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Abstract 

 

Mounting evidence indicate that nitric oxide (NO) acts as a signaling molecule mediating iron 

deficiency responses through the up-regulation of the expression of iron uptake-related genes. 

Accordingly, NO donors such as nitrosoglutathione (GSNO) were reported to improve the 

fitness of plants grown under iron deficiency. Here, we showed that glutathione, a by-product 

of GSNO, triggered the up-regulation of the expression of iron uptake- and transport-related 

gene and an increase of iron concentration in Arabidopsis thaliana seedlings facing iron 

deficiency. Furthermore, we provided evidence that under iron deficiency, NO released by 

GSNO did not improve the root iron concentration but impacted the content of copper. 

Collectively, our data highlight the complexity of interpreting data based on the use of NO 

donors when investigating the role of NO in iron homeostasis.  
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Introduction 

 

Nitric oxide (NO) is a diatomic gas that has been shown to function as a cell-signaling 

molecule with diverse physiological roles in plants. Indeed, NO is involved in developmental 

processes, hormonal signaling and adaptive response to environmental stresses.
1
 The 

mechanisms by which it exerts its effects are being discovered and include the mobilization of 

classical second messengers such as Ca
2+

 and cyclic GMP, the regulation of protein kinase 

activities and gene expression, the modulation of lipid signaling and the post-translational 

modification of numerous proteins.
1-5

  

During the past 10 years, it has been recognized that NO also acts as a signaling molecule 

mediating iron deficiency responses.
6
 Treatment with artificially-released NO was shown to 

improve the fitness of maize and tomato plants grown under iron deficiency.
7,8

 Under such 

conditions, the NO-treated plants displayed increased root hair development, higher 

chlorophyll contents and reduced interveinal chlorosis typical of iron deficiency. Further 

supporting these findings, NO was reported to be rapidly produced in roots of plants exposed 

to iron deficiency
8
. Once produced, it initiates an iron-starvation pathway promoting the 

expression of genes which products are involved in iron uptake. In Arabidopsis thaliana, 

these proteins include the major ferrous transporter IRT1 (Iron-Regulated Transporter 1), the 

root plasma membrane ferric reductase FRO2 (Ferric Reductase Oxidase 2) and the basic 

helix-loop-helix transcription factor FIT (Fer-like Fe deficiency-Induced Transcription factor) 

which positively regulates IRT1 and FRO2 expression. Accordingly, treatment of plant roots 

with NO donors such as nitrosoglutathione (GSNO) was reported to promote the expression 

of these genes or their orthologs in other plant species
8
. In addition, these genes were shown 

to be induced by NO endogenously produced in roots of A. thaliana seedlings in response to 

the iron deficiency caused by cadmium treatment.
9
 The list of genes positively regulated by 
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NO under iron deficiency also includes NAS4 (Nicotianamine Synthase 4)
9
. The 

corresponding protein catalyses the synthesis of nicotianamine, a non proteinaceous amino-

acid involved in iron transport and distribution in planta.
10

 

Interestingly, although NO treatments of plants such as maize or rice were able to counteract 

the iron deficiency symptoms, no increase in iron content in plant organs was observed.
7
 It 

has been proposed that exogenously applied NO does not improve iron uptake by roots but, 

instead, favours an increase in iron availability for instance through the formation of 

dinitrosyl iron complexes.
11,12

 These complexes, formed by the interaction between NO and 

ferric iron with thiols-containing ligands, could transport and deliver iron from roots to other 

plant organs. Furthermore, the beneficial effects of NO could be related to its ability to 

prevent plants from the oxidative stress caused by iron deficiency.
13

  

To further investigate the role of NO in the plant adaptive response to iron deficiency, in the 

present investigation we analyzed the incidence of exogenously applied NO in iron, zinc, 

copper and manganese accumulations in roots of A. thaliana plants exposed to iron 

deficiency. 

 

Results 

 

A. thaliana seedlings grown for 4 weeks in hydroponic conditions with 50 µM of iron 

were transferred for 96 h in the same medium in which the concentration of iron was reduced 

to 5 µM. Forty eight hours after the transfer, plant roots were exposed to 50 µM of the NO 

donors GSNO or diethylamine-NONOate (DEANO). Then, after 48 h of incubation with the 

NO donors, the root metal concentrations were examined by induced coupled plasma-optical 

emission spectrometry (ICP-OES). To check whether the NO donor treatments impact the 

expression of iron-uptake/transport genes in our conditions, the accumulation of IRT1, FRO2 
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and NAS4 in roots were analyzed 24 h after the supplementation of the medium with these 

compounds.  

Compared to the control plants, GSNO triggered a 2.5 and 13 fold increase of IRT1 

and FRO2 transcript accumulation, respectively (figure 1A and B). These data fit well with 

those of Graziano and Lamattina
8
 who reported that GSNO mediates the expression of the 

orthologs of the A. thaliana IRT1 and FRO2 genes in tomato plants under iron deprivation. 

Because GSNO releases both glutathione (GSH) and NO, the putative effect of GSH was also 

assessed (figure 1A and B). Surprisingly, GSH induced the strongest up-regulation of IRT1 

and FRO2 expression. Indeed, compared to GSNO treatment, the levels of IRT1 and FRO2 

mRNA were increased by 1.6 fold. To confirm that the effect of GSNO was at least partly 

caused by NO released by the donor, plants were also exposed to the NO donor DEANO. 

Whereas diethylamine alone did not impact the accumulation of the transcripts of interest 

(data not shown), DEANO promoted the expression of both genes by 2.6 and 11.5 fold as 

compared to control plants, respectively. Collectively, these data indicate that NO as well as 

GSH treatments amplify the accumulation of IRT1 and FRO2 transcripts in roots of A. 

thaliana seedlings grown in iron deficient condition. Interestingly, different data were 

obtained regarding NAS4 transcripts (figure 1C). Indeed, whereas a 1.5 and 1.8 fold increase 

of NAS4 mRNA accumulation occurred in response to GSNO and DEANO, respectively, 

GSH treatment slightly reduced their levels. Therefore, the regulation of the expression of 

NAS4 might differ from those of IRT1 and FRO2.  

Concerning the concentration of iron, no differences were observed between control 

plants and plants exposed to GSNO or DEANO (figure 2A). In contrast, compared to WT 

plants, iron concentration was significantly increased by 1.3 fold in response to GSH. 

Regarding copper (figure 2B), while its concentration was unchanged in GSH- and DEANO-

treated plants compared to control plants, differences were observed in response to GSNO 
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treatment. Indeed, compared to WT plants, the concentration of copper was significantly 

decreased by 25 %. In the case of zinc and manganese, no significant differences were 

observed between control plants and plants exposed to GSH, GSNO or DEANO (figure 2C 

and D). Taken together, these data indicate that GSNO impacted the concentration of copper. 

However, both NO donors did not improve the iron concentration of plants grown under iron 

deficiency, thus confirming Graziano et al.
7
 previous observation in maize. Furthermore, GSH 

itself affected the concentration of iron. 

 

Discussion 

  

The present investigation confirmed previous data showing that NO released by NO 

donors promotes the expression of IRT1 and FRO2 in plants suffering from iron deficiency 

without favouring an increase of iron uptake. It also confirms our recent study highlighting a 

role for NO in the regulation of the expression of NAS4.
9
 The observation that GSH, a by-

product of GSNO, also influenced the plant response to iron deficiency raises the question of 

the role of GSH in iron deficiency as well as its interplay with NO. It has been previously 

reported that iron deficiency enhances the level of GSH.
14

 According to Ramirez et al.
11

, GSH 

might act as a thiol-containing ligand in the formation of dinitrosyl iron complexes and, 

consequently, might contribute to the increase of iron availability in plant tissues. 

Furthermore, it seems plausible that the feeding of plants with GSH might increase the 

intracellular pool of GSNO which constitutes a stable and mobile endogenous reservoir of 

NO. The rise in GSNO content could promote the NO-dependent mechanisms contributing to 

the iron deficiency responses such as the up-regulation of IRT1 and FRO2 transcript 

expression. Besides these aspects, our work also highlights the importance of GSH as a 

control when assessing the effects of GSNO on plant biological processes.  
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Others important findings of the present investigation concern the influence of the NO 

donors on the accumulation of other metals. Indeed, our data indicate that GSNO also 

impacted the concentration of copper. This observation is not surprising as the ion 

homeostasis networks in plants seem closely linked.
15

 Notably, iron, manganese and zinc are 

all taken up by IRT1 and FRO2 is also able to reduce Cu.
16

 Therefore, copper, iron, zinc and 

manganese might affect each other’s uptake.  

Finally, our data showed that the plant response to NO might differ according to the 

NO donor. Indeed, GSNO and not DEANO triggered a decrease in the concentration of 

copper. Beside the fact that GSNO releases both NO and GSH, GSNO mainly releases 

nitrosonium cation (NO
+
) while DEANO releases NO in its radical form (NO

•
). Furthermore, 

the kinetic of NO release differs between both NO donors. Indeed, the release of NO from 

DEANO occurs within seconds in aqueous solution
17

 whereas the release form GSNO is 

slower
18

. Although speculative, we assume that these parameters might influence the action of 

NO. Here too, this discussion highlights the complexity of interpreting data based on the use 

of NO donors.  
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Materials and Methods 

 

Plant material and growth conditions. Experiments were performed using A. thaliana 

Columbia ecotype (Col-0) wild-type. Seeds were surface sterilized by immersion in a solution 

containing 1.2 % bleach and 50 % EtOH for 5 min and placed for 3 days at 4°C in 0.15 % 

agar. Then, they were sown in seed holders filled with 0.75 % agar and put in a cover placed 

above the nutrient solution container (Araponics, Liège, Belgium). The medium (0.25 mM 

Ca(NO3)2, 0.5 mM KNO3, 1 mM KH2PO4, 1 mM MgSO4, 50 µM H3BO3, 19 µM MnCl2, 10 

µM ZnCl2, 1 µM CuSO4, 0.02 µM Na2MoO4, 50 µM Fe-Na-EDTA) was changed once a 

week. Plants were allowed to grow for 4 weeks in the following conditions: 10 h day (200 

µE.m
-2

.s
-1

 light intensity, 20°C) / 14 h night (18°C) with 70% relative humidity. After 4 weeks 

of culture, roots were washed 3 times with the nutritive solution containing 5 µM Fe-EDTA 

instead of 50 µM. Then, plants were grown for 96 h on the hydroponic medium with 5 µM 

Fe- EDTA. 

 

Plant treatments. Forty eight hours after their transfer into iron-deficient conditions, plants 

were treated with 50 µM of GSNO, GSH or DEANO. GSNO and GSH were dissolved in 

water, DEANO was prepared as previously described.
17

 As a control for DEANO effects, 

plants were treated with 50 µM diethylamine prepared in water.  

 

Determination of metal concentration. Roots were collected 48 h after the addition of the 

NO donors or GSH into the culture medium. The concentration of metals was determined in 

the roots by induced coupled plasma-optical emission spectrometry (ICP-OES) as previously 

reported.
9
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qRT-PCR analyses. Root tissues were collected after the treatments and immediately frozen 

in liquid nitrogen before total RNA extraction using Trizol reagent according to the 

manufacturer’s instructions (Invitrogen). A DNase (Promega) treatment was performed on 5 

µg of total RNA to prevent genomic DNA contamination. RNA samples were subsequently 

used for reverse transcription (ImpromII
TM

 Reverse Transcriptase kit, Promega) with 

anchored oligo(dT15) (Promega) and 0.4 mM deoxynucleotide triphosphates. The resulting 

cDNAs were subjected to a two-fold dilution with water and one µl of each cDNA sample 

was assayed by qPCR (7900HT, Applied Biosystems®).  Expression levels were calculated 

relatively to the housekeeping gene AtYLS8 (At5g08290) using the relative standard curve 

method. For each sample, target quantity of the gene of interest was determined by 

interpolating the value from the standard curve made from a cDNA pool which enables to 

take into consideration the efficiency of amplification. The value was then divided by the 

target quantity of the housekeeping gene.  

Primer sequences were as follows: AtNAS4-fw: 5’- AGAAGGTTAAGGTGGTCGAGC-3’, 

AtNAS4-rev: 5’-ACAGTTACACGCGAGATCCGA-3’; IRT1-fw: 5’-

CGGTTGGACTTCTAAATGC-3’, IRT1-rev: 5’-CGATAATCGACATTCCACCG-3’; 

FRO2-fw: 5’-CGATCGTTTCCTTCGGTTTC-3’, FRO2-rev: 5’-

AATCCGAGCAGCGAGCAA-3’; AtYLS8-fw: 5’-GTCATTTATCTGGTGGACATCACT-

3’, AtYLS8-rev: 5’-CCGAAACAGTAAGCAAAAAC-3’. 

 

Chemicals. All chemicals were purchased from Sigma-Aldrich.  

 

Statistical analysis. In order to detect significant differences between the different treatments, 

ANOVA on ranks were performed with the statistical program SigmaPlot release 11.0 (Systat 
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Software, Chicago, USA) followed by a comparison versus control with the Dunn’s Method 

(* P < 0.05).  
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Figure legends 

 

Figure 1. Incidence of GSNO, DEANO and GSH on the accumulation of IRT1, FRO2 and 

NAS4 transcripts in roots of plants exposed to iron deficiency. (A) IRT1 transcript 

accumulation, (B) FRO2 transcript accumulation, (C) AtNAS4 transcript accumulation in 

roots. Plants were cultivated 4 weeks in iron-sufficient conditions (Fe 50 µM) and then 

transferred 48 h in iron deficient (Fe 5 µM) conditions. Then, plants were treated with GSNO 

(50 µM), GSH (50 µM) or DEANO (50 µM) for 24 h. Transcript accumulation of IRT1, 

FRO2 and NAS4 in roots were measured by qRT-PCR. Data are expressed as mean 

normalized expression relative to the appropriate housekeeping gene AtYLS8 (arbitrary units) 

and are the means of triplicates (± SE). 

 

Figure 2. Impact of GSNO, DEANO and GSH on the concentrations of iron, manganese, zinc 

and copper in roots of plants exposed to iron deficiency. (A) Iron concentration, (B) copper 

concentration, (C) zinc concentration, (D) manganese concentration. Plants were cultivated 4 

weeks in iron-sufficient conditions (Fe 50 µM) and then transferred 48 h in iron deficient (Fe 

5 µM) conditions. Then, plants were treated with GSNO (50 µM), GSH (50 µM) or DEANO 

(50 µM) for 48 h. The concentration of metals was determined in the roots by ICP-OES. Each 

value represents the means ± SD of nine measurements (three replicates per experiment 

performed three times). Stars represent significant differences from control according to 

ANOVA on ranks followed by a comparison versus control (P < 0.05). 
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Figure 2 
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