high levels of mitochondrial ROS and low levels of ATP; the latter effect being compensated by enhanced glucose uptake and aerobic glycolysis [18]. CML-CP progression to CML-BP was accompanied with extensive downregulation of the components of MRC complex I and IV suggesting more pronounced defect.

Acknowledgements

This work was supported in part by grants CA123014 and CA134458 to T.Skorski. D. Irvine is a Chief Scientist's Office Clinical Research Fellow; M. Copland is funded by the Scottish Funding Council (SCD/04) and Leukaemia and Lymphoma Research (No. 11017). Procurement of biospecimens was facilitated by the Glasgow Tissue Biorepository. This study was supported by the Glasgow Experimental Cancer Medicine Centre (ECMC), which is funded by Cancer Research UK and by the Chief Scientist's Office (Scotland).

Declaration of Interests

M. Copland has received research funding from Novartis and Bristol-Myers Squibb, is on Advisory Boards for Bristol Myers Squibb and Pfizer and has received honoraria from Bristol-Myers Squibb, Novartis and Pfizer. R. Bhatia has received honorarium from Novartis. The other authors declare no conflicts of interest.

References

- 1. Melo JV, Barnes DJ. Chronic myeloid leukaemia as a model of disease evolution in human cancer. Nat Rev Cancer. 2007;7:441-53.
- 2. Corbin AS, Agarwal A, Loriaux M, Cortes J, Deininger MW, Druker BJ. Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J Clin Invest 2011;121:396-409.
- 3. Perrotti D, Jamieson C, Goldman J, Skorski T. Chronic myeloid leukemia: mechanisms of blastic transformation. J Clin Invest 2010;120:2254-64.
- 4. Slupphaug G, Kavli B, Krokan HE. The interacting pathways for prevention and repair of oxidative DNA damage. Mutat Res 2003;531:231-51.
- 5. Nieborowska-Skorska M, Kopinski PK, Ray R, et al. Rac2-MRC-cIII-generated ROS cause genomic instability in chronic myeloid leukemia stem cells and primitive progenitors. Blood 2012;119:4253-63.
- 6. Zhang B, Strauss AC, Chu S, et al. Effective targeting of quiescent chronic myelogenous leukemia stem cells by histone deacetylase inhibitors in combination with imatinib mesylate. Cancer Cell 2010;17:427-42.
- Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 2005;102:15545-50.
- 8. Diehn M, Cho RW, Lobo NA, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 2009;458:780-3.
- 9. Ye XQ, Li Q, Wang GH, et al. Mitochondrial and energy metabolism-related properties as novel indicators of lung cancer stem cells. Int J Cancer 2011;129:820-31.
- 10. Abdel-Wahab O, Levine RL. Metabolism and the leukemic stem cell. J Exp Med 2010;207:677-80.
- 11. Koptyra M, Cramer K, Slupianek A, Richardson C, Skorski T. BCR/ABL promotes accumulation of chromosomal aberrations induced by oxidative and genotoxic stress. Leukemia. 2008;22:1969-72.
- 12. Koptyra M, Falinski R, Nowicki MO, et al. BCR/ABL kinase induces self-mutagenesis via reactive oxygen species to encode imatinib resistance. Blood. 2006;108:319-27.
- 13. Skorski T. Chronic myeloid leukemia cells refractory/resistant to tyrosine kinase inhibitors are genetically unstable and may cause relapse and malignant progression to the terminal disease state. Leuk Lymphoma 2011;52 Suppl 1:23-9.
- 14. Petzer AL, Eaves CJ, Barnett MJ, Eaves AC. Selective expansion of primitive normal hematopoietic cells in cytokine-supplemented cultures of purified cells from patients with chronic myeloid leukemia. Blood. 1997;90:64-9.
- 15. Pihlajamaki J, Boes T, Kim EY, et al. Thyroid hormone-related regulation of gene expression in human fatty liver. J Clin Endocrinol Metab 2009;94:3521-9.
- 16. Xu F, Ackerley C, Maj MC, et al. Disruption of a mitochondrial RNA-binding protein gene results in decreased cytochrome b expression and a marked reduction in ubiquinol-cytochrome c reductase activity in mouse heart mitochondria. Biochem J 2008;416:15-26.
- 17. Jung HJ, Shim JS, Lee J, et al. Terpestacin inhibits tumor angiogenesis by targeting UQCRB of mitochondrial complex III and suppressing hypoxia-induced reactive oxygen species production and cellular oxygen sensing. J Biol Chem 2010;285:11584-95.
- 18. Hitosugi T, Fan J, Chung TW, et al. Tyrosine phosphorylation of mitochondrial pyruvate dehydrogenase kinase 1 is important for cancer metabolism. Mol Cell 2011;44:864-77.

Figure legends:

Figure 1. Expression of OXPHOS genes is altered in CML. (**A**) Differential expression (GO ANOVA) of genes involved in OXPHOS in stem and progenitor populations in CML and normal hematopoiesis; n = number of donors. (**B**) Heat map (One way ANOVA) identifying individual genes involved in OXPHOS which are significantly upregulated (red) or downregulated (blue) when compared to normal HSCs (gray). Results from HSCs and LSCs are highlighted in yellow boxes.

Figure 2. Expression of genes identified by the IFT "Oxidative Phosphorylation" is altered in CML. Heat map (One way ANOVA) identifying individual genes, which are significantly upregulated (red) or downregulated (blue) when compared to normal HSCs (gray). Results from HSCs and LSCs are highlighted in yellow boxes.

Figure 3. Expression of genes identified by the IFT "Mitochondrial Dysfunction" is altered in CML. Heat map (One way ANOVA) identifying individual genes, which are significantly upregulated (red) or downregulated (blue) when compared to normal HSCs (gray). Results from HSCs and LSCs are highlighted in yellow boxes.

Figure 4. Expression of genes encoding the components of MRC is altered in CML-CP LSCs and is not affected by imatinib. (**A**) Modified IPA of the expression of genes encoding MRC in CML-CP LSCs in comparison to normal HSCs. (**B**) Modified IPA of the expression of genes encoding MRC in the untreated versus imatinib-treated LSCs from CML-CP. Upregulated and downregulated genes are marked in red and blue, respectively.

Figure 1

Figure 2

Figure 4

Supplemental Table 1. Oxidative phosphorylation (GO-ID: 6119): CML-CP LSCs versus normal HSCs

Gene	P value	Fold change
UQCRC1	0.000654	1.68953
UQCRH	0.006115	1.60273
FXN	0.127043	1.58157
UQCRH	0.015351	1.44236
ATP5C1	0.251449	1.21661
UQCRC2	0.425902	1.08918
ATP5D	0.608306	1.06473
UQCRB	0.039072	-1.35077

Supplemental Table 2. : Ingenuity Functional Term – "Oxidative phosphorylation" CML-CP LSCs versus normal HSCs

Gene	P value	Fold change	Gene	P value	Fold change
COX6B1	2.51E-06	1.87427	ATP5I	0.000165	1.51763
CYC1	3.36E-05	1.82446	NDUFB9	0.001193	1.37055
ATP5J2	0.007985	1.38781	COX11	0.050168	1.36562
NDUFB10	0.015792	1.76151	NDUFS8	0.044569	1.36554
UQCRC1	0.000136	1.75859	PPA1	0.014709	1.60698
СОХ7В	0.000308	1.69678	СОХ5В	0.094807	1.33068
NDUFAB1	0.003011	1.6692	NDUFB11	0.007921	1.28617
COX8A	0.000102	1.56086	ATP5G1	0.005954	1.38345
UQCRH	0.007048	1.55962	АТР5В	0.00081	1.27892
NDUFB6	0.011922	1.55013	NDUFV3	0.01493	1.26489
ATP5A1	0.00226	1.50946	SDHB	0.014166	1.25953
UQCR10	0.000227	1.51849	АТР5Н	0.043746	1.2302
ATP6V1B2	0.025858	-1.23528	NDUFS4	0.091942	1.24174
UQCRFS1	0.006097	1.43215	NDUFA3	0.054158	1.19568
NDUFA2	0.013035	1.41154	СҮТВ	0.012989	-1.12641
NDUFA11	0.020686	1.40854	ATP6V1G2	0.002426	1.39659
NDUFA9	0.000335	1.40673	ATP6V1C1	0.005832	-1.39083
NDUFS7	0.01449	1.39788	ATP6V0A2	0.005499	1.58971
COX5A	0.070689	1.38152			

Supplemental Table 3. : Ingenuity Functional Term "Mitochondrial Dysfunction" CML-CP LSCs versus normal HSCs

Gene	P value	Fold change	Gene	P value	Fold change
BACE1	0.000289	1.88839	NDUFB9	0.001193	1.37055
COX6B1	2.51E-06	1.87427	COX11	0.050168	1.36562
CYC1	3.36E-05	1.82446	NDUFS8	0.044569	1.36554
GSR	2.28E-05	1.76463	HSD17B10	0.005019	1.35441
NDUFB10	0.015792	1.76151	СОХ5В	0.094807	1.33068
UQCRC1	0.000136	1.75859	NDUFB11	0.007921	1.28617
СОХ7В	0.000308	1.69678	АТР5В	0.00081	1.27892
NDUFAB1	0.003011	1.6692	NDUFV3	0.01493	1.26489
COX8A	0.000102	1.56086	SDHB	0.014166	1.25953
UQCRH	0.007048	1.55962	GPX4	0.049485	1.248
NDUFB6	0.011922	1.55013	NDUFS4	0.091942	1.24174
ATP5A1	0.00226	1.50946	NDUFA3	0.054158	1.19568
PRDX3	0.002291	1.46893	СҮТВ	0.012989	-1.12641
CASP3	0.025413	1.4658	CASP8	0.036249	-1.27424
GPD2	0.027559	1.44514	CYB5R3	0.005975	-1.28788
UQCRFS1	0.006097	1.43215	CPT1C	2.61E-05	-1.4606
NDUFA2	0.013035	1.41154	PSEN2	0.024165	-1.57809
NDUFA11	0.020686	1.40854	SOD2	0.053969	-1.68882
NDUFA9	0.000335	1.40673	LRRK2	1.48E-07	-1.70011
NDUFS7	0.01449	1.39788	PINK1	0.000158	-1.74063
COX5A	0.070689	1.38152	АРР	3.03E-06	-1.85859
МАРК9	0.00297	1.37965			

Supplemental Table 4.: MRC complex I-V gene expression levels in the untreated versus imatinib-treated CML-CP LSCs.

Probeset ID	Gene	P value	Fold change		Probeset ID	Gene	P value	Fold change	
1. Mitochondrial complex I: NADH dehydrogenase (ubiquinone) subunits									
202200 et		0.007400	4 40450		000010 a at		0 400544	4 22054	
202298_at	NDUFA1	0.867183	1.10158		203613_s_at	NDUFB6	0.466514	1.33051	
222971_at	NDUFA2	0.905607	1.01233		1559042_at	NDUFB6	0.277021	-1.04994	
209223_at	NDUFA2	0.158368	-1.30049		202839_s_at	NDUFB/	0.148330	1.12865	
209224_s_at	NDUFA2	0.937902	-1.02965		211407_at	NDUFB/	0.486221	-1.12377	
218563_at	NDUFA3	0.859866	-1.09639		201227_s_at	NDUFB8	0.727341	1.23805	
21///3_s_at	NDUFA4	0.819815	1.15072		214241_at	NDUFB8	0.739387	-1.03214	
218484_at	NDUFA4L2	0.290043	1.11992		201226_at	NDUFB8	0.755049	1.12722	
215850_s_at	NDUFA5	0.477794	1.04157		222992_s_at	NDUFB9	0.821917	1.11209	
201304_at	NDUFA5	0.827338	-1.15452		223112_s_at	NDUFB10	0.305749	-1.15135	
202001_s_at	NDUFA6	0.672114	1.50434		228301_x_at	NDUFB10	0.714177	-1.07149	
202000_at	NDUFA6	0.397883	-1.31214		218320_s_at	NDUFB11	0.775565	1.05/12	
1557532_at	NDUFA7	0.713307	1.06157		203478_at	NDUFC1	0.919001	1.06758	
202785_at	NDUFA7	0.665959	-1.04726		232146_at	NDUFC1	0.760959	-1.01626	
218160_at	NDUFA8	0.565271	1.33916		218101_s_at	NDUFC2	0.941795	1.05062	
208969_at	NDUFA9	0.850008	-1.05655		222521_x_at	NDUFC2	0.855177	-1.01445	
227206_at	NDUFA10	0.128318	-1.08268		229647_at	NDUFS1	0.560758	1.13935	
1555548_at	NDUFA10	0.485857	-1.12956		236356_at	NDUFS1	0.979558	1.00207	
1554719_at	NDUFA10	0.612086	-1.05685		239268_at	NDUFS1	0.156351	-1.03485	
217860_at	NDUFA10	0.727667	-1.11972		235321_at	NDUFS1	0.682528	-1.03471	
225304_s_at	NDUFA11	0.570616	1.07569		203039_s_at	NDUFS1	0.781332	-1.12214	
228689_at	NDUFA11	0.546424	-1.06260		201966_at	NDUFS2	0.356585	1.30053	
228690_s_at	NDUFA11	0.845222	-1.12040		201740_at	NDUFS3	0.687337	-1.24745	
223244_s_at	NDUFA12	0.772277	1.30788		209303_at	NDUFS4	0.512921	1.14782	
220864_s_at	NDUFA13	0.902751	-1.05405		1555057_at	NDUFS4	0.281542	-1.03651	
202077_at	NDUFAB1	0.773993	1.15994		201757_at	NDUFS5	0.769222	1.25458	
243630_at	NDUFB1	0.549958	1.04223		203606_at	NDUFS6	0.896025	1.11308	
206790_s_at	NDUFB1	0.611159	1.24158		242168_at	NDUFS7	0.500249	1.05153	
218200_s_at	NDUFB2	0.763360	1.20478		211752_s_at	NDUFS7	0.079138	-1.09532	
240391_at	NDUFB2	0.196730	-1.08277		232169_x_at	NDUFS8	0.900162	1.07497	
218201_at	NDUFB2	0.481261	-1.06821		203190_at	NDUFS8	0.364762	-1.24645	
203371_s_at	NDUFB3	0.506174	-1.20467		203189_s_at	NDUFS8	0.703119	-1.03706	
218226_s_at	NDUFB4	0.466680	1.64043		227795_at	NDUFV1	0.609766	-1.12617	
228940_at	NDUFB4	0.901174	1.01031		208714_at	NDUFV1	0.782795	-1.11417	
203621_at	NDUFB5	0.574450	1.25982		202941_at	NDUFV2	0.736427	-1.26819	
					226616 s at	NDUFV3	0.021986	-1.13033	

2. Mitochondrial complex II: succinate dehydrogenase subunits

201093_x_at	SDHA	0.459680	-1.27657	216591_s_at	SDHC	0.642960	1.04136
202675_at	SDHB	0.883282	1.03174	215088_s_at	SDHC	0.945676	1.03904
214166_at	SDHB	0.991117	1.00093	238056_at	SDHC	0.957705	-1.00536
202004_x_at	SDHC	0.203899	1.40669	215652_at	SDHD	0.908240	1.00738
210131_x_at	SDHC	0.408984	1.12324	202026_at	SDHD	0.975438	-1.00531

Probeset ID	Gene	P value	Fold change		Probeset ID	Gene	P value	Fold change
3. Mitochondrial complex III: ubiquinol-cytochrome c reductase complex subunits								
201066 at	CYC1	0.587744	-1.33051		201903 at	UQCRC1	0.607226	-1.36365
218190 s at	UQCR10	0.964667	1.01081		212600 s at	UQCRC2	0.848710	1.13128
228142 at	UQCR10	0.898268	-1 01408		241755 at	UQCRC2	0 203810	-1 06954
202090 s at	UQCR11	0.601351	1.56712		200883 at	UQCRC2	0.775845	-1.26770
223613 at	UQCR11	0.882728	-1.02446		208909 at	UQCRFS1	0.639032	-1.48297
205849 s at	UQCRB	0.518622	1.64366		202233 s at	UQCRH	0.955300	1.03505
209066 x at	UQCRB	0.542853	1.47041		201568 at	UQCRQ	0.537262	-1.38722
209065 at	UQCRB	0.985410	1.00445					
244293 at	UQCRB	0.883126	-1.00542					
	4.	Mitochondria	complex IV:	сv	tochrome c oxidase	subunits		
				•,		Suburnto		
200086_s_at	COX4I1	0.400657	1.50342		201441_at	COX6B1	0.648072	1.23983
202698_x_at	COX4I1	0.509855	1.64109		1553367_a_at	COX6B2	0.903653	-1.02754
213758_at	COX4I1	0.244363	-1.16866		201754_at	COX6C	0.806479	-1.22889
232761_at	COX4I2	0.674413	-1.05780		204570_at	COX7A1	0.324356	1.11373
203663_s_at	COX5A	0.533099	1.67431		201597_at	COX7A2	0.963172	-1.03472
229426_at	COX5A	0.896803	1.01955		201256_at	COX7A2L	0.688165	1.20520
211025_x_at	COX5B	0.800752	1.06496		239252_at	COX7B	0.356746	-1.29211
202343_x_at	COX5B	0.999996	1.00000		202110_at	COX7B	0.787721	-1.26278
213736_at	COX5B	0.135785	-1.17547		231265_at	COX7B2	0.569338	-1.07830
213735_s_at	COX5B	0.994309	-1.00242		213846_at	COX7C	0.519717	-1.28219
224344_at	COX6A1	0.372780	1.05732		217491_x_at	COX7C	0.829521	-1.21148
200925_at	COX6A1	0.643732	1.23988		201134_x_at	COX7C	0.946748	-1.05321
234876_at	COX6A1	0.358854	-1.14119		201119_s_at	COX8A	0.821015	-1.07365
206353_at	COX6A2	0.382106	-1.16231		231487_at	COX8C	0.267065	-1.04426
		5. Mitochor	drial complex	x V:	: ATP synthase sub	units		
213738 s at	ATP5A1	0 714095	1 34846		210149 s at	ATP5H	0.500637	-1 28354
1569891 at	ATP5A1	0.955786	-1 00854		1555998 at	ATP5H	0.835896	-1 03300
201322 at	ATP5B	0 746834	-1 34473		209492 x at	ATP5I	0.805656	1 18158
205711 x at	ATP5C1	0 792557	1 27375		207335 x at	ATP5	0.864985	1 08965
213366 x at	ATP5C1	0.827924	1.20394		202325 s at	ATP5J	0.962204	-1.04835
208870 x at	ATP5C1	0.960874	1.04372		202961 s at	ATP5J2	0.958668	1.05726
214132 at	ATP5C1	0.568208	-1.06196		1558179 at	ATP5J2	0.500469	-1.06377
203926 x at	ATP5D	0.144014	-1.18691		208745 at	ATP5L	0.112297	2.25655
213041 s at	ATP5D	0.315207	-1.30603		208746 x at	ATP5L	0.570229	1.52479
217801 at	ATP5E	0.919716	1.09008		210453 x at	ATP5L	0.732132	1.29884
230535 s at	ATP5E	0.388714	-1.03942		207573 x at	ATP5L	0.751791	1.20839
211755 s at	ATP5F1	0.668729	1.70501		200818 at	ATP50	0.658107	1.56786
243501 at	ATP5F1	0.681419	1.00573		216954 x at	ATP50	0.877471	1.07834
208972 s at	ATP5G1	0.690204	-1.24543		1564482 at	ATP5O	0.255337	-1.10591
208764 s at	ATP5G2	0.838677	1.07683		223338 s at	ATPIF1	0.370273	1.32505
207552 at	ATP5G2	0.985030	1.00196		218671 s at	ATPIF1	0.750222	1.18601
207507 s at	ATP5G3	0.761873	1.19014		223339 at	ATPIF1	0.164763	-1.18296
207508 at	ATP5G3	0.825819	1.24125					
228168_at	ATP5G3	0.899934	-1.00806					