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ABSTRACT 22 

In Escherichia coli the alkylating agent methyl methanesulfonate (MMS) induces defense 23 

systems (adaptive and SOS responses), DNA repair pathways, and mutagenesis. We have 24 

previously found that AlkB protein induced as part of the adaptive (Ada) response protects cells 25 

from the genotoxic and mutagenic activity of MMS. AlkB is a non-heme iron (II), α-26 

ketoglutarate-dependent dioxygenase that oxidatively demethylates 1meA and 3meC lesions in 27 

DNA, with recovery of A and C. Here, we studied the impact of transcription-coupled DNA 28 

repair (TCR) on MMS-induced mutagenesis in E.coli strain deficient in functional AlkB protein. 29 

Measuring the decline in the frequency of MMS-induced argE3→Arg+ revertants under transient 30 

amino acid starvation (conditions for TCR induction), we have found a less effective TCR in the 31 

BS87 (alkB–) strain in comparison with the AB1157 (alkB+) counterpart. Mutation in the mfd 32 

gene encoding the transcription-repair coupling factor Mfd, resulted in weaker TCR in MMS-33 

treated and starved AB1157 mfd-1 cells in comparison to AB1157 mfd+, and no repair in BS87 34 

mfd– cells. Determination of specificity of Arg+ revertants allowed to conclude that MMS-35 

induced 1meA and 3meC lesions, unrepaired in bacteria deficient in AlkB, are the source of 36 

mutations. These include AT→TA transversions by supL suppressor formation (1meA) and 37 

GC→AT transitions by supB or supE(oc) formation (3meC). The repair of these lesions is partly 38 

Mfd-dependent in the AB1157 mfd-1 and totally Mfd-dependent in the BS87 mfd-1 strain. The 39 

nucleotide sequence of the mfd-1 allele shows that the mutated Mfd-1 protein, deprived of the C-40 

terminal translocase domain, is unable to initiate TCR. It strongly enhances the SOS response in 41 

the alkB– mfd– bacteria but not in the alkB+ mfd– counterpart.  42 

 43 

 44 
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INTRODUCTION 45 

The potentially mutagenic and genotoxic alkylating agents are widely spread in the 46 

environment and are also produced as a result of normal cellular metabolism [1-3]. They 47 

introduce into DNA lesions that block replication (e.g., 3meA), cause mutations (e.g., O4meT and 48 

O6meG), or, as in the case of 7meG, are neither cytotoxic nor mutagenic, but undergo 49 

spontaneous elimination or excision by glycosylases in the course of base excision repair (BER), 50 

leaving behind an apurinic (AP) site. Living organisms are well equipped with mechanisms 51 

protecting cells from the harmful effects of alkylating agents. In E.coli alkylating agents induce 52 

an adaptive response resulting in an increased expression of four genes: ada, alkB, alkA and aidB 53 

[4-8]. The key component of this response is the Ada protein, an activator of transcription of its 54 

own gene and of those encoding AlkA, AlkB, and AidB [5,9]. The function of AlkB protein has 55 

been established only recently [10-16]. It is a dioxygenase that oxidatively demethylates N1meA 56 

(1meA) and N3meC (3meC) in DNA in a reaction involving α-ketoglutarate, O2, and Fe2+, and 57 

resulting in the recovery of A and C bases.  58 

Methyl methanesulfonate (MMS), an SN2 alkylating agent, is not only an efficient inducer 59 

of adaptive response, but also induces the SOS system that increases the expression of over 40 60 

genes involved in DNA recombination, repair, replication, and mutagenesis [17-19]. Two among 61 

these genes, umuD and umuC, encode the Y-family DNA polymerase V (PolV). In the mutagenic 62 

process of translesion synthesis (TLS) this low fidelity polymerase is able to bypass lesions, 63 

inserting a stretch of several nucleotides; subsequently, PolIII, the main replicative polymerase in 64 

E.coli, resumes DNA replication [20]. 65 

In E.coli AB1157 (argE3) strain, the induction of the SOS system and expression of PolV 66 

is a prerequisite for 70-80% of MMS-induced argE3→Arg+ revertants. They arise by de novo 67 
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formation of supL suppressor created from tRNAlys2 by AT→TA transversions. In contrast to 68 

these umuDC-dependent mutations, the umuDC-independent ones arise by formation of supB 69 

(from tRNAgln1) or conversion of supE44(amber)→supE(ochre). Both supB and supE(ochre) 70 

suppressors arise by GC→ΑΤ transitions. The umuDC-independent mutations may also arise by 71 

back mutation at the argE3 site [21].  72 

The phenomenon of mutation frequency decline (MFD) was first described by Witkin 73 

[22,23] as a loss of UV-induced mutations in tRNA suppressor genes during transient inhibition 74 

of protein synthesis. Evelyn Witkin [24] also constructed the E.coli WU3610-45 mfd-1 mutant, 75 

showing a smaller decline in the frequency of UV-induced mutations than the parental WU3610 76 

strain. The mfd-1 mutation has been used frequently, but is fully characterized only in the present 77 

study.  78 

Further investigations of the MFD phenomenon have shown that this system, called 79 

transcription-coupled DNA repair (TCR), mediates selective removal of lesions from the 80 

transcribed DNA strand, coupling transcription and DNA repair. TCR requires mfd-encoded Mfd 81 

protein which removes transcription elongation complexes stalled at DNA non-coding lesions 82 

and recruits to these sites proteins involved in nucleotide excision repair (NER) [25].  83 

E.coli Mfd is a multifunctional protein of 130 kDa consisting of eight domains. These 84 

domains can be grouped into several modules according to their function. Among others, there is 85 

a module homologous to the UvrB protein which in complex with Mfd can bind UvrA, thus 86 

bringing the NER machinery to the RNA polymerase (RNAP)-Mfd complex [26]. There is also a 87 

domain of interaction with RNAP, a translocase domain comprised of TD1 translocase module 88 

and TD2 with the TRG (Translocase in RecG) motif [27]. In this way, Mfd functions not as a 89 

helicase but as a double strand (ds) DNA translocase [28], cleansing DNA of RNAP stalled at a 90 
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lesion [29]. 91 

Here, we studied the effect of TCR on MMS-induced lesions under conditions of non-92 

functional AlkB protein. Transient amino acid starvation was used to induce TCR, whereas 93 

mutation in the mfd gene served to switch it off. We found that during transient amino acid 94 

starvation, the decline in the level of MMS-induced Arg+ revertants in the alkB– mutant  was 95 

weaker than in the AB1157 alkB+ strain. On the other hand, the effect of mfd-1 mutation on the 96 

level of MMS-induced Arg+ revertants in transiently starved bacteria was much stronger in the 97 

alkB– strain (total lack of TCR) than in the alkB + counterpart. We established that MMS-induced 98 

1meA and 3meC lesions in alkB– bacteria are the source of AT→TA transversions by formation 99 

of supL suppressor (1meA) and of GC→AT transitions by formation of supB or supE(oc) 100 

(3meC). In AB1157 mfd-1, the repair of MMS-induced lesions occurred, in contrast to the BS87 101 

mfd-1 strain, where DNA repair was inhibited, therefore totally Mfd-dependent. Moreover, in an 102 

alkB– strain the additional mutation in the mfd gene resulted in elevated induction of the SOS 103 

response. The involvement of the umuDC-encoded PolV in the processing of 1meA/3meC lesions 104 

arising in MMS-treated alkB– bacteria is also shown and discussed.  105 

 106 

2. Materials and methods 107 

2.1. Bacterial strains and plasmids 108 

The E. coli K12 strains and plasmids used in this study are listed in Table 1. 109 

Transductions and transformations were performed by routine methods [43]. Derivatives of 110 

AB1157 and BS87 harboring the umuDC deletion or alkB117 and mfd-1 mutations were 111 

constructed by P1 mediated transduction [43]. Selection of transductants was done on LB plates 112 

supplemented with either chloramphenicol (30 µg/ml), carbenicillin (50 µg/ml), or tetracycline 113 
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(12.5 µg/ml). Subsequently, the desired phenotype of the transductant, umuDC deletion, alkB or 114 

mfd mutations, was confirmed by testing sensitivity to UV, MMS or by sequencing, respectively. 115 

 116 

2.2. Media 117 

Luria–Bertani (LB) broth [43] was used as rich medium. Minimal medium (MM) 118 

contained C-salts supplemented with glucose (0.5%), casamino acids (0.2%), thiamine (10 119 

µg/ml) and Arg, His, Thr, Pro and Leu at 25 µg/ml each. E-Arg plates were MM plates devoid of 120 

arginine and solidified with 1.5% Difco agar. 121 

 122 

2.3. Survival and mutagenicity assay 123 

To estimate the survival of tested strains, bacteria were treated with 20 mM MMS for 15 124 

min, spun down, resuspended in complete MM or in MM devoid of arginine, histidine and 125 

casamino acids (starvation medium), and incubated with shaking for 60 min. Non-starved 126 

bacteria were plated on LB, whereas starved samples were supplemented with arginine, histidine 127 

and casamino acids and incubated for another 60 min before plating. After 18 h of incubation, the 128 

colonies were counted and the percent of survivors was calculated. MMS-treated and 129 

immediately plated samples were assigned as control. 130 

For MMS mutagenesis, bacteria (overnight culture in LB diluted 1:50) were grown in 131 

MM with shaking. When the culture reached a density of  2-4 x 108 cells/ml, it was treated with 132 

20 mM MMS for 15 min, centrifuged, washed and diluted 10-fold in MM devoid of arginine, 133 

histidine and casamino acids (starvation conditions for TCR expression). The missing amino 134 

acids were added either immediately (non-starved control) or after 30 or 60 min of starvation. 135 

For UV mutagenesis, bacterial cultures were grown to a density of 2-4 x 108 cells/ml, 136 
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centrifuged and resuspended in C salts. Samples of 5 ml were irradiated for 35 s in Petri plates (φ 137 

80 mm) with a Philips 15 W UV lamp, emitting mainly 254 nm light and placed 8 cm above the 138 

plate. The UV dose was 45 J/m2, except for the AB1157 mfd-1 uvrA6 strain, which was irradiated 139 

with 2.7 J/m2, with the UV lamp placed 16 cm above the plate. The irradiated bacteria were 140 

diluted 10-fold in LB either immediately or after 20 min incubation in C salts  supplemented with 141 

0.5% glucose (starvation conditions). In both, MMS- and UV-treatment, bacteria were incubated 142 

overnight, appropriately diluted (usually 106-fold) and plated onto LB plates for total counts 143 

(CFU); for Arg+ revertants non diluted or diluted 10-100-fold bacteria were plated onto E-Arg 144 

plates. Colonies growing on LB plates were counted after 24 h, and those growing on E-Arg 145 

plates after 48 h of incubation. Following colony counting, the frequency of reversion (number of 146 

Arg+ revertants/108 viable cells) was determined. All incubations were at 37°C. 147 

 The CC101-CC106 strains [38] and their mfd-1 and alkB117 derivatives were grown, 148 

MMS treated, and plated as described above. For monitoring Lac+ revertants the E-Arg plates 149 

were replaced with MM plates deprived of glucose, but enriched with 0.5% lactose. Lac+ 150 

reversion frequencies were calculated as for Arg+ revertants. 151 

 All experiments were repeated four to six times in duplicate, and standard deviation 152 

(±SD) was calculated. 153 

 154 

2.4. Mutational specificity assay 155 

Revertants to Arg+ were classified according to their requirements for histidine and 156 

threonine, into four phenotypic classes: (I) Arg+ His– Thr–, (II) Arg+ His+ Thr–, (III) Arg+ His– 157 

Thr+, and (IV) Arg+ His+ Thr+. At least 200 Arg+ colonies from each experiment (100 in 158 
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duplicate) were analysed for their phenotype, and about 20 members of each class were tested for 159 

sensitivity to amber (B17) and ochre (oc427, ps292, ps205) mutants of T4 phages as described 160 

previously [21]. This method allowed to identify the suppressor tRNA, and to deduce the 161 

following mutational pathways: GC→AT transition that arose by supB formation or by 162 

supE(am)→ supE(oc) conversion, and AT→TA transversion that arose by supL formation.  163 

 164 

2.5. Expression of ββββ-galactosidase 165 

All the strains examined for β-galactosidase expression were transformed with plasmid 166 

pSK1002 bearing a umuC::lacZ fusion [42]. An overnight culture in LB was diluted 10-fold in 167 

MM, treated with 20 mM MMS for 15 min, centrifuged, washed, resuspended in the same 168 

volume of fresh MM, and further incubated to OD600 ≈ 0.350. At zero and appropriate time points 169 

aliquots were removed and β-galactosidase activity was assayed according to Miller [43]. 170 

 171 

2.6. Microscopic observation of bacteria 172 

To examine the morphology of growing bacterial cells, liquid cultures were treated with 173 

20 mM MMS for 15 min, diluted in fresh MM deprived of arginine, histidine, and casamino 174 

acids, and incubated for 1 h. Starvation was stopped by the addition of the omitted amino acids, 175 

and the cultures were incubated for an additional hour. After that time, aliquots were taken, 176 

spread onto glass slides, fixed over a flame, stained with basic fuchsin and examined under a 177 

light microscope (Nikon Microphot S.A.) at a 1000× magnification. Bacteria not treated with 178 

MMS were used as controls.  179 

 180 

2.7. Characterization of the mfd-1 mutation 181 
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The mfd-1 gene was amplified by PCR (Run Polymerase, A&ABiot) under standard 182 

conditions using primers mfd1 and mfddn. The PCR product was sequenced with primers listed 183 

in Table 2 (DNA Sequencing Laboratory, IBB). Partial sequences were assembled and the whole 184 

sequence was used as a query in the NCBI microbe genome database (BLAST).  185 

 186 

3. Results 187 

3.1. Effect of starvation on the level of MMS-induced Arg+ reversion in E.coli AB1157 and 188 

BS87 strains  189 

It has been shown previously that during transient amino acid starvation of E.coli AB1157 190 

(with intact an alkB gene), the MMS-induced argE3→Arg+ reversions are partially repaired by 191 

TCR, resulting in about 3-fold decline in mutation frequency (Fig. 1A). In UV irradiated and 192 

starved for 20 min AB1157 cells, we observed an 8-fold lower level of Arg+ revertants in 193 

comparison to non-starved control. Introduction of mfd-1 and uvrA6 mutations into the AB1157 194 

strain totally inhibited TCR in UV irradiated cells, whereas in MMS-treated and starved for 60 195 

min AB1157 mfd-1 uvrA6 bacteria, some decrease in the level of Arg+ revertants vs. wild type 196 

AB1157 was still observed (Table 3).  197 

In the BS87 (alkB –) strain there was only a 2-fold decline in the frequency of MMS-198 

induced Arg+ revertants after 60 min of starvation (Fig. 1B). However, the absolute levels of Arg+ 199 

revertants in the AB1157 alkB+ and BS87 alkB – strains were fundamentally different. The 200 

frequency of MMS-induced Arg+ revertants in non-starved AB1157 cells was about 160 Arg+ 201 

revertants/108 cells and 54 Arg+ revertants/108 cells after 60 min of starvation (Table 3). The 202 

corresponding values for BS87 were 1,800 vs. 846 Arg+ revertants/108 cells. As established 203 

earlier [31], the alkB mutation substantially increased the frequency of MMS-induced mutations. 204 
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The majority of MMS-induced mutations in the AB1157 strain depend on the activity of 205 

PolV encoded by the umuDC genes [21,31]. In the absence of the umuDC operon, the level of 206 

MMS-induced Arg+ revertants drops dramatically, 6-fold in the case of the AB1157∆umuDC 207 

strain, and even 51-fold in the case of BS87∆umuDC (Fig. 1 A and B). Under transient amino 208 

acid starvation, the pool of MMS-induced, umuDC-independent mutations was subjected to TCR. 209 

Our previous experiments indicate that these mutations are GC→AT transitions arising by supE 210 

suppressor formation, and that the source of these mutations is 3meC lesion present in MMS-211 

treated cells devoid of functional AlkB protein [44]. 212 

Overproduction of PolV in AB1157 harboring pRW134 resulted in an over 4-fold 213 

increase in the frequency of MMS-induced Arg+ revertants (160 vs. 680 Arg+ revertants/108 cells 214 

in AB1157 and AB1157/pRW134, respectively) (Fig. 1A), whereas in BS87 overproducing PolV, 215 

the level of these mutations was only slightly increased (1,900 vs. 3,000 Arg+ revertants/108 cells) 216 

(Fig. 1B).  217 

3.2. Specificity of MMS-induced mutations 218 

Arg+ revertants obtained by MMS-treatment were analyzed for their requirements for 219 

histidine and threonine and for susceptibility to T4 phage mutants. The results of  analysis of  220 

MMS-induced Arg+ revertants are summarized in Table 4.  221 

In the AB1157 strain, about 80% of  MMS-induced Arg+ revertants showed class II 222 

phenotype and within this class about 50% were due to  AT→TA transversions by supL 223 

suppressor formation. The remaining Arg+ revertants were of class I, arising by supB formation 224 

or by supE(am)→ supE(oc) conversion due to GC→AT transitions. Back mutations (any 225 

transition or transversion at AT base pairs inside the argE3(ochre) UAA locus) constituted about 226 

10% of all Arg+ revertants. Transient starvation of  MMS-treated AB1157 strain resulted in a 10-227 
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fold decrease in the level of GC→AT transitions , which arose by supB but not supE(oc) 228 

formation, and over 4-fold decrease in the level of AT→TA transversions. In the AB1157mfd-1 229 

mutant, there was no decline in the level of GC→AT transitions that arose by supB; however, 230 

there was a 2-fold decrease in the GC→AT transitions arose by supE(oc) suppressor formation as 231 

well as AT→TA transversions of supL origin (Table 4). 232 

In the BS87 (alkB –) strain, MMS-induced Arg+ revertants were split almost equally 233 

between phenotypic classes I and II. The level of AT→TA transversions was 2-fold higher in 234 

comparison to GC→AT transitions by supB and 3-fold higher in comparison to GC→AT 235 

transitions by supE(oc) (respective values were 931.5, 465.8, and 279.5 Arg+ revertants/108 cells, 236 

Table 4). The level of GC→AT transitions by supB formation decreased over 5-fold during 237 

starvation, and that of AT→TA transversions by supL decreased 2-fold. The GC→AT transitions 238 

by supE(oc) remained at the same level, however, was twice as numerous as in the BS87 mfd-1 239 

strain. The other two classes, GC→AT transitions by supB and AT→TA transversions by supL, 240 

remained at similar level. In MMS-treated BS87 mfd-1 bacteria, the frequency of all these types 241 

of Arg+ revertants were not affected by starvation.  242 

 243 

3.3. Induction of the SOS response 244 

The induced state of the SOS response was shown by measuring the level of β-245 

galactosidase in MMS-treated AB1157(alkB+), BS87(alkB117), and BS87mfd-1 strains harboring 246 

the pSK1002 plasmid (Fig. 2). The plasmid bears an umuC::lacZ fusion [42] placing the lacZ 247 

gene encoding β-galactosidase under the control of the umuC promoter, and the fusion gene is 248 

expressed in response to SOS induction. The obtained results indicate that the level of β-249 

galactosidase was 1.75- and over 2-fold higher in BS87 and BS87mfd-1, respectively, in 250 
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comparison to the AB1157 strain (Fig. 2). 251 

The same conditions as for β-galactosidase induction were found to promote filamentous 252 

growth, a characteristic feature of induction of the SOS response in E.coli [45]. This type of 253 

growth results from the expression of the sulA gene induced as one of the latest within the SOS 254 

regulon. The SulA protein is an inhibitor of cell division. Delay in the division of cells allows for 255 

DNA repair after the action of DNA-damaging agents [46]. Figure 3 shows photomicrographs of 256 

bacteria treated with MMS for 15 min, starved for 60 min and incubated for a further 60 min in 257 

the growth medium. The filamentous growth of the alkB mutant indicates an induction of the 258 

SOS response. The additional mutation in the mfd gene resulted in an even stronger filamentation 259 

in alkB – mfd –, but not in alkB+ mfd – cells. This increased filamentation was not accompanied by 260 

MMS-mediated killing; on the contrary, MMS-treated and subsequently starved BS87 mfd-1 261 

strain survived better than its mfd+ counterpart (Fig. 4). 262 

 263 

3.4. Characterization of the mfd-1 mutation 264 

 The mfd-1 allele was sequenced and found to have only one deletion of a thymine residue 265 

from among three Ts (2365-2367), resulting in a frameshift and premature stop codon. The 266 

mutated Mfd (Mfd-1) protein contains only 852 amino acids vs 1148 in wt Mfd. Mfd-1 protein is 267 

thereby deprived of the C-terminal translocase domain, TD2, and the D7 domain, which in free 268 

Mfd protein blocks the interaction with the UvrA protein [26]. 269 

The mutational spectra of strains with the mfd-1 mutation were analyzed in a system of 270 

E.coli CC101-CC106 lacZ mutants. By measuring the frequency of Lac+ revertants, the system 271 

allows identification of all six types of base substitutions [38]. In these mfd+ strains, MMS 272 

induces Lac+ revertants that arise mainly by GC→AT transitions monitored in the CC102 strain 273 
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(about 19 Lac+ revertants /108 cells), or by AT→TA transversions, observable in the CC105 274 

strain (about 3 Lac+ revertants /108 cells) [38]. 275 

In the mfd-1 derivatives of the CC101-CC106 strains MMS induced almost exclusively 276 

(95%) GC→AT transitions (51 Lac+ revertants/ 108 cells) (Table 5). The introduction of alkB117 277 

mutation (the source of this allele was BS87) into strains CC101-CC106 mfd-1 resulted in the 278 

highest level of Lac+ revertants in CC104, which shows GC→TA transversions (122 Lac+ 279 

revertants/108 cells in comparison to 6.6 and 0.7 Lac+ revertants/108 cells in single CC104 280 

alkB117 and CC104 mfd-1 mutants, respectively). The level of GC→AT transitions in CC102 281 

mfd-1 alkB117 was similar to that observed in CC102 alkB117 (26.5 and 27.9 Lac+ revertants/108 282 

cells, respectively), and about 2-fold lower than in CC102 mfd-1 (51 Lac+ revertants/108 cells). 283 

Introduction of mfd-1 to CC105 alkB117 and CC103 alkB117 led to an about 9-fold increase in 284 

the AT→TA, and a 150-fold increase in the GC→CG transversions, in comparison to the single 285 

CC105 mfd-1  and CC103 mfd-1 mutants. 286 

 287 

3.5. Effect of mfd-1 mutation on survival of bacteria and frequency of MMS-induced Arg+ 288 

       revertants 289 

 We compared the survival of MMS-treated and starved (or not) bacteria of four strains: 290 

AB1157 and BS87, and their mfd – counterparts (Fig. 4). The mfd-1 mutation did not influence 291 

the survival of all these strains unless they were starved after MMS treatment. Under starvation 292 

conditions, the mfd mutants (especially BS87 mfd-1) survived better than the mfd+ counterparts. 293 

The MMS treatment by itself resulted in poorer survival of the mfd – strains. 294 

 In the AB1157 mfd + strain there was a 3-fold decline in the frequency of MMS-induced 295 

Arg+ revertants after 60 min of starvation: about 160 Arg+ revertants/108 cells without starvation 296 
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to 54 Arg+ revertants/108 cells with starvation. For the AB1157 mfd – mutant the MFD was small 297 

but still observable (about 180 Arg+ revertants/108 cells without and about 105 Arg+ 298 

revertants/108 cells with starvation). In MMS-treated and starved for 60 min BS87 strain, a 2-fold 299 

decrease in the level of Arg+ revertants was observed, whereas in the BS87 mfd-1 mutant, the 300 

difference between non- starved and starved samples was barely visible (about 1370 vs. 1145 301 

Arg+ revertants/108 bacteria). Thus, in contrast to AB1157, in the BS87 strain all TCR seems to 302 

be mfd-dependent. 303 

 304 

4. Discussion 305 

In the present study, we used the argE3→ Arg+ reversion system of E. coli AB1157 306 

(argE3) to monitor the involvement of transcription coupled DNA repair, TCR, in the repair of 307 

MMS-induced lesions in alkB– strains deprived of a functional AlkB protein. The AlkB 308 

dioxygenase demethylates 1meA/3meC lesions in DNA with recovery of A and C. To favor TCR 309 

we applied transient (60 min) amino acid starvation (liquid MM was deprived of arginine and 310 

histidine).  311 

In the AB1157 alkB+ strain, a 60-min starvation decreased the frequency of MMS-induced 312 

Arg+ revertants to about one-third of that found in non-starved control (Fig. 1A). This decline in 313 

the level of MMS-induced mutations is much smaller compared with MFD described for UV 314 

mutagenesis. In UV-irradiated and starved AB1157 strain, we observed an 8-fold lower level of 315 

Arg+ revertants than in non-starved control, whereas in the AB1157mfd-1 uvrA6 mutant, the 316 

frequency of these revertants was independent on starvation (Table 3). In starved bacteria, UV 317 

irradiation by creating TˆT dimers and 6-4 photoproducts in DNA, immediately induces SOS 318 

response and UvrA protein that starts NER and TCR. We postulate that in contrast to UV-319 
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induced lesions, UvrA endonuclease is not involved, or is involved to a lesser degree, in repair of 320 

MMS-induced damage. 321 

In BS87(alkB–), only a two-fold decrease in the frequency of Arg+ revertants was caused 322 

by starvation (Fig. 1B). We have previously shown that 95-98% of MMS-induced Arg+ revertants 323 

in alkB– strains are umuDC-dependent, which results in a strong reduction of mutation frequency 324 

in the BS87∆umuDC strain [44]. In this strain, the level of MMS-induced Arg+ revertants was 51-325 

fold lower than in the umuDC+ counterpart (AB1157∆umuDC showed a 6-fold decrease in the 326 

level of the revertants comparison with the AB1157umuDC+ strain) (Fig. 1). The remaining pool 327 

of MMS-induced, umuDC-independent mutations was subject to TCR and the decline in the level 328 

of MMS-induced Arg+ revertants upon starvation was 2-fold larger in the ∆umuDC alkB– than in 329 

the ∆umuDC alkB+ strain.  330 

In AB1157, MMS-induced Arg+ revertants arise in about 80% due to supL suppressor 331 

formation by AT→TA transversions, in about 15% due to supB and supE(ochre) suppressor 332 

formation by GC→AT transitions; the remaining revertants arise by back mutations, which can 333 

occur by transition or transversion at AT bases within the argE3 site [21]. Here, we determined 334 

phenotypic classes (according to requirements for histidine and threonine) and suppressors of 335 

Arg+ revertants in AB1157 and BS87 strains and their mfd– counterparts (Table 4). In the BS87 336 

strain, during starvation, the decrease in the levels of Arg+ revertants arising by supB suppressor 337 

formation due to GC→AT transitions and by supL formation due to AT→TA transversions, was 338 

2-fold weaker in comparison with respective values for the AB1157 strain. We observed a very 339 

strong effect of the presence of a non-functional Mfd protein (mfd-1 mutation) on the anti-340 

mutational action of amino acid starvation, but only in the alkB– mutant. In the AB1157 alkB+mfd 341 

– strain the short starvation still brought about an almost 2-fold decrease in the frequency of Arg+ 342 
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revertants (resulting from the decline in GC→AT transitions due to supE(oc) and in AT→TA 343 

transversions due to supL formation). On the other hand, in the alkB– counterpart (BS87 mfd-1), 344 

the starvation no longer affected the mutation frequency (Fig. 5 and Table 4).  345 

 The mutagenic targets of MMS-induced DNA damage were found to be: (i) 5’TTG3’ and 346 

3’AAC5’in the coding and transcribed DNA strands, respectively, of the gln-tRNA gene, causing 347 

supB suppressor formation, (ii) 5’CTA3’ and 3’GAT5’ in the coding and transcribed DNA 348 

strands, respectively, of supE44, encoding amber tRNA suppressor causing conversion to 349 

supE(oc), and (iii) 5’AAA3’ in the transcribed strand of the lys-tRNA gene, causing supL 350 

formation (the targeted bases are underlined) [47]. Suppressors created by lesions in the 351 

transcribed DNA strand are repaired preferentially. Regarding repair of these lesions, other DNA 352 

repair systems, e.g., BER, should also be taken into consideration [48]. Among adducts created 353 

by MMS in DNA, there are 3meC, O6meG, 3meA, 1meA and, the most numerous but not 354 

mutagenic until removed, 7meG. The above analysis indicates the following sources of 355 

suppressors: 3meC (unrepaired in AlkB-defective strain) for supB; O6meG (7meG) for  supE(oc); 356 

and 3meA and 1meA (the latter unrepaired in AlkB-defective strain) for supL.  357 

The high level of MMS-induced lesions, poorly repaired during transient starvation, 358 

caused induction of the SOS response in the alkB– strain (Figs. 2 and 3). The additional mfd-1 359 

mutation resulted in an even stronger induction of this response in alkB – mfd –, but not in alkB+ 360 

mfd – cells. This result confirms the involvement of the Mfd protein in the repair of MMS-361 

induced lesions in the BS87 strain.  362 

We sequenced the mfd-1 allele and found a deletion of one of the three thymine residues 363 

in positions 2365-2367. This results in a premature stop codon and a shorter, 852-amino acid, 364 

Mfd-1 protein (Mfd wt contains 1148 amino acids), deprived of the TD2 C-terminal translocase 365 
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domain and the D7 domain, the latter, blocking interaction with the UvrA protein [26].  366 

The specific effects of the mfd-1 mutation determined in strains CC101-106 showed 367 

significant differences in the alkB+ and alkB– backgrounds. Among the CC101-106  mfd-1 alkB+ 368 

strains, 95% of the Lac+ revertants arose by GC→AT transitions, whereas this class of mutations 369 

constituted only 21.5% in the double mutant, alkB117 mfd-1. Conversely, the GC→TA 370 

transversions monitored in this strain constituted 70% of all base substitutions (Table 5). 371 

Observed differences in MMS mutability of the argE3 and lacZ– markers are probably 372 

caused by different number of targets and their various structure. The lacZ–→ Lac+ reversion 373 

occurs only by back mutation at one point of the double-stranded gene encoding β-galactosidase. 374 

The argE3→Arg+ reversion occurs mostly by formation of at least 8 separate suptRNA (ochre) 375 

suppressors that are actively transcribed and exist as single-stranded (ss)DNA [49]. The 376 

fragments of ssDNA are more accessible to MMS and cause strong induction of the SOS 377 

response.  378 

Summing up, MMS induces two global defense systems, Ada and SOS. UvrA protein 379 

engaged in the error-free DNA repair systems, NER and TCR, is the first one induced within the 380 

SOS response. A prolonged state of the SOS induction leads to the expression of umuDC-381 

encoded PolV, which allows error-prone translesion synthesis of MMS-modified bases. The 382 

AlkB protein, a member of Ada response, oxidatively demethylates 1meA/3meC lesions with 383 

recovery of the original A and C bases. In MMS-treated alkB mutant, unrepaired 1meA/3meC 384 

lesions are processed by PolV during TLS, which results in an elevated level of Arg+ revertants. 385 

Here, we have found that MMS-induced TCR is less effective in the alkB– strain in comparison to 386 

alkB+  counterpart. The mfd-1 mutation totally inhibits TCR and strongly enhances the SOS 387 

response in alkB– mfd –, but not in the alkB+  mfd – strain. Studies on the specificity of MMS-388 
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induced Arg+ revertants showed that the decline in the level of all types of suppressor mutations 389 

during transient starvation is totally Mfd-dependent. We have established that not only 3meC, but 390 

also 1meA lesion may be a source of mutations, namely, AT→TA transversions arising by supL 391 

suppressor formation. 392 
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Legends to figures 528 
 529 
Fig. 1 530 

Frequency of MMS-induced Arg+ revertants under transient starvation conditions. E.coli strains 531 

AB1157 (A) and BS87 (B) harboring the indicated plasmids and/or umuDC deletion were treated 532 

with 20 mM MMS for 15 min and subsequently starved for indicated time (  - 0 min;  - 30 533 

min;  - 60 min).  534 

 535 

Fig. 2 536 

Expression of β-galactosidase from a umuC::lacZ fusion in MMS-treated strains AB1157 ( ), 537 

BS87 ( ), and BS87 mfd-1 ( ) harboring the pSK1002 plasmid. The empty symbols represent 538 

the same strains not treated with MMS. 539 

 540 

Fig. 3 541 

Filamentous growth of E.coli AB1157 and BS87 cells and their mfd – counterparts treated with 20 542 

mM MMS for 15 min and starved for 60 min. Magnification 1000×. ctrl - control not treated with 543 

MMS.  544 

 545 

Fig. 4 546 

Survival of MMS-treated and starved E.coli strains AB1157 and BS87 and their mfd-1 547 

derivatives. Bacteria were treated with 20 mM MMS and immediately plated (); incubated in 548 

full MM for 60 min ( ); starved for 60 min and incubated in full medium for 60 min before 549 

plating ( ) (see Materials and Methods for details). MMS-treated and immediately plated 550 

samples were assigned as control. 551 
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Fig. 5 552 

Frequency of MMS-induced Arg+ revertants under transient starvation in mfd-1 mutants. mfd-1 553 

derivatives of E.coli strains AB1157 and BS87 were treated with 20 mM MMS for 15 min and 554 

subsequently starved for indicated time (  - 0 min;  - 30 min;  - 60 min). 555 



Table 1 

Bacterial strains and plasmids  

Strains and plasmids Genotype Reference 

AB1157 argE3 hisG4 leuB6 ∆(gpt-proA)62 thr-1 

ara-14galK2 lacY1 mtl-1 xylA5 thi-1 rpsL31 

glnV44 tsx-33rfbD1 mgl-51 kdgK51 

 [30] 

RW82 ∆umuDC595::cat donor, derivative of 

AB1157 but thyA325 

[31] 

NR10121 ara thi zcf-117 :: Tn10 mfd-1; mfd-1 donor [32] 

EC2423 as AB1157 but mfd-1 [33] 

BS87 as AB1157 but alkB117::Tn3 [34] 

MW21 as BS87 but mfd-1 this work 

EC2413 as AB1157 but ∆umuDC595::cat [35] 

BS87∆umuDC  as BS87 but  ∆umuDC595::cat this work 

AB1886 as AB1157 but uvrA6 [36] 

EC2424 as EC2423 but  uvrA6 malB::Tn9 cmR 
[37] 

CC101-CC106 ara thi ∆(lac-proB)xiii , F' lacI-Z-proB+ 

[38] 

CC101-CC106 alkB117 as CC101-CC106, but alkB117::Tn3 
[39] 

CC101-CC106 mfd-1 as CC101-CC106, but mfd-1 
this work 

CC101-CC106  alkB117 mfd-1 as CC101-CC106, but alkB117::Tn3, mfd-1 
this work 

pGB2 spcR [40] 

pRW134 umuD’C genes inserted in pGB2 [41] 

pSK1002 umuC::lacZ fusion [42] 

 



Table 2 

Primers used in mfd-1 sequencing 

 

Name Sequence 

mfd1 AACAGCATTGCTTATCAG 

mfd2 CCTTCGAAGTGAAGCGCG 

mfd3 CGATACACTGATCCGTAA 

mfd4 TCGATATTCTGATCGGTA 

mfd5 CCTCGCTGGAAGATCTCG 

mfddn CAGTGTCGGATAGTGCAG 

 



Table 3  

Effect of UV irradiation and MMS treatment on the level of Arg+ revertants in the indicated E.coli 
strains 

      Strain 
Frequency of Arg+ revertants (x10-8 cells) in cultures: 

Non-treated 
control 

UV irradiated  
UV irradiated 
and starved for 

20 min  
MMS-induced  

MMS-induced 
and starved for 

60 min  

AB1157 3.0 ± 1.0 2242.3 ± 325.6 259.3 ± 72.7 157.0 ± 23.3 54.0 ±14.5  

AB1157 
mfd-1 

4.1 ± 0.5 1283.3 ± 72.7 643.0 ± 162.2 180.0 ±31.4  105.0 ±20.3  

AB1157 
mfd-1 uvrA6 

10.6 ± 2.5 340 ± 56.4 325.7 ± 75.7 210.4 ±35.8  129.2 ±19.8  

 

 



Table 4 

Specificity of MMS-induced Arg+ revertants in E.coli alkB and mfd mutants 

Strain 

Duration 
of 

starvation 
(min) 

Phenotypic classes of Arg+ 

revertants (%) 
Supressors and mutation pathway 

(Arg+ revertants /108 cells) 
I 

His- 

Thr- 

II 
His+ 

Thr- 

III 
His- 

Thr+ 

IV 
His+ 

Thr+ 

supB 
GC→AT 

supE(oc) 
GC→AT 

supL 
AT→TA 

back 
AT→AT 

AB1157 
0 20 78 0 2 54.9 7.9 70.7 23.6 

60 24 76 0 0 5.1 8.5 15.3 3.4 

AB1157 
mfd-1 

0 8 90 2 0 27.0 36.0 90.0 27.0 

60 7 90 2 1 36.8 15.8 42.0 10.5 

BS87 
0 51 44 37 2 465.8 279.5 931.5 186.3 

60 60 22 17 1 87.1 217.8 435.5 130.7 

BS87 
mfd-1 

0 42 56 1 1 479.2 136.9 684.5 68.5 

60 33 67 0 0 399.7 171.3 513.9 57.1 

   
The data are means of three independent experiments. SD=5-20% 
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