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Abstract:

Background: Tetrabromobisphenol A (TBBPA) is a toxic brominated flame retardant. Previous studies have demonstrated that ex-
posure of primary cultures of rat cerebellar granule cells (CGC) to > 10 uM TBBPA induces toxicity and excitotoxicity, and the un-
derlying mechanism may involve calcium imbalance and oxidative stress. Here we examined whether the application of TBBPA
at subtoxic concentrations may exacerbate acute damage of CGC challenged with oxygen-glucose deprivation (OGD), and evalu-
ated with fluorescent indicators the involvement of calcium imbalance, mitochondrial depolarization and oxidative stress.
Methods: Survival of CGC was assessed 24 h after OGD/TBBPA using fluorescent dyes. An OGD challenge lasting for 45, 60
or 75 min induced a duration-dependent injury to the neurons.

Results: Application of 2.5, 5 or 7.5 uM TBBPA for 45 min to normoxic and glucose-containing incubation medium did not reduce
the viability of cultured CGC, but this compound exacerbated the toxic effects of OGD in a concentration-dependent way. Moreover,
TBBPA had a slight effect on calcium homeostasis and mitochondrial membrane potential, but significantly activated the production
of reactive oxygen species in CGC. The application of HyO; at 5, 10 and 25 uM mimicked the effects of TBBPA on OGD toxicity,
while 0.1 mM ascorbic acid or 1 mM glutathione ameliorated this toxicity.

Conclusion: These results suggest the involvement of oxidative stress in the synergistic neurotoxic effects of TBBPA and OGD.

Key words:
brominated flame retardants, calcium, environmental pollutant, mitochondrial membrane potential, neuronal cultures, oxidative
stress

Abbreviations: BFR — brominated flame retardants, BME — basal Introduction
Eagle medium, CGC — cerebellar granule cells, DCF — 2°,7°-
dichlorofluorescein;, DCFH — 2’°,7’-dichlorodihydrofluores-

cein, DCFH-DA — 2°,7’-dichlorodihydrofluorescein diacetate, Tetrabromobisphenol A (TBBPA) is a representative
DMSO - dimethyl sulfoxide, DPM - disintegrations per

minute, GSH — glutathione, OGD — oxygen-glucose depriva- of the brominated flame retardants (BFR)’ a group _Of
tion, R123 — rhodamine 123, ROS — reactive oxygen species, ~ substances that are commonly used in the electronic,

TBBPA — tetrabromobisphenol A textile and building industries to reduce the flamma-
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bility of various products. The widespread use of
TBBPA has resulted in environmental pollution caused
by this compound (for reviews see [2, 8]). For exam-
ple, increased levels of TBBPA were found in samples
of air, soil and sediments [4], and more recently in
fresh waters collected in the vicinity of BFR manufac-
turing plants [26]. Moreover, TBBPA has been detected
in fish, oysters and human body fluids [4, 36].

The results of numerous studies have demonstrated
the toxic properties of TBBPA, including its immuno-
toxicity and endocrine-disrupting abilities [18, 27]. Ex-
periments performed in vivo have shown that the acute
exposure of adult mice to TBBPA results in its selec-
tive accumulation in the striatum, which is accompa-
nied by significant behavioral effects [24]. There are
also indications that TBBPA may act as a developmen-
tal neurotoxin [20], although there has been a lack of
consistency in studies describing the neurodevelop-
mental effects of TBBPA [38]. Studies performed in vi-
tro using various cell cultures demonstrated the cyto-
toxicity of TBBPA and have identified several putative
mechanisms, including disturbances in the intracellular
signaling pathways, calcium imbalance, oxidative
stress and excitotoxicity in neurons [5, 22, 25, 27, 28].
In light of the above evidence, there is growing con-
cern about the possible toxic effects of TBBPA.

Previous in vitro studies demonstrated the cytotoxic
effects of subacute, 18-24 h exposure of cell cultures
to TBBPA at concentrations exceeding 10 uM [25, 28].
Although TBBPA applied at lower micromolar concen-
trations does not by itself induce any detectable neu-
ronal death, we hypothesize that such treatment might
be injurious to neurons exposed simultaneously to
other pathogenic conditions. Brain ischemia seems to
be the most suitable model for testing this hypothesis,
since the pathogenic mechanisms that participate in the
ischemia-evoked neuronal death comprise excitotoxic-
ity, calcium imbalance and oxidative stress [11, 29],
and the same factors have been implicated in TBBPA
toxicity for cultured neurons [28]. We speculate that
the brain damage induced by ischemia might be sig-
nificantly exacerbated in subjects exposed to low,
nominally subtoxic doses of TBBPA. If so, such an ef-
fect should also be detectable in the well characterized
in vitro model of the ischemic conditions.

The aim of the present study was to determine
whether TBBPA applied to cultured neurons at con-
centrations that do not induce neuronal death, exacer-
bates the toxicity of the ischemia-like insult. In these
experiments we used a primary cerebellar granule

cells (CGC) culture as the neuronal model and the
ischemia-resembling conditions of oxygen-glucose
deprivation (OGD) to induce neuronal death (for re-
view see [13]). To identify putative mechanisms of
the expected potentiation of the OGD-evoked cyto-
toxicity by TBBPA, we studied the effects of TBBPA
applied at subtoxic concentrations on **Ca uptake, in-
tracellular Ca*" concentration, mitochondrial mem-
brane potential and free radical formation.

Materials and Methods

Animals

Primary cultures of CGC were prepared from 7-day-old
Wistar rats of the outbred stock Cmd:(WI)WU. About
100 animals were used in the experiments described in
this study. The use of experimental animals was approved
by the Fourth Local Ethical Committee in Warszawa. In
accordance with EC Directive 86/609/EEC of 24 Novem-
ber 1986, all efforts were made to reduce the number of
animals used and to minimize their suffering.

Drugs

TBBPA was obtained from LCG Standards Sp. z o.0.
(Lomianki, Poland). Hydrogen peroxide was pur-
chased from POCH SA (Gliwice, Poland), DMSO,
L-ascorbic acid, L-glutathione reduced, as well as fe-
tal bovine serum and other materials for cell culture
were purchased from Sigma Chemical Poland
(Poznan, Poland). The fluorescent dyes calcein AM,
ethidium homodimer-III, fluo-3 AM, rhodaminel23
and DCFH-DA were obtained from Molecular Probes
Inc. (Paisley, UK). All other chemicals were of ana-
lytical grade. **CaCl, was produced by Polatom Sp.
z 0.0., Otwock — Swierk, Poland. Fresh stock solu-
tions of TBBPA in DMSO or glutamate, H,O,, GSH
and ascorbic acid in water were prepared for each ex-
periment. The final concentration of DMSO was
0.5%. Two control groups were included in the ex-
periments: “0.5% DMSO control” was a vehicle con-
trol group for TBBPA, while the “control” group re-
ceived no DMSO and served for comparison with the
effects of glutamate and H,O,.

Pharmacological Reports, 2012, 64, 1166-1178 1167



Cell culture

A standard method of CGC culturing, as described by
Schousboe et al. [30], was used, with slight modifica-
tions [40, 42]. Briefly, the cerebella were collected,
chopped, tripsinized and shredded. A cell suspension
was prepared in basal Eagle medium (BME) supple-
mented with 10% fetal calf serum, 25 mM KCI, 4 mM
glutamine, streptomycin (50 pg/ml) and penicillin
(50 U/ml). Finally, 12-well plates coated with poly-
L-lysine (NUNC) were seeded at a density of 2 x 10°
cells per well. The cultures were incubated under
standard conditions in air with 5% CO, at 37°C and
95% humidity in an Assab Kebo 1970 CO, incubator
(Kebo Biomed, Spénga, Sweden). Two days after
plating, 7.5 pM cytosine arabinofuranoside was ap-
plied in order to prevent the replication of non-
neuronal cells. All the experiments on CGC were per-
formed at 7™ day in vitro.

Acute cytotoxicity: effects of TBBPA, H,0, and
OGD

We carried out two main types of cytotoxicity tests. In
one, cultures were incubated for 45, 60 or 75 min at
37°C in the CO, incubator with different concentra-
tions of TBBPA or H,O, under aerobic conditions
with 5% CO, in 5 mM glucose-containing medium
(Fig. 1A, Fig. 2A, B, Fig. 7). In the other, cultures
were submitted to OGD alone, or were exposed simul-
taneously to OGD and TBBPA, H,0O,, or the ROS
scavengers ascorbic acid or GSH (Fig. 1B, Fig. 2C, D,
Fig. 7, Fig. 8). In both cases, tests were performed by
replacing the growth medium with OGD buffer
(116 mM NaCl, 25 mM KCl, 26.2 mM NaHCO;,
1.8 mM CaCl,, 1 mM NaH,PO,, pH 7.4). TBBPA was
applied at concentrations of 2.5, 5 or 7.5 uM. For the
OGD treatment applied alone or in combination with
exposure to TBBPA, CGC cultures were incubated at
37°C in the OGD medium without glucose and in an
atmosphere containing 0% O,, 5% CO, and 95% N,
maintained by a system consisting of C-chamber,
Proox Model 110 and ProCO, Model 120 gas control-
lers (BioSpherix, Lacona, NY, USA). The incubation
was terminated by replacing the OGD medium with
the original growth medium and culturing was contin-
ued for 24 h at 37°C under standard aerobic condi-
tions with 5% CO,. The cells were then fixed with
80% methanol, stained with 0.5 pg/ml propidium io-
dide and viable and dead neurons were counted using

1168 Pharmacological Reports, 2012, 64, 1166-1178

a fluorescence microscope (Zeiss-Axiovert, Germany).
Results were expressed as the percentage of live cells.
In the experiments reported in Fig. 2, we used two
fluorescent dyes, calcein AM and ethidium homo-
dimer-III, for simultaneous staining of live and dead
cells, respectively. The staining and visualization pro-
cedures were exactly as described previously [19].

45Ca uptake

The CGC were pre-incubated at 37°C for 10 min in
Locke 5 medium containing 154 mM NaCl, 5 mM
KCl, 4 mM NaHCO3;, 2.3 mM CaCl,, 5 mM HEPES
(pH 7.4) and 5 mM glucose [40]. Then, TBBPA at dif-
ferent concentrations or the vehicle (0.5% DMSO)
were added together with radioactive calcium (1 pCi/
well). After 10 min incubation at 37°C the cells were
washed with ice-cold calcium-free medium contain-
ing 2 mM EGTA, lysed in 0.5 M NaOH and radioac-
tive uptake was measured using a Wallac 1409 liquid
scintillation counter (Wallac, Turku, Finland).

Intracellular Ca2* concentration

The CGC in the original growth medium were incu-
bated for 30 min at 37°C in the presence of the fluo-
rescent calcium-sensitive probe 16 uM fluo-3 AM
and washed three times in Locke 5 buffer [40]. The
fluorescence of cells incubated at 37°C in this buffer,
supplemented with different concentrations of TBBPA,
the vehicle 0.5% DMSO or with the positive control
100 pM glutamate, was recorded every 1 min for
30 min, using a microplate reader (FLUOstar Omega,
Germany) at 485 nm excitation and 538 nm emission
wavelengths.

Changes in mitochondrial membrane potential

The fluorescent probe rhodaminel23, which is accu-
mulated and bound inside polarized mitochondria,
was used to evaluate changes in the mitochondrial
membrane potential. Depolarization of mitochondria
results in the efflux of rhodamine from mitochondria,
and its consequently increased concentration in the
cytosol causes a rise in fluorescence [3]. CGC cul-
tures were treated with rhodaminel23 (10 pM) at
37°C for 30 min. The cells were then washed with
Locke 5 buffer and incubated at 37°C with different
concentrations of TBBPA, 0.5% DMSO or 100 uM
glutamate. Fluorescence was measured every 30 s for
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32 min using a microplate reader (Fluoroscan,
LabScan, Finland) at 485 nm excitation and 538 nm
emission wavelengths [44].

Production of reactive oxygen species (ROS)

Formation of ROS in CGC evoked by TBBPA and
OGD was evaluated using the fluorescent dye
DCFH-DA. As has been described previously by oth-
ers [1], DCFH-DA diffuses into cells where it is
cleaved by esterases to produce free non-fluorescent
DCFH which is entrapped inside the cells and may be
oxidized by ROS to form the fluorescent DCF. CGC
cultures were treated with 100 pM DCFH-DA at 37°C
for 30 min. After washing in Locke 5 buffer, the cells
were incubated with different concentrations of
TBBPA, 0.5% DMSO or 100 uM glutamate at 37°C.
In the experiments reported in Fig. 8, after loading
with DCFH, the cells were challenged for 45 min with
OGD in the presence of 5 uM TBBPA and/or | mM
GSH or 0.1 mM vitamin C. Fluorescence of DCF was
recorded every 5 min for 90 min (Fig. 6) or was meas-
ured once immediately after OGD (Fig. 8), using
a microplate reader (FLUOstar Omega, Germany) at
485 nm excitation and 538 nm emission wavelengths.

Data analysis

The results are presented as the mean £ SD, with
a sample size n given in legends to figures. For statis-
tical comparisons between the analyzed groups we
employed one-way ANOVA followed by Dunnett’s
test, two-way ANOVA followed by the Holm-Sidak
test for concentration and time of OGD duration, and
repeated measures ANOVA followed by one-way
ANOVA for treatment and experimental time points
as factors. Differences between means were consid-
ered significant at p < 0.05. Statistical analyses were
carried out using Statistica v. 7 (StatSoft Inc.).

Results

Effects of TBBPA and OGD on CGC viability

The application of TBBPA at concentrations of 2.5, 5
or 7.5 uM had no detectable toxic effect on neurons
incubated in the glucose-containing aerobic medium
(Fig. 1A). OGD lasting 45, 60 or 75 min resulted in

a drastic decrease in the number of surviving neurons,
which was dependent on OGD duration (Fig. 1B).
This OGD toxicity was additionally potentiated by the
administration of TBBPA, and this effect was statisti-
cally significant when concentrations of 5 or 7.5 uM
TBBPA were used.

It should be noted that a pronounced (about 30%)
decrease in the number of live neurons as compared to
untreated cultures was seen after aerobic incubation
of CGC in the OGD buffer supplemented with glu-
cose and containing 0.5% DMSO, the TBBPA vehicle
(Fig. 1A). Since the duration of incubation, which
varied from 45 min to 75 min, had no effect on the
number of surviving cells, this effect was most proba-
bly caused by physical cell injury that occurred when
changing the media, and not by the incubation condi-
tions, including the presence of 0.5% DMSO.

A synergistic toxic effect of OGD and TBBPA was
also observed using calcein and ethidium homodimer-
II staining, when TBBPA was applied to CGC at
a nominally subtoxic concentration (Fig. 2). The neg-
ligible toxicity of 7.5 pM TBBPA (Fig. 2B) in com-
parison with the vehicle control (Fig. 2A) contrasts
with the evidently increased proportion of dead cells
in CGC challenged with OGD for 45 min (Fig. 2C),
and to an even greater extent with the effect of treat-
ment with a combination of 45 min OGD and 7.5 uM
TBBPA (Fig. 2D).

Changes in calcium homeostasis in TBBPA-
treated CGC

We next investigated TBBPA-induced disturbances in
calcium homeostasis in CGC, which may be responsi-
ble for the enhancement of OGD toxicity caused by
this compound when administered at low micromolar
concentrations. To evaluate calcium influx into neu-
rons from the extracellular compartment, which could
result from the activation of different calcium chan-
nels including NMDA receptors, we measured *Ca
uptake (Fig. 3). TBBPA at concentrations of 2.5, 5 or
7.5 uM did not activate *>Ca uptake. Rather, the low-
est TBBPA concentration tended to suppress uptake,
while the two higher concentrations significantly in-
hibited this effect.

The intracellular calcium level was then measured
using the fluorescent calcium-sensitive probe fluo-3
(Fig. 4). In CGC treated with TBBPA at 2.5 and 5 uM,
the observed changes in fluorescence were practically
the same as in the vehicle control. However, applica-
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Fig. 1. TBBPA- and OGD-induced tox-
icity in primary cultures of rat CGC.
The effect of 2.5, 5 or 7.5 uM TBBPA
alone on cell viability (A) was studied
in ionic medium containing glucose
under aerobic conditions. The effect of
TBBPA at the same concentrations on
OGD-evoked neuronal damage was
studied in anaerobic glucose-deficient
medium (B). Control cultures were in-
cubated in ionic medium with the vehi-
cle (0.5% DMSO). The control for OGD
was incubated in the presence of glu-
cose under aerobic conditions (panel
A). After incubation for the periods in-
dicated, the cells were cultured in the
original growth medium under stan-
dard aerobic conditions for 24 h, and
the number of surviving neurons was
determined by propidium iodide stain-
ing. Data represent the percentage
change compared to untreated cul-
tures. The means + SD from six inde-
pendent experiments (n = 6). # Effects
of OGD without TBBPA significantly
different from the corresponding glu-
cose-containing aerobic control pre-
sented in panel A. * Effects of TBBPA
significantly different from the 0.5%
DMSO control, (two-way ANOVA fol-
lowed by Holm-Sidak test for concen-
tration and time of OGD duration,
p < 0.05)

Fig. 2. Acute exposure to TBBPA at low
micromolar concentration exacerbates
OGD neurotoxicity in primary cultures
of rat CGC. To evaluate TBBPA toxicity,
the cells were incubated for 45 min in
the aerobic medium containing glu-
cose and 0.5% DMSO (A), or in the
same medium with 7.5 uM TBBPA (B).
OGD was induced in the anaerobic
medium without glucose, with 0.5%
DMSO (C), or with 7.5 uM TBBPA (D).
The survival of neurons was assessed
24 h after the insult using calcein/
ethidium homodimer-1 staining, which
visualizes viable (green) and dead
(red) neurons, respectively. Horizontal
bar indicates magnification. Data from
one representative experiment. The
same experiments were repeated
three times using separate cultures
and gave consistent results
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Fig. 4. Effects of TBBPA on the intracellular Ca®* concentration in primary cultures of rat CGC. Following measurement of fluorescence of the
fluo-3 loaded neurons incubated under steady state conditions for 60 s to obtain the basal value, 2.5, 5 or 7.5 yM TBBPA, the vehicle (0.5%
DMSO) or 100 pM glutamate (glu) were administered as indicated. Changes in the intracellular Ca=* concentration were evaluated by measur-
ing fluo-3 fluorescence and expressed relative to the basal level (fluo-3 F/FO) as a percentage. The means + SD for six wells per treatment
tested in one representative experiment (n = 6). The same experiments were repeated three times using separate cultures and gave consistent
results. The results representing the effects of 7.5 uM TBBPA and the 0.5% DMSO control measured at the same time points differed signifi-
cantly from the 10" min to the end of the experiment. The effect of 100 pM glutamate was significantly different from the untreated control, from
the first min to the end of the experiment. Repeated measures ANOVA, followed by one-way ANOVA for treatment and experimental time points
as factors were used for comparisons between the analyzed groups (p < 0.05)
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Fig. 5. Changes in the mitochondrial membrane potential in primary cultures of rat CGC exposed to TBBPA at low micromolar concentrations.
The basal fluorescence of cells loaded with rhodamine 123 (R123) was measured after 60 s, then the incubation was continued without addi-
tions (control without DMSQO), or following the application of 0.5% DMSO, 2.5, 5 or 7.5 uM TBBPA, or 100 pM glutamate (glu), as the positive
control. Increases in R123 fluorescence reflecting a reduction in the mitochondrial membrane potential are expressed relative to the basal level
(R123 F/F ) as a percentage. The means = SD for six wells per treatment tested in one representative experiment (n = 6). The same experi-
ments were repeated three times using separate cultures and gave consistent results. Application of DMSO did not affect R123 fluorescence,
so for clarity a common line representing the controls is shown. At all time points after 20 min of incubation, the effect of TBBPA, at all concentra-
tions used, differed significantly from the 0.5% DMSO control, whereas the effect of glutamate differed significantly from the untreated control
after 5 min and from TBBPA treatment after 9 min of incubation (one-way ANOVA, p < 0.05)

tion of TBBPA at 7.5 uM resulted in a significant in-
crease in the intracellular calcium level. This was still
much lower than the increase in intracellular calcium
induced by 100 uM glutamate, applied as a positive
control. The dynamics of these effects were also dif-
ferent.

Mitochondrial membrane potential in CGC
treated with TBBPA

A decrease in the mitochondrial membrane potential
is a sensitive marker of pathological changes which
may result in cell death. Thus, we determined the ef-
fects of TBBPA on the mitochondrial membrane po-
tential of CGC by evaluating rhodamine 123 (R123)
fluorescence (Fig. 5). Application of TBBPA at con-
centrations of 2.5, 5 or 7.5 uM resulted in a statisti-
cally significant but relatively weak increase in the
R123 fluorescence compared to the 0.5% DMSO ve-
hicle control, which did not influence this fluores-
cence. This effect of TBBPA tended to be concentra-
tion dependent. It is noteworthy that the administra-
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tion of 100 pM glutamate as the positive control
resulted in a very pronounced increase in R123 fluo-
rescence compared to the corresponding control with-
out DMSO, greatly exceeding the effects of TBBPA.
These results demonstrated the involvement of mito-
chondrial depolarization in the mechanism of excito-
toxicity, and the rather stable mitochondrial mem-
brane potential in CGC treated with TBBPA at low
micromolar concentrations.

ROS production in TBBPA-treated CGC:
role in cytotoxicity

ROS production reflecting oxidative stress is one of
the putative TBBPA-induced pathological processes
that may be implicated in neuronal death. To evaluate
the effect of low micromolar concentrations of
TBBPA on the production of ROS, we used the probe
2’7’-dichlorodihydrofluorescein diacetate (DCFH-DA)
and measured accumulation of the fluorescent product
2’,7’-dichlorofluorescein (DCF) in CGC (Fig. 6).
TBBPA applied at concentrations of 2.5, 5 or 7.5 uM
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Fig. 6. Effect of TBBPA on the generation of reactive oxygen species (ROS) monitored with the fluorescent probe DCFH-DA in primary cultures
of rat CGC. The basal DCF fluorescence of cells loaded with DCFH was measured after 5 min, then the incubation was continued without addi-
tions (control without DMSQ), or following the application of 0.5% DMSO (vehicle control), 2.5, 5 or 7.5 uM TBBPA, or 100 uM glutamate (glu).
Increases in DCF fluorescence indicating enhanced ROS production are expressed relative to the basal level (DCF F/F ) as a percentage. The
application of DMSO did not affect DCF fluorescence, so for clarity a common line representing the controls is shown. Fhe means = SD for six
wells per treatment tested in one representative experiment (n = 6). The same experiments were repeated three times using separate cultures
and gave consistent results. At all the time points after 40 min of incubation, the effects of TBBPA at all concentrations used, and that of gluta-
mate, differed significantly from the 0.56% DMSO and untreated controls, respectively (one-way ANOVA, p < 0.05)

significantly enhanced DCF fluorescence compared
to the 0.5% DMSO vehicle control, which did not in-
fluence this fluorescence. The application of 100 uM
glutamate caused a moderate stimulation of ROS pro-
duction compared to the control. The concentration-
dependent rise in DCF fluorescence in TBBPA-
treated CGC indicated enhanced ROS production.
The ability of TBBPA at low micromolar concen-
trations to induce oxidative stress in CGC suggested
that it plays a role in the synergy between TBBPA and
OGD in causing cytotoxicity. To test this hypothesis,
we examined whether CGC under OGD conditions
are more susceptible to oxidative stress than control
cells, and if exogenous antioxidants can reverse this
synergistic effect. First, we compared the toxic effects
of hydrogen peroxide applied to CGC incubated un-
der aerobic conditions in glucose-containing medium
with its cytotoxicity under OGD (Fig. 7). Initial con-
trol experiments demonstrated a concentration-
dependent increase in ROS production in CGC treated
with the applied concentrations of H,O, (results not
shown). The application of 5, 10 and 25 uM H,0, for
45 min to CGC had no effect on the number of surviv-

ing neurons when incubation was performed in the
presence of glucose under aerobic conditions. How-
ever, under OGD conditions, H,O, induced a signifi-
cant, concentration-dependent potentiation of cyto-
toxicity. Thus, in our experiments, 2.5, 5 or 7.5 uM
TBBPA (Fig. 1) and 5, 10 or 25 uM H,0, (Fig. 7)
similarly enhanced OGD toxicity. We then demon-
strated that the cytotoxic effects of OGD alone or in-
duced in the presence of 5 uM TBBPA may be almost
completely reversed by application of the ROS scav-
engers 0.1 mM ascorbic acid or 1 mM GSH (Fig. 8A).
Consistent with these findings, the accumulation of
DCEF (i.e., ROS production) in neurons incubated un-
der OGD conditions was slightly reduced in the pres-
ence of 1 mM GSH (Fig. 8B). Moreover, the admini-
stration of 5 uM TBBPA under OGD increased the
level of DCF, and this effect was reversed in the pres-
ence of 1 mM GSH or 0.1 mM ascorbate. Thus, the
synergy between TBBPA and OGD may be prevented
by antioxidants and ROS scavengers, and hydrogen
peroxide mimics this effect of TBBPA, which
strongly suggests that oxidative stress is involved in
the mechanism underlying this phenomenon.
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Fig. 7. Hydrogen peroxide- and OGD-induced toxicity in cultured cerebellar granule cells. The effect of 5, 10 or 25 uM H202 alone on cell viabil-
ity (A) was studied in ionic medium containing glucose under aerobic conditions. The effect of H,0,, at the same concentrations on OGD-
evoked neuronal damage was studied in anaerobic glucose-deficient medium (B). Control cultures were incubated in the ionic medium without
the vehicle (0.5% DMSO). After incubation for 45 min at 37°C, the cells were cultured in the original growth medium for 24 h, and the number of
surviving neurons was determined by propidium iodide staining. Data represent the percentage change compared to untreated cultures. The
means = SD from six independent experiments (n = 6). * Differences statistically significant vs. control (one-way ANOVA followed by Dunnett's

test, p < 0.05)

Discussion

The present study shows that the acute application of
TBBPA at low micromolar concentrations, which by
itself does not induce death of in vitro cultured CGC,
potentiates the cytotoxic effects of OGD on these
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cells. Moreover, our results suggest that oxidative
stress induced by low micromolar concentrations of
TBBPA participates in the mechanism underlying this
phenomenon.

Primary cultures of rat CGC have previously been
used as an in vitro experimental model [6], including
studies concerning OGD and TBBPA cytotoxicity
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[28, 31, 32]. Our previous research has confirmed that
the CGC model is suitable for mechanistic studies on
toxicity for neurons caused by excitotoxic challenges,
calcium imbalance and mitochondrial dysfunction
[40, 42, 43]. To determine whether TBBPA at the
nominally subtoxic low micromolar concentrations
may exacerbate acute neuronal injury, we utilized
OGD, which is a generally accepted in vitro model of
the pathological conditions resembling brain ische-
mia. Technically, the application of OGD to cultured
cells is achieved by exchanging the oxygenated
growth medium for anaerobic ionic incubation me-
dium devoid of glucose. In our present experiments,
45, 60 or 75 min OGD resulted in a significant reduc-
tion in the number of live neurons, which was de-

GSH1mM vit.C0.1mM TBBPA5uM TBBPA+GSH TBBPA +vit.C

pendent on the duration of these conditions. Previous
studies in which CGC have been challenged with
OGD used similar durations of this treatment to in-
duce significant neuronal degeneration [14, 16, 32].

Our results show that exposure of CGC incubated
under normoxic conditions with glucose to TBBPA at
concentrations of 2.5, 5 or 7.5 uM for 45, 60 or 75 min
had no effect on neuronal viability. These data, to-
gether with previous reports [25, 28, 41] support the
notion that TBBPA at concentrations below 10 uM
does not induce detectable neuronal death. However,
our current study is the first to demonstrate that ad-
ministration of TBBPA at these nominally subtoxic
concentrations potentiates OGD toxicity in CGC in
a concentration-dependent manner.
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When examining the putative mechanism of
TBBPA and OGD synergy we considered calcium im-
balance, mitochondrial disfunction and oxidative
stress. According to literature data, these processes
might be common to both of toxic factors studied here
[9, 14, 22, 23, 25, 27, 28, 32]. Therefore, using stan-
dard methods we measured *Ca uptake and changes
in fluorescence of the probes fluo-3, R123 and DCF,
which are selective for intracellular calcium concen-
tration, mitochondrial membrane potential and ROS
production, respectively [15, 27, 28, 34, 40].

We found that the application of TBBPA at concen-
trations of 2.5, 5 or 7.5 uM did not activate **Ca accu-
mulation in neurons, but instead induced a slight
dose-dependent inhibition of **Ca uptake. Our previ-
ous data demonstrated that in CGC acutely treated
with TBBPA, the concentration threshold for inducing
Ca uptake via NMDA receptors and for excitotoxic-
ity is 25 pM. It was demonstrated that in CGC, intra-
cellular Ca®" modulates the activity of K channels
and in this way, increased Ca’" concentration may ac-
tivate these channels, thus decreasing the excitability
of neurons and activation of NMDA channels [37].
Consistent with this interpretation, the intracellular
calcium level in CGC challenged with 2.5 or 5 uM
TBBPA tended to be slightly increased, and this trend
reached statistical significance at 7.5 uM TBBPA.
Still, this effect represented only a fraction of the cal-
cium transient evoked by 100 pM glutamate. In-
creases in intracellular calcium level in cell cultures
treated with TBBPA have been previously reported
[25, 28, 41]. It is known that at low micromolar
TBBPA they reflect intracellular calcium release from
the ryanodine sensitive stores [25, 41], and that this
effect even at 10 uM TBBPA does not induce toxicity
in CGC [41]. Thus, our present data show that cal-
cium imbalance induced by TBBPA applied at 2.5, 5
or 7.5 uM is not related to excitotoxicity and its role
in the potentiation of OGD toxicity by TBBPA cannot
be taken into account.

A similar conclusion may also be drawn with re-
gard to TBBPA-induced changes in the mitochondiral
membrane potential. A slight but statistically signifi-
cant increase in R123 fluorescence evoked by treat-
ment of CGC with 2.5, 5 or 7.5 uM TBBPA, which
reflects minor depolarization of the mitochondrial
membranes, was negligible comparing to the effect of
100 uM glutamate, which was applied as a positive
control. Since the release of endogenous glutamate,
calcium imbalance and excitotoxicity, as well as mito-
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chondrial pathology are known to play an essential
role in OGD-induced neurotoxicity [9, 10], we be-
lieve that the additional weak effect of TBBPA on the
mitochondria is irrelevant to the mechanism of
TBBPA and OGD synergy.

Consequently, we focused on the potential role of
oxidative stress. The ability of TBBPA to activate the
formation of ROS has been observed in vivo in animal
models [35, 39]. Previous studies by Reistad et al. [27,
28] demonstrated that TBBPA administered in vitro at
low micromolar concentrations significantly increased
the fluorescence of DCF in human neutrophil granulo-
cytes and in CGC, which reflects the enhanced produc-
tion of ROS and the generation of oxidative stress. This
finding is corroborated by our present data. It is note-
worthy that the intensity of ROS production evoked by
100 puM glutamate is comparable to the effect of
2.5 uM TBBPA, whereas increases of DCF fluores-
cence evoked by higher TBBPA concentrations were
much more pronounced. This indicates that TBBPA at
even low micromolar concentrations induces oxidative
stress which is more pronounced than that caused by
the intensive excitotoxic challenge. Thus, excessive
ROS production induced by TBBPA may be a candi-
date for pathological factor contributing to the mecha-
nism of TBBPA and OGD synergy.

This assumption was supported by evidence ob-
tained using two experimental approaches. Firstly, our
results suggest that CGC under OGD conditions are
more susceptible to oxidative stress than control cells
incubated in glucose containing normoxic medium. In
these experiments the application of H,O, at concen-
trations inducing an increase in ROS production in
CGC, but not influencing neuronal viability in glu-
cose and oxygen containing medium, resulted in pro-
nounced exacerbation of OGD cytotoxicity. Further-
more, TBBPA and H,0,, two substances enhancing
ROS production without reducing the viability of the
CGC, when applied acutely to CGC incubated under
normoxic and normoglycemic conditions, similarly
potentiated OGD cytotoxicity. Hydrogen peroxide
was selected for these experiments because Reistad
et al. [28] showed that at least some of the TBBPA-
induced ROS production in CGC is due to the forma-
tion of H,0O,. Our other experiments demonstrated
that the ROS scavengers GSH and ascorbic acid com-
pletely prevented the cytotoxic effect of OGD and
considerably reduced the cytotoxicity of OGD in the
presence of 5 uM TBBPA. Previously, Logan et al.
[21] demonstrated that GSH and ascorbate enhance
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recovery of primary spinal cord cultures after OGD,
but to the best of our knowledge this issue has not
been addressed using the CGC model. Reistad et al.
[28] examined the effect of antioxidants on TBBPA
toxicity in CGC and showed the protective effect of
50 uM vitamin E; however, this was not accompanied
by an adequate reduction of ROS production. Our
data support the hypothesis that oxidative stress is
critical for TBBPA and OGD synergy.

The results of this in vitro study may not be directly
related to the specific pathology of the brain in vivo.
In the present study, TBBPA was administered in vitro
at low micromolar concentrations. Studies conducted
in highly industrialized countries like Norway and Ja-
pan have shown that the concentration of TBBPA in
human serum is at the level of a few ng/g lipid weight
[17, 36], which corresponds to low nanomolar con-
centrations [28]. Moreover, earlier in vivo toxicologi-
cal studies using rodents have indicated that the toxic-
ity of TBBPA is low, with toxic effects and symptoms
of oxidative stress developing at doses > 1 g/kg b.w.
[7, 35]. The potential of TBBPA as an environmental
toxin seems to be low because of its short half-life, of
around 2 days [12], and the lack of its biomagnifica-
tion in the food web [33]. However, more recent data
have shown behavioral deficits in mice acutely treated
with TBBPA at doses as low as 0.1 or 5 mg/kg b.w.
[24]. Clearly, further research is needed to clarify
whether in subjects with elevated plasma and brain
levels of TBBPA, the course of diseases leading to
neuronal damage could be aggravated, and that in
cases of acute TBBPA intoxication, which never hap-
pened so far, oxidative stress should be considered as
an additional target for therapy.

In summary, our study in vitro demonstrated a sig-
nificant exacerbation of OGD-induced toxicity in CGC
by TBBPA present at nominally subtoxic low micro-
molar concentrations. Moreover, our data indicated
that TBBPA-induced oxidative stress may be instru-
mental in this phenomenon. Additional studies are
needed to verify hypothesis that there is a potential
threat of TBBPA present at even low nominally sub-
toxic levels when combined with brain ischemia or
other neuropathological disorders.

Acknowledgment:
This work was supported by the MNiSW grant N N401 024635.

10.

11.

12.

13.

14.

15.

16.

17.

References:

. Aam BB, Fonnum F: (+)-2-Chloropropionic acid ele-

vates reactive oxygen species formation in human neu-
trophil granulocytes. Toxicology, 2006, 228, 124—134.

. Alaee M, Wenning RJ: The significance of brominated

flame retardants in the environment: current understanding,
issues and challenges. Chemosphere, 2002, 46, 579-582.

. Baracca A, Sgarbi G, Solaini G, Lenaz G: Rhodamine

123 as a probe of mitochondrial membrane potential:
evaluation of proton flux through F¢ during ATP synthe-
sis. Biochim Biophys Acta, 2003, 1606, 137-146.

. Birnbaum LS, Staskal DF: Brominated flame retardants:

cause for concern? Environ Health Perspect, 2004, 112,
9-17.

. Canesi L, Lorusso LC, Ciacci C, Betti M, Gallo G:

Effects of the brominated flame retardant tetrabromo-
bisphenol-A (TBBPA) on cell signaling and function of
Mpytilus hemocytes: involvement of MAP kinases and
protein kinase C. Aquat Toxicol, 2005, 75, 277-287.

. Contestabile A: Cerebellar granule cells as a model to

study mechanisms of neuronal apoptosis or survival in
vivo and in vitro. Cerebellum, 2002, 1, 41-55.

. Darnerud PO: Toxic effects of brominated flame retardants

in man and in wildlife. Environ Int, 2003, 29, 841-853.

. de Wit CA: An overview of brominated flame retardants

in the environment. Chemosphere, 2002, 46, 583—-624.

. Goldberg MP, Choi DW: Combined oxygen and glucose

deprivation in cortical cell culture: calcium-dependent
and calcium-independent mechanisms of neuronal injury.
J Neurosci, 1993, 13, 3510-3524.

Greenwood SM, Mizielinska SM, Frenguelli BG, Harvey
J, Connolly CN: Mitochondrial dysfunction and dendritic
beading during neuronal toxicity. J Biol Chem, 2007,
282,26235-26244.

Guo M-F, Yu J-Z, Ma C-G: Mechanisms related to neu-
ron injury and death in cerebral hypoxic ischaemia. Folia
Neuropathol, 2011, 49, 79-87.

Hagmar L, Sjodin A, Hoglund P, Thuresson K, Rylander
L, Bergman A: Biological half-lives of polybrominated
diphenyl ethers and tetrabromobisphenol A in exposed
workers. Organohalog Compd, 2000, 47, 198-201.
Iijima T: Mitochondrial membrane potential and ischemic
neuronal death. Neurosci Res, 2006, 55, 234-243.

Isaev NK, Stelmashook EV, Dirnagl U, Andreeva NA,
Manuhova L, Vorobjev VS, Sharonova IN et al.: Neuro-
protective effects of the antifungal drug clotrimazole.
Neuroscience, 2002, 113, 47-53.

Kabhlert S, Ziindorf G, Reiser G: Detection of de- and hy-
perpolarization of mitochondria of cultured astrocytes
and neurons by the cationic fluorescent dye rhodamine
123. J Neurosci Methods, 2008, 171, 87-92.

Kalda A, Eriste E, Vassiljev V, Zharkovsky A: Medium
transitory oxygen-glucose deprivation induced both
apoptosis and necrosis in cerebellar granule cells. Neuro-
sci Lett, 1998, 240, 21-24.

Kawashiro Y, Fukata H, Omori-Inoue M, Kubonoya K,
Jotaki T, Takigami H, Sakai S, Mori C: Perinatal expo-
sure to brominated flame retardants and polychlorinated
biphenyls in Japan. Endocr J, 2008, 55, 1071-1084.

Pharmacological Reports, 2012, 64, 1166-1178 1177



19.

20.

21.

22.

23.

24

25.

26.

27.

28.

29.

30.

31.

1178

. Kitamura S, Suzuki T, Sanoh S, Kohta R, Jinno N,

Sugihara K, Yoshihara S et al.: Comparative study of
the endocrine-disrupting activity of Bisphenol A and 19
related compounds. Toxicol Sci, 2005, 84, 249-259.
Kuszezyk M, Stomka M, Antkiewicz-Michaluk L,
Salinska E, Lazarewicz JW: 1-Methyl-1,2,3,4-tetra-
hydroisoquinoline and established uncompetitive NMDA
receptor antagonists induce tolerance to excitotoxicity.
Pharmacol Rep, 2010, 62, 1041-1050.

Lilienthal H, Verwer CM, van der Ven LT, Piersma AH,
Vos JG: Exposure to tetrabromobisphenol A (TBBPA) in
Wistar rats: neurobehavioral effects in offspring from

a one-generation reproduction study. Toxicology, 2008,
246, 45-54.

Logan MP, Parker S, Shi R: Glutathione and ascorbic
acid enhance recovery of Guinea pig spinal cord white
matter following ischemia and acrolein exposure. Patho-
biology, 2005, 72, 171-178.

Mariussen E, Fonnum F: The effect of brominated flame
retardants on neurotransmitter uptake into rat brain synap-
tosomes and vesicles. Neurochem Int, 2003, 43, 533-542.
Mei JM, Chi WM, Trump BF, Eccles CU: Involvement
of nitric oxide in the deregulation of cytosolic calcium in
cerebellar neurons during combined glucose-oxygen
deprivation. Mol Chem Neuropathol, 1996, 27, 155-166.

. Nakajima A, Saigusa D, Tetsu N, Yamakuni T, Tomioka

Y, Hishinuma T: Neurobehavioral effects of tetrabromo-
bisphenol A, a brominated flame retardant, in mice.
Toxicol Lett, 2009, 189, 78-83.

Ogunbayo OA, Lai PF, Connolly TJ, Michelangeli F:
Tetrabromobisphenol A (TBBPA), induces cell death in
TM4 Sertoli cells by modulating Ca2" transport proteins
and causing dysregulation of Ca2" homeostasis. Toxicol
In Vitro, 2008, 22, 943-952.

Qu G, ShiJ, Wang T, Fu J, Li Z, Wang P, Ruan T, Jiang G:
Identification of tetrabromobisphenol A diallyl ether as an
emerging neurotoxicant in environmental samples by
bioassay-directed fractionation and HPLC-APCI-MS/MS.
Environ Sci Technol, 2011, 45, 5009-5016.

Reistad T, Mariussen E, Fonnum F: The effect of a bro-
minated flame retardant, tetrabromobisphenol-A, on free
radical formation in human neutrophil granulocytes: the
involvement of the MAP kinase pathway and protein ki-
nase C. Toxicol Sci, 2005, 83, 89-100.

Reistad T, Mariussen E, Ring A, Fonnum F: In vitro toxic-
ity of tetrabromobisphenol-A on cerebellar granule cells:
cell death, free radical formation, calcium influx and ex-
tracellular glutamate. Toxicol Sci, 2007, 96, 268-278.
Salinska E, Danysz W, Lazarewicz JW: The role of exci-
totoxicity in neurodegeneration. Folia Neuropathol,
2005, 43, 322-339.

Schousboe A, Drejer J, Hansen GH, Meier E: Cultured
neurons as model systems for biochemical and pharma-
cological studies on receptors for neurotransmitter amino
acids. Dev Neurosci, 1985, 7, 252-262.

Scorziello A, Pellegrini C, Forte L, Tortiglione A,
Gioielli A, Tossa S, Amoroso S et al.: Differential vulner-
ability of cortical and cerebellar neurons in primary cul-

Pharmacological Reports, 2012, 64, 1166-1178

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

ture to oxygen glucose deprivation followed by reoxy-
genation. J Neurosci Res, 2001, 63, 20-26.

Scorziello A, Pellegrini C, Secondo A, Sirabella R,
Formisano L, Sibaud L, Amoroso S et al.: Neuronal
NOS activation during oxygen and glucose deprivation
triggers cerebellar granule cell death in the later reoxy-
genation phase. J Neurosci Res, 2004, 76, 812-821.
Sjodin A, Patterson DG Jr, Bergman A: A review on hu-
man exposure to brominated flame retardants-particularly
polybrominated diphenyl ethers. Environ Int, 2003, 29,
829-839.

Stomka M, Zieminska E. Salinska E, Lazarewicz JW:
Neuroprotective effects of nicotinamide and 1-methyl-
nicotinamide in acute excitotoxicity in vitro. Folia Neu-
ropathol, 2008, 46, 69-80.

Szymanska JA, Piotrowski JK, Frydrych B: Hepatotoxic-
ity of tetrabromobisphenol-A: effects of repeated dosage
in rats. Toxicology, 2000, 142, 87-95.

Thomsen C, Lundanes E, Becher G: Brominated flame
retardants in archived serum samples from Norway:

a study on temporal trends and the role of age. Environ
Sci Technol, 2002, 36, 1414-1418.

Wang X, Bao J, Zeng XM, Liu Z, Mei YA: Elevation of
intracellular Ca>* modulates A-currents in rat cerebellar
granule neurons. J Neurosci Res, 2005, 81, 530-540.
Williams AL, DeSesso JM: The potential of selected bro-
minated flame retardants to affect neurological develop-
ment. J Toxicol Environ Health B Crit Rev, 2010, 13,
411-448.

Xue Y, Gu X, Wang X, Sun C, Xu X, Sun J, Zhang B:
The hydroxyl radical generation and oxidative stress for
the earthworm Eisenia fetida exposed to tetrabromo-
bisphenol A. Ecotoxicology, 2009, 18, 693—699.
Zieminska E, Matyja E, Kozlowska H, Stafiej A,
Lazarewicz JW: Excitotoxic neuronal injury in acute ho-
mocysteine neurotoxicity: role of calcium and mitochon-
drial alterations. Neurochem Int, 2006, 48, 491-497.
Zieminska E, Stafiej A, Lazarewicz JW: Complex
mechanisms of tetrabromobisphenol A neurotoxicity in
primary cultures of rat cerebellar granule cells. Acta
Neurobiol Exp (Warsaw), 2010, 71, 151.

Zieminska E, Stafiej A, Lazarewicz JW: Role of group I
metabotropic glutamate receptors and NMDA receptors
in homocysteine-evoked acute neurodegeneration of cul-
tured cerebellar granule neurones. Neurochem Int, 2003,
43, 481-492.

Zieminska E, Stafiej A, Pitsinos EN, Couladouros EA,
Moutsos V, Kozlowska H, Toczylowska B, Lazarewicz
JW: Synthetic bastadins modify the activity of ryanodine
receptors in cultured cerebellar granule cells. Neurosig-
nals, 2006/2007, 15, 283-292.

Zieminska E, Toczylowska B, Stafiej A, Lazarewicz JW:
Low molecular weight thiols reduce thimerosal neuro-
toxicity in vitro: modulation by proteins. Toxicology,
2010, 276, 154-163.

Received: March 26, 2012; accepted: May 11, 2012.



	1003	Minireview Œ Synthetic immunostimulatory oligonucleotides in experimental and clinical practice.
	Pawe³ Bodera, Wanda Stankiewicz, Janusz Kocik

	1011	Review Œ The multidrug transporter P-glycoprotein in pharmacoresistance to antiepileptic drugs.
	Karolina M. Stêpieñ, Micha³ Tomaszewski, Joanna Tomaszewska, Stanis³aw J. Czuczwar

	1020	Review Œ Nanoparticles as drug delivery systems.
	Agnieszka Z. Wilczewska, Katarzyna Niemirowicz, Karolina H. Markiewicz, Halina Car

	1038	Review Œ Role of the SOCS in monocytes/macrophages-related pathologies. Are we getting closer to a new pharmacological target?
	Krzysztof £abuzek, Dariusz Suchy, Bo¿ena Gabryel, Olga Pierzcha³a, Bogus³aw Okopieñ

	1055	Review Œ 11b-Hydroxysteroid dehydrogenase type 1: potential therapeutic target for metabolic syndrome.
	Amit Joharapurkar, Nirav Dhanesha, Gaurang Shah, Rajendra Kharul, Mukul Jain

	1066	Involvement of cholinergic receptors in the different stages of memory measured in the modified elevated plus maze test in mice.
	Marta Kruk-S³omka, Barbara Budzyñska, Gra¿yna Bia³a

	1081	Characterization of motor, depressive-like and neurochemical alterations induced by a short-term rotenone administration.
	Lívia H. Morais, Marcelo M.S. Lima, Bruno J. Martynhak, Ronise Santiago, Tatiane T. Takahashi, Deborah Ariza, Janaína K. Barbiero, Roberto Andreatini, Maria A.B.F. Vital

	1091	Effects of morphine on immediate-early gene expression in the striatum of C57BL/6J and DBA/2J mice.
	Barbara Zió³kowska, Micha³ Korostyñski, Marcin Piechota, Jakub Kubik, Ryszard Przew³ocki

	1105	Potential role of licofelone, minocycline and their combination against chronic fatigue stress induced behavioral, biochemical and mitochondrial alterations in mice.
	Anil Kumar, Aditi Vashist, Puneet Kumar, Harikesh Kalonia, Jitendriya Mishra

	1116	Tolerance liability of diazepam is dependent on the dose used for protracted treatment.
	Jovana Divljakoviæ, Marija Miliæ, Tamara Timiæ, Miroslav M. Saviæ

	1126	Influence of DRD2 and ANKK1 polymorphisms on the manifestation of withdrawal syndrome symptoms in alcohol addiction.
	Anna Grzywacz, Andrzej Jasiewicz, Iwona Ma³ecka, Aleksandra Suchanecka, El¿bieta Grochans, Beata Karakiewicz, Agnieszka Samochowiec, Przemys³aw Bieñkowski, Jerzy Samochowiec

	1135	Trazodone reduces the anticonvulsant action 
of certain classical antiepileptics in the mouse maximal electroshock model.
	Kinga K. Borowicz, Elwira Gurdziel, Stanis³aw J. Czuczwar

	1146	New neostigmine-based behavioral mouse model of abdominal pain.
	Jakub Fichna, Tamia Lapointe, Kevin Chapman, Anna Janecka, Nathalie Vergnolle, Christophe Altier, Martin A. Storr

	1155	Anti-inflammatory and antinociceptive effects of 6-(4-chlorophenoxy)-tetrazolo[5,1-a]phthalazine in mice.
	Hai-Ling Yu, Feng-Zhang, Ying-Jun Li, Guo-Hua Gong, Zhe-Shan Quan

	1166	Synergistic neurotoxicity of oxygen-glucose deprivation and tetrabromobisphenol A in vitro: role of oxidative stress.
	El¿bieta Ziemiñska, Aleksandra Stafiej, Beata Toczy³owska, Jerzy W. £azarewicz

	1179	Evaluation of the antioxidative properties of lipoxygenase inhibitors.
	Grzegorz A. Czapski, Kinga Czubowicz, Robert P. Strosznajder

	1189	Oroxylin A, a classical natural product, shows a novel inhibitory effect on angiogenesis induced by lipopolysaccharide.
	Xiuming Song, Yan Chen, Yajing Sun, Biqi Lin, Yansu Qin, Hui Hui, Zhiyu Li, Qidong You, Na Lu, Qinglong Guo

	1200	The influence of opioids on the humoral and cell-mediated immune responses in mice. The role of macrophages.
	Iwona Filipczak-Bryniarska, Bernadeta Nowak, Emilia Sikora, Katarzyna Nazimek Jaros³aw Woroñ, Jerzy Wordliczek, Krzysztof Bryniarski

	1216	Anti-allergic activity of emodin on IgE-mediated activation in RBL-2H3 cells.
	Weimin Wang, Qin Zhou, Lu Liu, Keqin Zou

	1223	Effect of mononuclear cells versus pioglitazone on streptozotocin-induced diabetic nephropathy 
in rats.
	Riham E. Masoad, Mohamed M.S. Ewais, Mona K. Tawfik, Hwayda S. Abd El-All

	1234	Contribution of the b-ureidopropionase (UPB1) gene alterations to the development of fluoropyrimidine-related toxicity.
	Julie Fidlerova, Petra Kleiblova, Stanislav Kormunda, Jan Novotny, Zdenek Kleibl

	1243	Interactions between drugs and sulforaphane modulate the drug metabolism enzymatic system.
	Katarzyna Lubelska, Ma³gorzata Milczarek, Karolina Modzelewska, Jolanta Krzysztoñ-Russjan, Krzysztof Fronczyk, Katarzyna Wiktorska

	SHORT COMMUNICATIONS
	1253	Antidepressant drugs promote the heterodimerization of the dopamine D2 and somatostatin Sst5 receptors Œ fluorescence in vitro studies.
	Kinga Szafran, Sylwia £ukasiewicz, Agata Faron-Górecka, Magdalena Kolasa, Maciej Kuœmider, Joanna Solich, Marta Dziedzicka-Wasylewska


	1259	Sildenafil, a phosphodiesterase type 5 inhibitor, reduces antidepressant-like activity of paroxetine in the forced swim test in mice.
	Katarzyna Soca³a, Dorota Nieoczym, El¿bieta Wyska, Ewa Poleszak, Piotr Wla�

	1266	Modification of morphine analgesia by venlafaxine in diabetic neuropathic pain model.
	Krystyna Cegielska-Perun, Magdalena Bujalska-Zadro¿ny, Helena E. Makulska-Nowak

	1276	Increased concentration of metronidazole and its hydroxy metabolite in colon cancer in women.
	Anna Sadowska, Bogus³aw Kêdra, Dariusz Cepowicz, Lech Rodziewicz, Anna Fiedorowicz, S³awomir Prokopiuk, Wojciech Miltyk, Halina Car
	1281	Note to Contributors



	content
	cont
	contents_3'2005
	contents

